
ELSEVIER Journal of Crystal Growth 181 (1997) 133-144 

j . . . . . . . .  C I I I Y I T A I .  
G R O W T H  

Segregation during horizontal Bridgman growth 
under an axial magnetic field 

T. A l b o u s s i ~ r e  l'a, A.C.  N e u b r a n d  b, J .P .  G a r a n d e t  b'*, R. M o r e a u  a 

a Laboratoire EPM-Madylam, CNRS UPR A 9033, ENSHMG, BP 95, F-38402 St. Martin d'Hdres Cedex, France 
b Commissariat h l "Energie Atomique, DTA/CEREM/DEM/LRBS, Centre d'F, tudes Nuclkaires de Grenoble, 17 avenue des Martyrs, F-38054 

Grenoble Cedex 09, France 

Received 11 April 1997; accepted 11 April 1997 

Abstract 

Solute segregation in a dilute metallic alloy is investigated during horizontal Bridgman growth. Experiments have been 
carried out under a permanent uniform axial magnetic field of intensity up to 1.35 T. The field is seen to have a moderate 
effect on axial segregation. A 2D model for segregation is presented and solved both numerically and in terms of order of 
magnitude analysis. Accounting for the measurement errors and the 2D nature of the analysis, a good agreement is 
obtained with the experimental results. The theoretical analyses exhibit a critical value for the magnetic field intensity. 
Below, the magnetic field has no effect on solute segregation, while above, the effective partition ratio is increasing with 
increasing magnetic field intensity. 

Keywords:  Dopant segregation; Bridgman method; Mass transport; Magnetohydrodynamics; Experiments; Order of 
magnitude analysis 

1. Introduction 

It is well known that a permanent magnetic field 
has the effect of reducing the strength of thermog- 
ravitational convection in metal melts during sol- 
idification. In that respect, magnetic damping and 
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microgravity are two interesting possibilities for 
reducing fluid velocity in an experiment. In crystal 
growth, an optimal compositional homogeneity in 
the resulting solid is observed under diffusive solute 
transport conditions. Such a result is interesting for 
doped semi-conductors since they are electrically 
conducting in the liquid phase and since a high 
homogeneity is required for electronic or opto- 
electronic applications. Some studies already re- 
port the effectiveness of a steady magnetic field. 
Hurle et al. [1] use a steady magnetic field to 
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stabilize turbulence and hence to eliminate stri- 
ations, Vives and Perry [2] study the magnetic 
damping effect on convection during solidification 
while Matthiesen et al. [3] show experimentally 
a reduction of the axial segregation, with a strong 
axial magnetic field during vertical Bridgman 
growth. 

The purpose of this paper is to quantify and 
model the influence of an axial uniform magnetic 
field on segregation during alloy solidification in 
the horizontal Bridgman method. We performed 
experimental metallic alloy solidifications under 
different magnetic field intensities and the results 
are reported here in terms of the effective partition 
ratio deduced from concentration measurements in 
the resulting solid. In parallel, we propose 
a coupled order of magnitude analysis/numerical 
modelling of the transport phenomena in the melt. 
To do so, we first study the thermogravitational 
motion under a magnetic field in the horizontal 
Bridgman configuration and then focus on the ef- 
fect of such a flow on segregation. Our model is 
limited to the dilute alloys to avoid studying the 
coupling effect of concentration on buoyancy. 

Section 2 is devoted to a presentation of our 
experimental work in terms of growth conditions 
and results. In Section 3 the MHD liquid flow is 
analyzed and an order of magnitude analysis is 

built to estimate segregation. Direct numerical 
simulations of segregation are also carried out. 
Finally, the results of these analyses are compared 
with the experiments. 

2. E x p e r i m e n t a l  procedure  

2.1. BRAHMS 

An experimental device, called BRAHMS (Bridg- 
man related apparatus for hydrodynamic and mag- 
netic studies) was designed for the purpose of 
horizontal Bridgman growth under an axial mag- 
netic field (see Fig. 1). In our experiments, a metal- 
lic alloy Sn-Bi (0.13 or 0.05 at.% Bi) was chosen. 
This low composition allows us to neglect any 
solute buoyancy effect, as will be shown in Sec- 
tion 3.1, and also postpones growth interface de- 
stabilization. The diameter of the sample was 6 mm 
- the sample itself being contained in a quartz 
crucible ( ~ i n t  ~-- 6 mm, ~bext = 10 mm) - while the 
directionally solidified length reached 20 cm. Well- 
controlled experimental conditions were specified: 
the value of the axial temperature gradient is 
24 K cm -1 in the melt with uniformity better 
than 5% from the interface to 12 cm further. The 
Bitter coil produces a maximum magnetic field 
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Fig. 1. General view of BRAHMS. 
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magnitude of 1.35 T; the intensity variation is less 
than 10% from the interface to 8 cm apart. The 
crucible and sample were pulled by a step by step 
motor: each step corresponds to a 0.1 ~tm axial 
displacement, and is itself divided in ten, possibly 
unequal,"micro-steps". The investigated pulling 
rates range from 2.5 lam s- 1 to 10 tam s- 1. 

