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Abstract. The use of a magnetic field in the measurement of diffusion 
coefficients in liquid metals or semi-conductors is analyzed. Previous studies 
have demonstrated the disturbing influence of buoyancy-driven convection 
on the species transport in the shear-cell technique. A theory of effective 
diffusivity was proposed to account for the convective part of the transfer 
(GBD95). The idea developed here is to combine this effective diffusivity 
with the Lorentz electromagnetic damping of convection. The expected 
influence of the magnetic field is that the convective contribution should 
scale as Ha-4• Experiments were carried out and, for a small convection 
level, this magnetic influence was confirmed. It is suggested that a strong 
steady magnetic field could enable the precise measurement of liquid metal 
alloys diffusivities. The present analysis gives the required magnetic field 
magnitude. 

1. Introduction 

For two independent reasons, it is important to measure accurately the 
chemical diffusivities in liquid metals. Firstly, some fundamental studies 

359 

A. Alemany et al. (eds.). 
Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows. 359-372. 
© 1999 Kluwer Academic Publishers. 



360 T. ALBOUSSIERE ET AL. 

of the structure of liquid metal could use precise measurements to se­
lect one diffusion theory among all of them. Secondly, precise values are 
now needed to feed the powerful modelling methods in crystal growth 
or metallurgy. However, due to the extremely small values of these so­
lute diffusivities of order lO-9m2 .8-1, any attempt to measure them is 
a challenge: during an experiment of diffusion where the liquid is sup­
posed to be at rest, a small reminiscent motion is likely to contribute 
more to the mass transfer than pure diffusion itself (GBD95j ARR96j 
HR86). The method of the long capillary seems to be the most widely 
used and this paper addresses the question of the influence of parasitic 
convection during its application. The compositions being assumed small!, 
the undesirable motion takes its origin in thermal buoyancy forces. A care­
ful thermal design of the experimental device helps reducing these forces. 
Nevertheless, it has been necessary to carry out measurements in the micro­
gravity environment to obtain reasonably precise diffusivity values for some 
alloys. Another approach is investigated here, relying on the damping of the 
movements in an electrically conducting liquid that a steady magnetic field 
should induce. After a presentation of the experimental technique in section 
(2), the model of effective diffusivity (first presented in (GBD95)) aiming at 
modelling the mass transport induced by convection will be recalled (sec­
tion 3). How a magnetic field damps the convective contribution to mass 
transport is analyzed in (4) in the framework of the effective diffusivity. 
Section (5) is devoted to our recently started experimental program and 
section (6) to a discussion of the use of magnetic fields for the purpose of 
measuring precise values of solute diffusivities. 

2. The shear cell technique 

In a purely diffusive transfer, the mass transfer density field J is modelled 
by Fick's law in the limiting case of dilute alloys: J = - p D \7 c, where p, 
D, c denote the constant and uniform density, solute diffusivity and solute 
concentration expressed in mass fraction respectively. A configuration is 
settled in such that a one dimensional diffusion is expected. The initial 
state is a step function of concentration along the axis where diffusion will 
proceed, which we denote the x-axis. The conservation of solute mass pc 
along with the expression of the diffusion flux J leads to a local equation 
of conservation in the x direction: pac/at + oJx /8x = 0, where Jx is the 
single non zero component of J. The solution of this local equation is well 

IThis is the so-called dilute approximation 
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known since the 19th century results in heat transfer and is an er f function 

C2 - Cl [ (X)] c(X,t)=Cl+ 2 l+erf 2...(i5t , (1) 

when the initial condition is c = Cl for x < 0 and C = C2 for x > O. The 
knowledge of the composition at a time T enables to derive the diffusivity. 

The originality of the shear cell technique (see figure 1) initially pro­
posed at the CEREM (Pra89), is aimed at creating the conditions of one­
dimensional diffusion from a step function and at providing the possibility 
of "freezing" the composition function at a time T, determined by the oper­
ator. A thin capillary of diameter of order 1 mm is formed by the alignment 
of a number of discs where an eccentric circular hole has been drilled. The 
material of the discs forms then the boundary of the long capillary. All 
the discs are liable to rotate around a common central axis. Three con­
figurations are needed during a measurement experiment. Firstly, the long 
capillary is split in two half capillaries, allowing their filling with the al­
loy at different compositions. Secondly, the full capillary should be formed, 
creating the initial step function. Thirdly, after a duration T of diffusion 
prescribed by the operator, all fractions of the capillary should be isolated, 
e.g. by rotating every other disk. How these steps can be performed is a mat­
ter of subtle technology. After the last step, the temperature is decreased to 
room temperature and the solid elementary alloy samples contained in each 
disk are globally analyzed. The mean value of the axial solute distribution 
on each disc length after a diffusion duration T is obtained. By comparison 
with the solution (1), an experimental value of diffusivity D is derived. 

