CONVECTIVE EFFECTS IN
THE MEASUREMENT OF
DIFFUSIVITIES AND
THERMOTRANSPORT
COEFFICIENTS. LIQUID METAL

In long capillary experiments, thermodiffusivity
measurements may be deeply disturbed by convective
mass transfer. These convective transfers can be
accounted for by the use of an effective diffusivity and
are shown, both analytically and experimentally, to
vary as B* in the presence of a magnetic field B.

ALLOYS AND THE USE OF
A MAGNETIC FIELD

T. Alboussiére

Department of Engineering
University of Cambridge
Trumpington Street, Cambridge CB2 1PZ

J.P. Garandet

Commissariat & I’Energie Atomique, DTA/CEREM/DEM
LRBS au CENG, 38054 Grenoble Cedex 9

P. Lehmann, R. Moreau

Laboratoire EPM-Madylam, CNRS UPR A 9033
ENSHMG BP 95, 38402 Saint Martin d’Heres

Effets convectifs en mesures de coefficients de diffusion et de thermodiffusion. Alliages métalliques liquides et utilisation d’un
champ magnétique
La mesure de coefficients de thermodiffusion en capillaire long peut étre profondément influencée par la contribution convective au trans-
port de masse. Celle-ci accroit la diffusivité apparente et nous montrons analytiquement et expérimentalement qu'en présence d'un champ

magnétique B, cette contribution suit une loi en B*.

1. INTRODUCTION

The measurement of thermophysical properties in liquid metal alloys
is of great importance for crystal growth and metallurgy. Digital models
for the relevant processes become more and more coefficient with the de-
velopment of computer speed and memory : however, these models still
rely on measured thermophysical data. Despite the difficulty of measuring
diffusivities and thermodiffusivities in liquid metals, some teams are in-
volved in such programs [1, 2, 3].

Our objective in this paper is to show how buoyancy driven convec-
tion can affect the measurement of solute diffusivities and thermotransport
coefficients and how the use of a steady magnetic field can reduce these
convective effects in liquid metal alloys.

In a long capillary setup, an axial temperature gradient G, is imposed.
In the final steady state, the mass transport due to thermodiffusion must be
balanced by solute diffusion; hence an axial solute composition gradient
G, must develop. Denoting D and D, the diffusivity and thermotransport
coefficient, the equilibrium is reached when :

D, G+DG,=0 (1)

As we shall see in section 3, convective effects will be modelled by
replacing D by an effective diffusivity D _. If the thermodiffusion results
are analyzed assuming that pure diffusion takes place, an effective

thermotransport coefficient DTeff is obtained, related to the real
thermotransport coefficient by the following relationship :
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The effect of convection on the measurement
of thermodiffusion coefficients is thus directly
related to that of convection on diffusivities mea-
surements and the paper will be devoted to ob-
taining D_

The buoyancy forces can be of thermal or of
solute origin. In the case of thermal buoyancy
forces, there is a decoupling between the
hydrodynamical problem and the solute trans-
port, whereas there is a complex coupling when
solute buoyancy forces are significant. In both
cases, we shall consider the application of a steady
uniform magnetic field that will exert a braking
effect on convection.

After a presentation of the experimental tech-
nique in section (2), the model of effective diffu-
sivity aiming at modelling the mass transport in-
duced by convection will be recalled (section 3).
How a magnetic field damps the convective con-
tribution to mass transport is analyzed in (4) in
the framework of the effective diffusivity. In the
following section (5), experimental results of dif-
fusivity measurements under magnetic field are
presented and compared to our model. Section
(6) is devoted to a discussion of the use of mag-
netic fields in the measurement of solute diffu-
sivities and thermotransport coefficients.

2. THE SHEAR CELL TECHNIQUE

In a purely diffusive transfer, the mass trans-
fer density field J is modelled by the phenom-
enological Fick’s law in the limiting case of di-
lute alloys : J = — pDVc, where p, D, ¢ denote
the constant and uniform density, solute
diffusivity and solute concentration expressed in
mass fraction respectively. A configuration is
settled in such that a one dimensional diffusion
is expected.