The thermal principle of BRAHMS is simple and 
efficient in producing an almost purely axial tem- 
perature gradient. The key point is that the sample 
and crucible are surrounded by a silver tube. Silver 
has the highest thermal conductivity among metals: 
400 W m-1 K-1 in our working temperature 
range. Indeed, for a given axial thermal gradient, 
the axial heat flux is drastically enhanced and 
makes thus negligible the radial heat losses (which 
only depend on the insulating material and temper- 
ature difference between the external air and the 
tube). As a result, the temperature gradient is al- 
most axial in the silver. Nevertheless, the question 
remains of radial heat exchanges between the 
sample and the silver tube: these exchanges have to 
be minimized to achieve an axial thermal gradient 
in the sample. When these exchanges are zero, the 
axial heat flux in the sample is constant along the 
axis, since convection heat transport can safely be 
neglected in liquid tin, that has a Prandtl number of 
0.013. Conservation of the heat flux at the interface 
implies that the axial temperature gradient is twice 
higher in the liquid than in the solid since the ratio 
of the thermal conductivity of solid to that of liquid 
tin is about two. Conversely, if the axial heat con- 
ductance of the silver tube mimics that of the 
sample, no radial heat exchanges will develop. This 
condition is achieved when the silver cross-section 
ratio is two between the solid and the liquid sample 
region (see Fig. 1). The axial temperature gradient 
(24 K cm- 1) is created by heating wires in the hot 
part, with a 600°C temperature regulation (Euro- 
therm 818P4) and by a cold water flow in the other 
side (regulation: Twater = 20°C). A micro-porous in- 
sulating material (Microtherm) has been used out- 
side the silver tube. It has a very low thermal 
conductivity, from 0.015 W m -~ K -1 at 20°C to 
0.03 W m-  ~ K -  1 at 500°C. 

The thermal core of BRAHMS (the silver tube 
with its insulating material) has a 50 mm diameter. 
The smaller this diameter is, the higher can be the 

magnetic field intensity generated by the coil. In 
a Bitter coil, instead of winding a wire, the electric 
circuit is made of a pile of copper annular disks 
separated by thin electrically insulating Kapton 
disks. A small sector is cut off in each copper disk 
while a 20 ° sector is cut off in each Kapton disk. 
The electrical current path is controlled by impos- 
ing a 20 ° angular rotation from one copper disk to 
another, the contact being made through the cut-off 
sector of the Kapton disk. In order to improve the 
magnetic field uniformity, the current density can 
be adjusted by grouping some copper disks in par- 
allel near the ends of the coil. As shown in Fig. 1, 
this was done in our experimental device. All the 
disks contain a large number of holes (about 300, 
~b = 1.25 mm), precisely aligned and forming ducts, 
where the cooling water can flow. The exchange 
surface between water and copper is very large, and 
the pressure loss minimized. From an electrical 
point of view, a Bitter coil is an optimum solution: 
first the copper volume fraction is more than 90%, 
and second the induced 1/r current density distri- 
bution renders maximum the ratio of the magnetic 
field intensity to the electric power needed. We 
obtain 1.35 T with 90 kW. 

Its orientability with respect to gravity is another 
feature of BRAHMS. As our crucibles were open at 
the hot side, a 15 ° angle with the horizontal had to 
be maintained to prevent molten tin to flow out of 
the crucible. In fact, as the temperature gradient is 
almost axial, the buoyant driving force is propor- 
tional to the part of gravity orthogonal to the axis 
(otherwise stated, only the curl of the buoyant force 
density produces motion).This has been used to 
simulate a smaller gravity, by varying the inclina- 
tion of BRAHMS (~ = 15 °, 60 ° and 75 °, see Fig. 1). 