Filling Contact Diffusion Final shear 

Figure 1. Shear cell sketch and principle 
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The figure 2 shows the evolution of the purely diffusive concentration 
profile given by the expression 1. Typically, the distance over which the 
composition gradient is spread scales as ..,fi5t with time. 
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Figure 2. Pure diffusion profiles for SnBi after 1 hour, 24 hours and 120 hours 
(D = 1.5 x 1O-9 m2.s-1) 

3. Convection and effective diffusivity 

The previous section describes the ideal purely diffusive case. In this section, 
the effect of a weak convection on mass transport is addressed. A steady 
divergence free velocity field v is supposed to take place in the capillary 
with a zero normal component at the boundaries. In comparison with earlier 
works in the field, it is not necessary to suppose that the flow is one­
dimensional. Nevertheless its variations in the direction of the x axis are 
assumed to take place on a larger length scale than the capillary diameter. 

Fick's law for solute transfer holds in the reference system where matter 
is at rest. When expressed in the laboratory system of reference, it becomes 
J = - p D \l c + pc v, in the presence of convection. It remains possible and 
enlightening to express a local solute conservation equation along x. The 
basic experimental observable is the mean value of the concentration in the 
plane orthogonal to the x-axis at a given coordinate x, denoted CO(x, t), 
while the variations of concentration within this plane are represented by 
Cl(X,y,z,t) = c(x,y,z,t) - co(x,t). The conservation of species along x 
takes the form p aco / at + a < Jx > / ax = 0, where < > denotes the average 
in the plane perpendicular to the x axis. A zero net global mass flux being 
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assumed in the x direction, because the fluid is confined in a closed cavity, 
it is not difficult to derive the following form < Jx > = - p D (8co / 8x) + 
p < VxCl >, where Vx is the x component of the velocity field. The solute 
equation along x can now be written 

(2) 

It is clear from equation (2) that the field Cl has to be considered in order 
to obtain a proper equation for co. The local point-wise solute conservation 
equation is p8c/8t + divJ = 0, which can be expanded as 8c/8t + v.Vc = 
D ~c. Hopefully, the difference between this isotropic equation and the x 
equation (2) should essentially involve Cl, the variation of the composition 
in the plane perpendicular to the x axis 

Our primary goal being the analysis of the departure of species transfer from 
the purely diffusive case, we will treat convection as a small parameter. We 
can anticipate that the perturbation v is at the origin of a field C1 of the 
same order, and both V.VC1 and (8/8x) < VxC1 > are second order terms 
in (3) compared to v.Vco. For a weak convection it is also safe to neglect 
the first term 8C1 /8t in comparison with D ~C1: these terms should be 
comparable if only axial variation was looked at, but by definition of C1, 
and due to the aspect ratio of the cell, its variations in the cross-section 
are very large compared to its axial variation2 • The first order disturbance 
form of (3) is 

-1 8co 
~SC1 = D Vx 8x ' (4) 

where ~s denotes the Laplacian operator in the cross section and where 
Vco was replaced by its single non zero component 8co/8x. The field C1 

must satisfy a zero normal gradient at the circular boundary. The solution 
of equation (4) is f D-18cO/8x, where f is solution of ~sf = Vx and 
admits a zero normal gradient on the boundary. Using that result, the 
term < VxC1 > takes the form < vxf > D-18cO/8x and the basic equation 
for Co (2) can be written 

8co = ~ [(D _ < vxf » &0] . 
8t 8x D 8x 

(5) 

2Here is also made use of the assumption that the axial scale of variation of convection 
is much larger than the diameter. 
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The term in brackets is called an effective diffusivity (GBD95), DefJ = 
D - < vxi > / D, by analogy of (5) with a diffusion equation. In the case 
of a fully-established convection along the axis, the effective diffusivity is 
independent of x and the equation governing CO becomes strictly identical to 
that of pure diffusion: given an experimental measurement of a diffusivity, it 
is impossible to guess what part of it is due to convection (see (GPVVA97)) . 

x 

'VT 

. ". ' .. 1. isoconcentration 
transverse~ ". line 
diffusion ... . 