The initial state is a step function of concen-
tration along the axis where diffusion will pro-
ceed, which we denote the x-axis. The conserva-
tion of solute mass p ¢ along with the expression
of the diffusion flux J leads to a local equation of
conservation in the x direction :

poc +6Jx 20
o Ox 2
where J is the single non zero component of J.
The solution of this local equation, well known

since the 19th century results in heat transfer, is
an erf function

_ oc x

c(x2) = wz—[l + erf(sz—t)], 3)

when the initial condition is ¢ = 0 for x < 0 and
¢ = ¢c for x > 0. The knowledge of the composi-
tion at a time 7 enables to derive the diffusivity.
The originality of the shear cell technique
(see figure 1) initially proposed at the CEREM
by Praizey [4], creates the conditions of one-di-
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mensional diffusion from a step function and
provides the possibility of «freezing» the com-
position function at a time 7, determined by the
operator. A thin capillary of diameter of order 1
mm is formed by the alignment of a number of
discs where an eccentric circular hole has been
drilled. All the discs can be rotated around a com-
mon central axis. Three configurations are needed
during a measurement experiment. Firstly, the
long capillary is split in two half capillaries, al-
lowing their filling with the alloy at different
compositions. Secondly, the full capillary is
formed, creating the initial step function. Thirdly,
after a duration T of diffusion prescribed by the
operator, all fractions of the capillary can be iso-

lated, e.g. by rotating every other disk. How these -

steps can be performed is a matter of subtle tech-
nology. After the last step, the temperature is
decreased to room temperature and the solid el-
ementary alloy samples contained in each disk
are globally analyzed. The mean value of the axial
solute distribution on each disc length after a dif-
fusion duration 7'is obtained. By comparison with
the solution (3), an experimental value of the
diffusivity D is derived.

3. CONVECTION AND EFFECTIVE
DIFFUSIVITY

The previous section describes the ideal
purely diffusive case. In this section, the effect
of a weak convection on mass transport is ad-
dressed. A steady divergence free velocity field
v is supposed to take place in the capillary with a
zero normal component at the boundaries. In
comparison with earlier works in the field, it is
not necessary to suppose that the flow is one-
dimensional. Nevertheless its variations in the di-
rection of the x axis are assumed to take place on
a larger length scale than the capillary diameter.

Fick’s law for solute transfer holds in the
reference system where matter is at rest. When
expressed in the laboratory system of reference,
in the presence of convection, it becomes
J=—p DVc + p cv.Itremains possible and en-
lightening to express a local solute conservation
equation along x. The basic experimental observ-
able is the mean value of the concentration in the
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plane orthogonal to the x-axis at a given coordi-
nate x, denoted ¢, (x, £), while the variations of
concentration within this plane are represented
by c, (x,,2, ) =c (x,, 2, )- ¢,(x, ). The conser-
vat1on of species along x takes the form
pdcy/dt + 0 <J > 55 = 0, where <>denotes the
average in the plane perpendicular to the x axis.
A zero net global mass flux being assumed in
the x direction, because the fluid is confined in a
closed cavity, it is not difficult to derive the fol-
lowing form<J >=- pD(8c{/px) + p <v,c,>,
where v_is the x component of the velocity field.
The solute equation along x can now be written
oco _ d’cy _ O(vie)
o DB? T oox )
It is clear from equation (4) that the field c,
has to be considered in order to obtain a proper
equation for c,. The local point-wise solute con-
servation equation is poc/0t + div J = 0, which
can be expanded as oc/8t + v - Vc = DAc. The
difference between this isotropic equation and
the x equation (4) is written here without approxi-
mation :

oc
Ttl +v-Vey+v-Ve,—- —a—a;<vxc,>
~DAc,=0. (5)

Our primary goal being the analysis of the
departure of species transfer from the purely dif-
fusive case, we will treat convection as a small
parameter. We can anticipate that the perturba-
tion v is at the origin of a field ¢, of the same
order, and both v - V¢ and (8/6x)<v,c, > are
second order terms in (5) compared to v - V.
For a weak convection, it is also safe to neglect
the first term Oc,/g¢ in comparison with DAc; :
these terms should be comparable if only axial
variation was looked at, but by definition of ¢ ,
and due to the aspect ratio of the cell, its varia-
tions in the cross-section are very large compared
to its axial variation' .The first order disturbance
form of (5) is

A= D"vx% ., (6)
where A, denotes the Laplacian operator in the
cross section and where V¢, was replaced by its
single non zero component dc/dx. The field ¢,
must satisfy a zero normal gradient at the circu-
lar boundary. The solution of equation (6) is
f D '6c,/dx, where fis solution of A, f=v and
admits a zero normal gradient on the boundary.
Using that result, the term <v_c, > takes the form
<v f>D" 'dc,/0x and the basm equation for ¢,
(4) can be written
el
TR Lt g i R O

The term in brackets can be regarded as an
effective diffusivity [5], D =D-<v _f>/D,by
analogy of (7) with a dlffusmn equation. The
convective part in the effective diffusivity is qua-

dratic in the convective disturbance. In the case
of a fully-established convection along the axis,
the effective diffusivity is independent of x and
the equation governing ¢, becomes strictly iden-
tical to that of pure diffusion : given an experi-
mental measurement of a diffusivity, it is impos-
sible to guess what part of it is due to convection
(see [6]). In spirit, this effective diffusivity model
is similar to that developed by Taylor [7] for sol-
ute dispersion in Poiseuille flows.