2.2. Experimental results 

The results of our experiments are related to the 
axial solute segregation in the solidified sample. 
This axial segregation is expressed classically as an 
effective partition ratio k* (see, Ref. [4]). This effec- 
tive partition ratio ranges from one for purely dif- 
fusive conditions to the equilibrium partition 
coefficient k for a perfect solute mixing in the liquid 
phase (in the case of dilute Bi in Sn, k = 0.26). The 
effective partition ratio is assumed constant during 
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solidification when the solidification parameters 
are unchanged. After some initial transient, the 
Scheil law, derived in the perfect mixing case, still 
applies when replacing k by k* [5] 

c,(fJ = k'co(1 - f , ) ~ * -  1~. (1) 

The symbols c,, f,, Co denote the mean solute con- 
centration in a solid cross section, the solidified 
fraction and the initial liquid composition, respec- 
tively. Even in an extreme case scenario of purely 
diffusive mass transfer, the length of the initial 
transient would not exceed 5 mm for the slowest 
growth velocity of 2.5 lam s-  1. Only a small portion 
of the 20 cm long samples has to be discarded. In 
each solidified sample, seven sections are cut out 
and sent for analysis by the ICP-AES (inductively 
coupled plasma atomic emission spectroscopy) 
method: more precisely, at each of the seven posi- 
tions, two neighbouring 3 mm long samples are 
analyzed. The mean of both values is recorded, 
while their difference is characteristic of the 

measurement uncertainty. The result consists in 
seven values of cs for seven different solidified frac- 
tionsf~ and the measured mean composition of the 
remaining part of the sample after the directionally 
solidified part. We adjust k* and ci for the Scheil 
law (1) to best fit these experimental data, using 
a least square method (see example in Fig. 2). In 
this example, the directionally solidified length is 
193 mm and the total initial liquid sample length is 
330 mm. The circles denote the measured concen- 
tration values and the full-line curve corresponds to 
the best fit using a Scheil law (1). 

This experimental determination of k* is per- 
formed for several conditions. Our working para- 
meters are the growth rate Vi, the magnetic field 
intensity B and the tilt angle c~ of the sample with 
respect to the horizontal. They act through three 
non dimensional numbers (see Section 3), namely 
the solidification P6clet number Pe, the Hartmann 
number Ha and the product of the Grashof 
number with the Schmidt Number Gr  Sc, defined 
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Fig. 2. Example of measured Composition data and fitting procedure for the case Gr Sc = 9.2 x 10 6, Pe = 23 and Ha = 66. 
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here as 

p e - V ~  H, H a = ~ v B H ,  G r =  
fig cos ~ G H  4 

V2 

p 
Sc = g ,  (2) 

where H, D,/?, g, G, cr, p and v denote the sample 
diameter (6 mm in our experiments), the solute dif- 
fusivity of Bi in liquid Sn, the thermal volume 
expansion coefficient of liquid tin, earth gravity, the 
axial thermal gradient (2400 K m -  1 in our experi- 
ments), the electrical conductivity, density and kin- 
ematic viscosity of liquid tin (see Table 1 for the 
physico-chemical properties of dilute SnBi). The 
Schmidt number Sc only depends on the alloy. Its 
value, Sc = 200 indicates that solute diffusivity is 
small compared to kinematic viscosity, a very com- 
mon feature of metals and semi-conductors. The 
Hartmann number, scaling the electromagnetic ef- 
fects on the fluid motion in comparison with viscos- 
ity, reaches the maximum value 270 in our 
experiments when B = 1.35 T. In principle, one 
should also account for solutal buoyancy via a sol- 
utal Grashof number, but an analysis of the orders 
of magnitude presented in the next section shows 
that the thermal buoyancy effect is dominant. 

Our results are summarized in Tables 2 and 3. In 
Table 2, the solidification Prclet number Pe is. fixed 
to 23 (5 pm s-1 in our experiments) and three 
values of the product Gr Sc are investigated (cor- 
responding to the tilt angles ~ = 15 °, 60 ° and 75°). 