Figure 3. Convection in the capillary and the associated curvature of the 
iso-concentration lines 

Some characteristics of the effect of convection on the apparent diffu­
sivity (see equation 5) are now discussed (see reference (GBD95) for the 
original presentation of the effective diffusivity). It should be noted first 
that the term < vxi > is quadratic in the velocity. Indeed, because of the 
simple equation /lsi = vx , the functioa i depends linearly on the velocity 
Vx ' A simple physical explanation can be given for the reason why the con­
vection dimensionless parameter intervenes to the square in the expression 
of the effective diffusivity. The velocity field acts linearly on the mean axial 
concentration gradient aco/ ax to produce a lateral concentration difference. 
The convective transport contribution < VxCl > is then the product of the 
convective velocity by the lateral concentration. It is also striking that the 
convective contribution is inversely proportional to the "true" diffusivity 
D. This is related to how the lateral concentration difference is created. 
The interaction between the velocity field and the axial concentration gra­
dient is a production term of lateral concentration, whereas lateral diffusion 
tends to limit the lateral concentration differences. So the equilibrium lat-
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eral concentration is inversely proportional to D and so is the convective 
transport contribution to the overall transport. 

4. Effect of a magnetic field 

A simple configuration is now specified: the capillary of diameter H is as­
sumed to be horizontal and an axial uniform temperature gradient G is 
supposed to exist (see figure 3). It has been shown in (GAM92), that this 
configuration was analogous to a vertical capillary in a transverse temper­
ature gradient, since only the curl of the buoyancy driving force is to be 
considered. Let us denote z the direction opposite to the gravity vector 
and y the orthogonal direction to the x and z axis. The solution of the 
fully-established3 buoyancy driven convective flow in the cylindrical cell is 
(Bej84) 

GrSc [3 2] D 
Vx = 32 4 Z + 4 Z Y - Z H' (6) 

where Z = z/ H, Y = y/ Hand Gr Sc = ({3 9 G H4)/(1/ D) can be considered 
as the product of a Grashof number and a Schmidt 1// D number ({3, 9 and 1/ 
denote the volume expansion coefficient, gravity and the kinematic viscos­
ity, respectively). Following the previous section analysis, the disturbance 
Cl is derived analytically as the solution of a 2D harmonic equation and 
the resulting effective diffusivity is determined analytically , and the mean 
value of its product with Vx is exactly calculated 

C = aco H Gr Sc [4 Z5 + 8 y2 Z3 _ 3 Z3 + 4 y4 Z - 3 y2 Z + z] (7) 
1 ax 768 . 

Equation (5) admits the following expression 

aCo 
at 

= D [1 7 (Gr Sc)2] a2co 
+ 11796480 ax2 • 

D - D [1 7 (Gr Sc) 2] 
eff - + 11796480 . 

(8) 

(9) 

3The question of the stability of this How is not relevant since inertia is likely to be 
negligible. We are indeed interested in regimes for which the effective diffusivity is not 
massively larger than the molecular diffusivity Dell '" D and it was shown (GPVVA97) 
that the convective contribution to Dell is of order DPe2 , where Pe = V H / D is the 
solutal Peclet number. The kinematic viscosity being much larger than the species dif­
fusivity for liquid metals and semiconductors, the Reynolds number VH/v will be much 
smaller than unity if we restrict the analysis to Peclet numbers of order unity or less. 
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The increase of the effective diffusivity is quadratic in the governing non 
dimensional parameter Gr Sc. 

In the same configuration, a transverse uniform vertical magnetic field 
is applied. When its magnitude B is such that the Hartmann number Ha = 
Jaj(pv)BH (where a denotes the electrical conductivity) is very large 
compared to unity, the convective velocity profile for electrically insulating 
boundaries tends towards (AGM93) 

GrSc D 
Vx = - Ha2 2 Z H' (10) 

except in the small Hartmann layer of typical thickness Ha- 1H at the 
boundary. and the analytical derivation of Dell yields now 

= oco H Gr Sc [4 Z3 4 y2 Z - 3 Z] 
C1 oX 16Ha2 + . (11) 

The equation of effective diffusivity (5) becomes now 

D [1 + 7 (Gr Sc)2] o2cO. 
- 384Ha4 8x2 

(12) 

[ 7 (GrSc)2] 
Dell = D 1 + 384Ha4 • (13) 

The magnetic field reduces the convective part of the effective diifusivity as 
Ha-4 , which makes it a quite promising tool to achieve good measurements 
on earth with the shear cell technique. 