4 EFFECT OF A MAGNETIC FIELD

A simple configuration is now specified :
the capillary of diameter H is assumed to be
horizontal and an axial uniform temperature gra-
dient G is applied. It has been shown in [8], that
this configuration was analogous to a vertical
capillary in a transverse temperature gradient,
since only the curl of the buoyancy driving force
is to be considered. Let us denote z the direction
opposite to the gravity vector and y the orthogo-
nal direction to the x and z axis. The problem of
the viscous?buoyancy driven convective flow in
the cylindrical cell has been given a solution by
Bejan [9] :

=GrSclaz’ vazv'-z]2, @)

Yeincigg
where Z=z/H, Y=y/H
and Gr Sc=(Bg G H"/(vD)
can be considered as the product of a Grashof
number and a Schmidt v/D number (5, g and v
denote the volume expansion coefficient, grav-
ity and the kinematic viscosity, respectively).
Following the previous section analysis, the re-
sulting effective diffusivity is determined ana-

lytically :
7(GrSe)? ]
11796480 1" ©)
In the same configuration, a transverse uni-
form vertical magnetic field is applied. When its
magnitude B is such that the Hartmann number
Ha=\/9/(pv) BH (where o denotes the elec-
trical conductivity) is very large compared to
unity, the convective velocity profile for electri-
cally insulating boundaries tends towards [10] :

D= D[l +

v, =— GrSCZZD : (10)

This damping is due to the Lorentz force
j x B where j is the electrical current density and
B the imposed magnetic field. The analytical
derivation of D 61ﬁyields :

7(GrSc)2]
- GrSe) | 1y
Dy D[1+384Ha“ (1

5. MEASUREMENT OF DIFFUSIVITY
IN SnIn
In the laboratory EPM-Madylam, an experi-
mental shear-cell setup was designed and built
to study the influence of an applied magnetic field
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! Here is also made use of
the assumption that the
axial scale of variation of
convection is much larger
than the diameter.

2 The assumption of negli-
gible inertia (small
Reynolds number) is safe,
the kinematic viscosity be-
ing much larger than the
species diffusivity for lig-
uid metals and semiconduc-
tors.
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on the measured diffusivity. The 2 mm diameter
capillary was horizontal and the applied magnetic
field vertical. The SnIn alloy was chosen because
its density depends weakly on its concentration :
the concentration of indium was 1% on one side
while pure tin was placed on the other side. An
axial thermal gradient of 68 K.m™ was applied
and was mainly responsible for the convection
in the capillary. The diffusivity was measured
for five different values of the magnetic field from
0.2 T'to 0.75 T and the results are plotted in fig-
ure 2.

First, it can be noticed that the experimental
values can be split into two sets, the circles and
triangle points, each of them following a linear
variation. They are corresponding respectively
to the case when the small buoyancy forces of
solute origin (dependence of density on concen-
tration) add to the thermal buoyancy (circles) or
oppose the thermal buoyancy (triangles). Two
points (circle and triangle) at the same value of
the magnetic field are obtained during the same
experiment with two capillaries of opposite ori-
entation.

Secondly, these two sets of points converge
towards the same value at high magnetic field,
D =2.310°m?%s", in agreement with recent mi-
cro-gravity results [3].

Thirdly, the relationship (11) was plotted, to
assess the validity of the effective diffusivity
model. Given the accuracy of the measured
diffusivities (+ 10"'°m%s™), the model is relatively
close to the upper experimental values. The dis-
crepancy for the two smallest values of B (two
highest values of B*) may result from a too low
value of the Hartmann number (13.8 and 17.3)
for which the asymptotic treatment is not valid.

6. DISCUSSION

The influence of a magnetic field on the ef-
fective diffusivity is very important, with a Ha™
term in the convective contribution, according
to the effective diffusivity model presented here.
This B* variation has been tested experimentally
on the Snin dilute alloy. As stated in the intro-
duction, the use of a magnetic field in the mea-
surement of thermo-diffusion coefficients might
also be beneficial.

Despite the general agreement of the
experimental results with our model, the
question of the effect of an a priori negligible
solute buoyancy force is raised (see figure 2) :
when it is opposed to the dominant thermal
buoyancy, it seems to reduce drastically the
convective mass flux.

The question whether a strong magnetic field
could have an influence on the value itself of the
molecular diffusivity is also to be kept in mind,
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Fig. 2 Measured diffusivity of In into Sn for different values of the magnetic field
applied

although the agreement of our model (based on
the invariance of the diffusivity) with our
experimental results does not suggest such a
dependence for Snln, in the range of magnetic
field0.2-0.75 T.
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