Table 1 
Properties of liquid Sn-Bi dilute alloy. The solute diffusivity and 
equilibrium partition ratio result from the MEPHISTO space 
experiments [6] 

Symbol Description value 

T m Melting temperature 232°C 
p Density 7000 kg m - 3 
/~ Thermal expansion 1.06 x 10 -4 K - 1 
v Kinematic viscosity 2.6 x 10- 7 m 2 s-  1 
a Electrical conductivity 2.12 x 106 f]-1 m -  

Thermal diffusivity 2 x 10-s m 2 s -  
D Solute (Bi) diffusivity 1.3 x 10-9 m 2 s-1 

Equilibrium partition ratio 0.26 

Table 2 
Effective partition coefficient for Pe = 23 

Gr Sc = 9.2 x 106 Gr Sc = 4.8 × 106 Gr Sc = 2.5 x 106 

Ha k* Ha k* Ha k* 

0 0.45 0 0.52 
33 0.37 33 0.5 
66 0.39 66 0.44 66 0.69 
135 0.41 135 0.5 135 0.79 
270 0.44 270 0.56 270 0.82 

Table  3 
Effective par t i t ion  coefficient for Gr  Sc = 9.2 x 10 6 

Pe =11.5 Pe = 2 3  Pe = 4 6  

Ha k* Ha k* Ha k* 

0 0.32 0 0.58 
33 0.33 33 0.37 
66 0.3 66 0.39 66 0.59 
135 0.31 135 0.41 135 0.7 
270 0.35 270 0.44 270 0.72 

Let us first indicate that, due to composition 
measurement uncertainty and to the least square 
method used, the estimated precision for these 
values of k* is about _ 5% (see Ref. 1-7] for more 
details). As expected, it can be seen that the effective 
partition ratio increases either for increasing P~clet 
number or decreasing Gr Sc product (see, e.g., Ref. 
[8]). Moreover, it is here demonstrated a slight 
increase of this effective partition ratio with in- 
creasing the Hartmann number. If the braking elec- 
tromagnetic effect is to reduce convection, one 
should not be surprised with this result. This effect 
is very small for Hartmann numbers up to 66 and 
more significant for the highest values (135 and 
270). It also appears that the effect of the magnetic 
field occurs for a smaller Ha value in the case of the 
smallest GrSc  product (see Table 2, GrSc  
= 2.5 × 106). The values included in a box corres- 

pond to experiments for which growth interface 
destabilization occurred. After solidification, 
micrographs in a cross-section showed the so- 
called "poxes". This change in the solidification 
pattern is accompanied by a kind of"saturation" of 
the effective partition ratio with respect to the 
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Hartmann number (see Table 3, Pe = 46). De- 
stabilized growth interfaces are out of the scope of 
this study, but we can conjecture that axial macro- 
segregation becomes less sensitive to convection in 
this regime. 

3. Analysis of segregation 

If solutal buoyancy can be neglected (the dilute 
alloy approximation will be discussed in the next 
paragraph), it is licit to determine first the liquid 
flow under the influence of thermal buoyancy and 
an axial magnetic field. The velocity field will then 
be used as an input in the segregation analysis. 

3.1. Analysis  o f  the buoyant  M H D  f l o w  during 

solidification 

The geometry and conditions for the flow are 
modeled as shown in Fig. 3. The cavity is a semi- 
infinite horizontal cylinder with an axial uniform 
temperature gradient and magnetic field. The mag- 
netic field can safely be assumed undisturbed and 
we also expect inertial effects to play a negligible 
role. Indeed, our values for the Grashof number 
range from 1.24 x 10 ¢ to 4.62 x 104. In a cavity with 
a square cross-section and a length over height 
aspect ratio of four, Pratte and Hart [9] found 
experimentally a critical Grashof number of 2 x l0 s 

for the onset of oscillations (they used mercury: 
Pr = 0.026). In the same configuration, Afrid and 
Zebib [10] found numerically a critical Grashof 
number equal to 1.25 x l0 s (they assumed a zero 
Prandtl number). Below this critical value, the flow 
is steady and the effect of inertia essentially consists 
in tilting the recirculation loop. Under a magnetic 
field, the flow is efficiently damped and inertia 
becomes totally negligible (see Refs. [11, 12]). Us- 
ing the Boussinesq approximation, two steady gov- 
erning equations can be written for the divergence- 
free velocity and electric current density fields, 
u and j (see Ref. [13]), Ohm's law and the mo- 
mentum equation: 

j = a( - V~0 + u/x B), (3) 

0 = -- Vp + j A B  -- p f l (T  - To)O 

-- pflc(c -- Co)O + pvAu,  (4) 

where q~ and p denote the electric potential and 
pressure fields respectively, T the temperature field, 
To a reference temperature (the growth interface 
temperature for instance), c the composition field, 
Co a reference composition (the initial liquid mean 
composition for instance) and/~¢ the solute expan- 
sion coefficient. Assuming, as checked in our ex- 
periments, a uniform temperature gradient, the 
relation T - To = Gz holds. 