5. Our experimental program 

In EPM-Madylam, an experimental device, EURIDICE, has been designed 
for the measurement of diffusivities using the shear cell technique under 
magnetic fields up to 0.75 Tesla. Contrary to many other experiments where 
thermal buoyancy forces are made as small as possible, a small constant 
temperature gradient (of order 0.5 K.cm -1) is created so that the driv­
ing force is known. In order to achieve both temperature homogeneity or 
constant axial temperature gradients, the cells are placed into a graphite 
cylinder heated by three heating elements. An inSUlating material is placed 
around the graphite (Microtherm, K = 0.03 W.m-1.K-1 at 500 °C) and the 
external envelope is maintained at a constant temperature by a thermally 
regulated water circulation. The heating element in the middle compen­
sate radial losses and the elements at each end prevent from axial losses. 
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Figure 4. Dependence of the effective diffusivity on the Hartmann number. The transi­
tion between expression 9 without magnetic field and expression 13 for strong magnetic 
fields, occurs for a Hartmann number around 13. 

Temperature measurements are made with thermocouples passed through 
both the graphite cylinder and a hole in the shear cells. When equilibrating 
carefully the three heating elements, a 0.03°C homogeneity is possible at 
250°C along the 20 em long capillaries. On one side, a piece of metal links 
the graphite cylinder to the water cooled external envelope. It allows heat 
losses : a perfect axial and linear temperature gradient can then be created 
by increasing the regulation temperature on one side and decreasing it on 
the other. The whole device is held by a vibration insulated support and 
placed in an electromagnet. Vertical magnetic fields up to 0.75 T can then 
be applied. 

The tin bismuth alloy, with low concentration in bismuth, has been one 
of the studied alloys (see figure 5). A concentration of 0.5at.% of bismuth 
was put on one half and pure tin on the other half capillary. Despite this 
low concentration, it was found that solute-buoyancy effects were more im­
portant than thermal-buoyancy forces by a factor ten. In that case, the 
previous analyses does not apply directly, because the driving force of the 
flow depends on the axial solute gradient, which evolve in time when dif­
fusion proceeds. Here follows a modification of the analysis developed in 
section 3 to this case. Concerning the concentration analysis, the equations 
are unchanged up to equation 4. The only difference is that the velocity 
appearing is due to solute buoyancy forces rather than thermal effects. Let 
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Figure 5. Concentration profile and associated er f function for SnBi at 0.5 at% in the 
horizontal configuration under a vertical magnetic field of magnitude 0.75T. 

us introduce a solute Grashof number, 

!3 g QfQH4 
Ore = e ax 

vD 

where f3e is the compositional expansion coefficient of the alloy. This Grashof 
number depends on the axial concentration gradient, that depends on the 
axial position and on time. Nevertheless, the velocity driven by solute buoy­
ancy forces takes the same form as previously where Ore is substituted to Or. 
Equation 5 is still valid, but the convective contribution will now depend 
implicitly on the axial coordinate x through oCO/ ox A difference appears 
when the corresponding expression to 8 is derived. A multiplicative factor 3 
results from the variation of Ore with x. Without magnetic field, it is found 
that the axial concentration satisfies the following equation: 

Oeo 
at 

_ D [ 21 (Ore &)2] o2CO 
- 1 + 11796480 ox2 . (14) 
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and under the condition of a large Hartmann number, we find the expres­
sion: 

oco = D [1 21 (Gre&:)2] 02CO 
{)t + 384 Ha4 ox2 • 

(15) 

These two equations are more difficult to handle because they are non-linear 
(oc%x appears in Gre) and can not be characterized by a uniform and 
constant effective diffusivity. Instead, the effective diffusivity varies along 
the capillary (being maximum at the center where composition gradients 
are maximum) are evolves in time (decreasing in time because the initial 
composition step is smoothed). Nevertheless, the results showed clearly an 
effect of the magnetic field. The effective diffusivity measured seems almost 
uniform and decreased with increasing the magnitude of the magnetic field. 
The Gr number can be roughly estimated by a sort of averaged value. We 
have access to a composition gradient at the end ofthe experiment (which 
is the minimum over the experiment), but we can consider it at the middle 
of the capillary (where it is maximum). It is hoped that this composition 
gradient will be characteristic of the typical solute buoyancy driven forces 
during the whole experiment. It is estimated that the thermal Grashof num­
ber is Gr rv 5, whereas the solute Grashof number is Gr rv 44. Clearly, solute 
buoyancy forces dominate. In the absence of magnetic field, the associated 
effective diffusivity is enormous, and indeed the experiments showed a com­
plete homogeneity of the composition. With B rv 0.75 T (corresponding to 
a Hartmann number of 52 for a 2 mm capillary), the effective diffusivity 
estimated is (with &: rv 150) 