We now estimate the relative strength of thermal 
and solutal buoyancy forces in the absence of 

grov~ing 
interface 

recirculating zone ~ Ha .> fully-established 
< . . . . . . . .  regime 
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b ." " -ky 

klar~m~nn layer ~ VT g 
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Fig. 3. Flow configuration. 
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magnetic field. Let us consider the effect of thermal 
buoyancy alone: the curl of the Navier-Stokes 
equation can be written, 

0 = - p f lVT  ^ g + pvA(curl u). (5) 

The velocity varying over a length scale H. this 
equation provides us with the following magnitude 
order, 

n 3 
ux ~ f l gG- - .  (6) 

V 

The same estimate can be found for the velocity 
induced by solutal buoyancy alone, H being re- 
placed by d, the solute layer typical thickness, 

d 3 
u~ ~ fl~gVc--. (7) 

Now, it is important to compare both velocity field 
at the same location, in the solute boundary layer. 
The estimate for u¢ Eq. (7), satisfies to this condi- 
tion but not that for uv, which is estimated at the 
typical distance H from the growth interface; 
Eq. (6) must be multiplied by d/H. The ratio of this 
two contributions is, 

u~(d) flcVc d 2 

UT(d) f i g  H 2" 
(8) 

Anticipating on the analysis in Section 3, the com- 
position gradient at the interface is Vi/D(1 -k )c~  
from the solute rejection condition, where k, Vi and 
ci denote the equilibrium coefficient, growth velo- 
city and composition in the liquid at the interface. 
An upper bound of the boundary layer thickness 
d is D/Vi, for the purely diffusive case. Then Eq. (8) 
takes the form, 

u~(d) fl~(1 - k)ciD 
UT(d) ,~ flGn2vi. (9) 

The solute expansion coefficient for SnBi is 
tic =0.3- For our smallest growth velocity 
Vi = 5 pm s-1, and with a maximum 10-2Bi mass 
composition (co/k in the diffusive case), the estimate 
of Eq. (9) leads to, 

u M )  
~ 5 x l O  -1. 

UT(d) 

It is licit to drop the solute buoyancy term in 
Eq. (4). Moreover, as our experiments are found to 
be far from the purely diffusive case, the contribu- 
tion of solutal convection is smaller than suggested 
by the above estimate. 

These governing Eqs. (3) and (4) are now written 
in a non dimensional form, using H, B, D/H, 
DaB/H,  DH and pDv/H 2 as references for length, 
magnetic field, velocity, electric current density, 
electric potential and pressure: 

j =  - V ~ p + u ^ B  (10) 

0 = - Vp + H a 2 j ^ B  + Gr Sc Zex + Au, (11) 

where the same symbols have been used for non- 
dimensional variables. The non-dimensional para- 
meters Gr Sc and Ha appear in these equations, 
while Pe is still hidden. The P~clet number Pe will 
intervene, when the growth rate will be considered: 
in our non-dimensional system, the pulling rate 
- P e  ez shall be added to the velocity field u in 

order to get the velocity field expressed in a coordi- 
nate system moving with the interface (see 
Section 3.2). In the following, only dimensionless 
quantities will be used. 

From Eq. (10) and Eq. (11), a differential oper- 
ator governing the velocity field can be derived, 
that helps finding the principal features of the 
buoyant flow. The curl operator has to be applied 
twice to Eq. (11) and once to Eq. (10). Direct substi- 
tution (see the detailed calculation in Ref. [14] or 
1-15]) then leads to: 

2 82/ /  
Ha ffj2 = AZu. (12) 

Based on Eq. (12), three main regions (see Fig. 3) 
can be identified in the cavity: 
• Hartmann layer: if a boundary layer develops 

near the solid-liquid interface, its thickness 
6na leads to the estimates ~2/~Z2~ 1/62a and 
A 2 ~ 1/64a. Eq. (12) leads then to the classical 
Hartmann boundary layer thickness (see Ref. 
[13]) 6ua ~ Ha-1. 

• Recirculating zone: it is well known that Har- 
tmann layers can not admit a significant flow 
rate [13], while it is obvious that far from the 
interface, a fully established parallel flow exists 
without influence of the magnetic field 
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(u ^ B  = 0). If we look for a recirculating len- 
gthscale L larger than the diameter (1 in our 
non-dimensional reference), the bi-Laplacian op- 
erator scales as 1 while the operator ~2/~z2 scales 
as L -2. Eq. (12) leads to L ,-~ Ha. 

• Fully established regime: from the above results, 
we can deduce that for z ~> Ha, the expected fully 
established parallel flow exists. 

Starting from this organization, the velocity magni- 
tude order can be estimated in the different regions: 
• Fully established regime: the flow is purely axial 

and viscous (ux = 0 and scales as Uz ~ Gr Sc, 
independent of Ha). 

• Recirculating zone: by continuity, taking into 
account the relation L , , ,Ha, the vertical 
component of the velocity field scales as 
u~ ,-~ Gr Sc/Ha and the axial component as 
uz -'~ (Gr Sc/Ha)z 2. 

• Hartmann layer: in this region the vertical com- 
ponent of the velocity reaches zero through the 
H a -  1 thickness, ux ~ Gr Sc z. Continuity on the 
Hartmann layer typical thickness then leads to 
uz ~ (Gr Sc/Ha)z 2. 
In order to obtain more precise informations on 

the velocity field, we now turn to a 2D model, 
which will also be used for segregation analysis (see 
Section 3.2). It is assumed that the features of the 
3D flow are well described if the analysis is re- 
stricted to the vertical axial mid-plane y = 0. The 
cylindrical shape is replaced by the condition 
~/~y -- 0. It can be proved (see Ref. [16]) that the 
electric potential is zero everywhere, such that 
Ohm's law takes a simplified form: j is purely di- 
rected along y and Jr = -u~ .  The 2D equations 
have then been solved using a Fourier expansion 
analysis. The coefficients were calculated numer- 
ically so that boundary conditions are fulfilled 
(u = 0). We shall not write here this exact 2D solu- 
tion, which would require tedious and uninterest- 
ing calculations [15]. Suffice it to say that the 
above-mentioned features described for the 3D cy- 
linder are present (Hartmann layer, recirculating 
region and fully- established regime). We also de- 
rived a simple approximate expression (a few per- 
cents departure from the exact solution), for high 
Hartmann numbers and in the vicinity of the solid- 
liquid interface, to be used in the order of magnitude 
analysis of the segregation problem (Section 3.2.2). 

If the Hartmann layer is ignored, the velocity field 
approximates as: 

8Gr S¢( 
uz - 9 H ~  - zx + 4zx3), (13) 

Gr  Sc 
ux - 18Ha(1 - 8x 2 + 16x4). (14) 

To take into account the Hartmann layer, the ap- 
proximate velocity field has to be changed in (see 
Ref. [14]): 

8Gr Sc 
Uz-  ~ a  [ -  zx + 4zx 3] 

8Gr Sc_ 
_1_ ~ l _ X  _ 4X3](1 _ e -Ha  z), (15) 

Gr Sc 1 e -Ha  z). U x - -  1--~-~a [ 8x  2 + 16x4](1 -- (16) 

3.2. Analysis of  the axial segregation 

3.2.1. Numerics 
In the quasi-steady approximation, using coo (the 

composition far from the interface, or mean liquid 
composition) as a reference for the concentration 
field, the equation governing concentration in the 
liquid takes the form: 

u.  Vc - Pe~z = Ac. (17) 

Moreover, the boundary conditions consist in 
a zero normal solute flux at the crucible boundaries 
(~c/~n = 0), c = 1 far from the solidification front 
and the solute rejection at the interface (z = 0): 

~c 
c(1 - k)Pe - ~z" (18) 

It is well known that the solute concentration 
field forms a boundary layer near the interface and 
tends towards a uniform composition outside. We 
will only consider cases for which this solute layer is 
smaller than the sample diameter. This is the reason 
why we restricted the numerical calculations to the 
rectangle of aspect ratio 2 shown in Fig. 4. Never- 
theless, the velocity field can not be considered as 
fully established at the distance 2 from the interface 
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Fig. 4. 2D cavity, for numerical calculations. 

and is calculated for a semi-infinite cavity. Indeed, 
the recirculating zone scales as Ha, and one should 
have such a Ha aspect ratio to get the fully estab- 
lished condition for velocity. For  this reason, our 
exact Fourier series expansion solution prow,~s ne- 
cessary to determine the correct velocity field, if 
a reasonable geometry is adopted (it would be 
numerically difficult to increase the domain length 
for the velocity field while concentration forms 
a very thin boundary layer). 

The FIDAP software (version 7.06), based on the 
finite elements method, was used for the calcu- 
lations, performed on a HP 9000-735 working sta- 
tion. Rectangular, 9 nodes elements have been 
chosen with quadratic interpolation. The mesh 
contained 60 nodes in the axial direction and 50 in 
the transverse direction. The mesh was variable in 
space and concentrated near the walls. At the grow- 
ing interface, the first node in the liquid is 1/1000 
apart, which determines the smallest solute layer 
that can be modeled. 