Deff = 1.33 x D. (16) 

Considering that the reference value is around D = 1.5 x 1O-9m2.S-1 for 
SnBi, we predict an effective diffusivity around 2.26 x 1O-9m2.s-I, not far 
from the measured 2.52x 1O-9m2.s-1, on figure 5. On figure 5 is also plotted 
the er 1-1 function that shows that the compositional profile is not far from 
an er I function, despite the fact that the effective diffusivity is not strictly 
a constant. 

On the figure 6 is plotted the value of the measured diffusivity coefficient 
versus the different values of the solutal Grashof-Schmidt product squared 
divided by the Hartmann number to the power four. The measured diffu­
sivity increases with the this convective parameter. When this parameter is 
relatively small, the effective diffusivity theory developed above can be ap­
plied and a linear fit of the first points allows us to prolongate the curve at 
the origin, which should correspond to the purely diffusive case. The value 
found D = 1.66 x 10-9m 2.s-1 is very close to the reference micro-gravity 
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Figure 6. Measured diffusivities for different convective coefficients (Gri'c3)2 

value 1.5 x 1O-9m2.s-1. It should be noted that for this solute buoyancy­
driven case, the measured diffusivity becomes smaller than the predicted 
effective diffusivity at high value of the parameter Gr Sci Ha4 • An explana­
tion to this behaviour is still to be found and might be connected to some 
solutal stratification effect that would damp the flow, somehow similar to 
the stratification mechanism in the vertical configuration (Har71). 

Other experiments have been carried out with another alloy, SnIn. An 
interesting property of this alloy is that its density does not depend very 
much with composition. Only the thermal buoyancy forces should act on the 
flow. Nevertheless, some preliminary results show that even if the solutal 
contribution is a priori small, it affects significantly the overall transfer. 
Further investigations are necessary to clarify this aspect. 

6. Discussion 

We have compared an analytical model predicting the influence of buoy­
ancy convection on the measurement of diffusivities in the long capillary 
technique with experimental results. The model seems to provide a good 
understanding of these effect and moreover, it has been seen that a steady 
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magnetic field could help significantly to reduce convective effects. In the 
thermal buoyancy driven case, an exact analytical solution (er f function) 
can be found to the axial effective diffusion problem. In the solute buoy­
ancy driven case, a one-dimensional unsteady non linear equation should 
be solved numerically in general. 

The experimental results shown for the SnBi alloy confirm the analysis. 
A significant reduction of the apparent solute transfer has been demon­
strated when a magnetic field is applied. For small convective levels, the 
convective contribution to the effective diffusivity varies as (Or Sc)2 / Ha4. 
This model can be useful in practice, to determine what magnetic field 
magnitude is necessary to provide experimental results with negligible con­
vective contribution. With a 0.75 T magnetic field, the Hartmann number 
achieved is 55 for a 2 mm diameter capillary. At this Hartmann number, 
it is believed that the measured diffusivity is close to the actual diffusivity 
to a factor 1.3 for the SnBi alloy. According to the H a-4 law, a slight in­
crease in the magnitude of the magnetic field should permit us to measure 
correctly the diffusion coefficient. 

Other configurations should be studied, like the vertical capillary (BG96). 
In that case, solute buoyancy forces can provide a stabilizing effect, instead 
of the driving effect here. This vertical configuration is extensively used in 
practice. The question to address is what should be the combined effect of 
the solute stabilization and a possible magnetic damping. 

A general aspect concerning the use of a magnetic field to damp convec­
tive effects is related to the thermoelectric effect (MGKF96). If the crucible 
is not electrically insulating, electric currents of thermoelectric origin exist 
and generate a driving force when a magnetic field is applied. 

Finally, it was suggested (YCC64) that a magnetic field could change 
the diffusivity as a physical property; however, it is not clear whether the 
experiments mentioned showed a true variation of D or a magnetic damping 
of an initially unexpected convection. 
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