Each numerical calculation corresponds to a set 
of the non-dimensional numbers Gr  Sc, Ha, Pe and 
k. The coefficients of the Fourier series expansion 
for the velocity field depend on Gr  Sc and Ha only. 
Actually, they essentially depend on Ha, since they 
are merely proportional to Gr Sc. Then, for a given 
velocity field, the solute calculation (FIDAP) de- 
pends on Pe and k. From the derived concentration 
field, the effective partition ratio is determined as 
the product of k and of the mean concentration in 
the liquid at the growth interface. In Fig. :5, the 
experimental results are compared to the numerics 
for Gr Sc = 9.2 × 10 6, k --  0.26 and Pe = 23. The 
calculated values are not identical to the measured 
ones, but the same tendency of slight increase of 
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Fig. 5. Comparison between experimental numerical and ana- 
lyrical results. 

k* with increasing Hartmann numbers is observed. 
A possible explanation of the discrepancy may be 
found in the 2D nature of the analysis. We observe 
from the numerical analysis that the mentioned 
increase does not start immediately when the Har- 
tmann number becomes larger than one. Indeed, 
a slight decrease is first observed, and k* is smaller 
in the range 0 ~< Ha ~< 40 than without magnetic 
field. 

3.2.2. Order of magnitude analysis 
The order of magnitude analysis is based on the 

estimate of the solute layer thickness attached to 
the growing interface. Wilson [17] proved that the 
effective partition ratio is uniquely determined by 
the knowledge of the solute layer thickness, pro- 
vided this thickness is defined as follows. Let us 
denote 5o the mean solute concentration in the 
liquid near the interface and dg/dz the mean axial 
solute gradient at the interface. The non dimen- 
sional solute layer thickness 6 is defined as 
(Co - 1 ) / -  d~/dz. The relation between k* and 6 is 
[173: 

k 
k* = (19) 

1 - (1 - k) P e 6 "  

If 6 can be estimated, Eq. (19) then allows us to 
estimate k*. 

The derivation of the solute boundary layer 
thickness in Czochralski growth was first proposed 
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by Burton et al. [5] in 1953. Their work was later 
extended to other solidification configurations, and 
it was shown that 6 could always be estimated 
when the velocity field in the vicinity of the inter- 
face is known (see e.g. Ref. I-8] and references there). 
Denoting ~z(z) the mean velocity field along the 
upper part of the cavity (here 0 < x < ½, the follow- 
ing general equation derived from an order of mag- 
nitude analysis of Eq. (17) when 6 ,~ 1: 

f tz(6)  + Pe = 1/6 .  (20) 

For small values of the velocity field, the equa- 
tion leads to 6 = Pe-1, which corresponds exactly 
to the solution for purely diffusive transport condi- 
tions. Conversely, we focus here only on the con- 
vective case, when Pe can be neglected in Eq. (20). 
This approximation allows us to highlight the 
trends of the influence of the magnetic field. The 
equation to solve is: 

(t~(6) = 1 /6 .  (21) 

The approximate velocity field given by Eqs. (15) 
and (16) will be used. Two asymptotic cases can be 
distinguished: the case when the Hartmann layer is 
much thinner than 6 and the case when it is much 
larger than 6. In the first case, Eqs. (13) and (14) can 
be used while, in the second, the 1 - e-na z factor is 
linearized in Eqs. (15) and (16). It is easy to derive 
uz and the corresponding solution 6 of Eq. (21): 

6 < Ha-1 ~ g~z(Z) - Gr SCz 2 
18 

6 = 2.6(Gr Sc)- 1/3, (22) 

Gr Sc 
6 > Ha-1 ~ ~z(Z)  - - - . z  

9Ha 

6 = 3(Gr Sc) I/2Hal/2. (23) 

Going back to the conditions 6 < Ha -1 or 
6 > Ha 1, the limit between these two asymptotic 
cases is found, Ha ~ (Gr Sc) 1/3. For Ha below 
(resp. above) this value, Eq. (22) holds (resp. 
Eq. (23)). This relation Ha ~ (GrSc )  1/3 defines 
a "threshold value" for the magnetic field to be- 
come efficient. A smaller magnetic field has no 
effect on segregation, even though convection may 

already be significantly damped, and a higher mag- 
netic field tends to decrease axial segregation. Even 
in the active regime, the effect of the magnetic field 
is moderate regarding to the square root depend- 
ence on the Hartmann number in Eq. (23). 

A physical approach of this result can be out- 
lined. The inactive regime is characterized by the 
fact that the solute boundary layer is smaller than 
the Hartmann layer. Indeed, at the scale of the 
solute layer, the velocity field is insensitive to the 
magnetic field, since the far velocity scales as Ha-  1 
while the Hartmann thickness also scales as Ha-  1. 
Conversely, when the solute layer is larger than the 
Hartmann layer, mass transport becomes sensitive 
to the Ha-  1 decrease of the velocity field. 

The above result is drawn in Fig. 5 in full line: the 
results were derived in terms of k* using Eq. (19). 
The discrepancy with numerics and experiments 
can be explained both by the approximate nature of 
the order of magnitude analysis and by the neglect- 
ed Pe number in Eq. (20). Nevertheless, the tenden- 
cies compare well. We tried then to check the 
validity of the order of magnitude analysis, when 
the convective regime (negligible Pe in Eq. (20)) is 
well achieved. In Fig. 6, numerical and order of 
magnitude results (OMA) for 6 are compared for 
a small P6clet number Pe = 1. Two different Gr Sc 
numbers were investigated, giving opportunity 
to detect the variation of the threshold 
Ha ~ (Gr Sc) 1/3. The Ha number range was en- 
larged up to Ha = 1000, to improve the compari- 
son. In this Fig. 6, the multiplication factors in 
Eqs. (22) and (23) have been changed to 4.3 and 4.2, 
respectively (instead of 2.6 and 3), to best fit the 
numerical values. In other words, the magnitude 
order analysis (before modification) and numerical 
results differ by about 40%: it is a usual feature of 
an order of magnitude analysis to predict essential- 
ly power laws, which are independent of any multi- 
plication by a constant factor. Moreover, the use of 
the new factors provides an excellent quantitative 
agreement between OMA and numerical results for 
the solute boundary thickness. To finish with these 
multiplication factors, it should be underlined that 
they are the same for both cases Gr Sc = 106 and 
Gr Sc = 108 and fit equally the two curves. The 
numerical prediction of the threshold value also 
seems to obey the relation Ha ~ (Gr Sc) 1/3. 
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4. Conclusions 

A moderate effect on axial solute segregation has 
been experimentally demonstrated for tin-bismuth 
alloys solidified in the presence of an axial magnetic 
field. The velocity field in the melt has been ana- 
lyzed in the framework of a 2D model including the 
braking effect of the magnetic field. This velocity 
field has been included in a numerical 2D model for 
concentration and effective partition ratios k*, de- 
pending on the applied magnetic field magnitude, 
have been derived. In parallel, using again this 
velocity field, an order of magnitude analysis of the 
solute transport equation has led us to an estimate 
for the solute boundary layer thickness. This thick- 
ness and the effective partition ratio k* being in 
unique correspondence, order of magnitude analy- 
sis and numerical results have been compared, with 
fair agreement with experimental values. Moreover, 
the order of magnitude analysis has revealed two 
distinct regimes for the magnetic field influence. 
The thickness 6 is found to scale as (Gr Sc) -1/3 
when Ha ,~ (GrSc) 1/3 and as (GrSc) - l /2Ha  1/2 
when Ha >> (Gr Sc) 1/3. An axial magnetic field thus 
has to be strong enough before it can have an 
impact on axial segregation. 

The method of segregation analysis under mag- 
netic field developed in this paper can be extended 
to other aspects. Radial segregation, the case of 
a transverse vertical magnetic field and also the 

vertical Bridgman configuration with axial mag- 
netic field [15, 7] have already been investigated. 
More generally, as soon as an expression for the 
velocity field is available, these analyses (numerical 
and in terms of magnitude orders) can be followed. 
For  instance, analytical expressions for the flow in 
Czochralski growth configurations have been ob- 
tained (see, e.g., Ref. [18] and references there). 

To conclude, some ideas deserve to be high- 
lighted. As already reported [8], only the velocity 
field within the solute boundary layer controls its 
thickness: in the regime 1 ,~ Ha ~ (Gr Sc) l/a, the 
average velocity field intensity decreases with in- 
creasing values of Ha, while its value at the solute 
layer scale remains unchanged, meaning that there 
will be no effect of the magnetic field. It is also 
important to insist again on the benefits gained 
with the order of magnitude analysis. Estimates of 
the effective partition coefficient and of its depend- 
ence with respect to the magnetic field intensity are 
derived in terms of concise equations that can be 
easily used by a practician to account for his own 
growth conditions. 
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