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MAGNETIC FIELD AND SEGREGATION DURING BRIDGMAN GROWTH

T. Alboussiere,” A. C. Neubrand,’
J. P. Garandet,' and R. Moreau’

Axial segregation during horizontal Bridgman growth is investigated in the presence of a uniform axial
magnetic field. Experiments have been carried out at several Hartmann numbers, as well as numerical and
theoretical studies. These last methods predict that the Hartmann number has no influence on the axial

segregation until it reaches a given value depending on the intensity of the buoyancy driving force. Then,

creasing by increasing the Hartmann number. Although experimental results seem to

segregation is slowly de
[ segregation with magnetic field, they were not precise enough until now to

show this reduction of axia
confirm numerical and theoretical results.

1. Introduction

In the Bridgman method of controlled solidification, a liquid sample is withdrawn through a temperature gradient,
hopefully as a single crystal. Buoyancy driven convection is often unavoidable, since density gradients are always present in
the melt. Periodic or random motions are responsible for structural defects such as striations [1], but even a steady hydro-
dynamical regime may produce both lateral and radial segregations (homogeneity defects) [2]. Two methods exist in order to

icrogravity environment (available for instance in the NASA space shuttle) that reduces the

reduce these liquid motions: the m
driving force, or the use of a steady magnetic field that stabilizes disturbances through the Joule effect and damps the fluid

flow with the Lorentz force [3].
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Fig. 1. BRAHMS experimental device.
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Fig. 2. Phase diagram and solid-liquid equilibrium for a binary system.

The purpose of the BRAHMS (Bridgman Related Apparatus for Hydrodynamic and Magnetic Studies) experiment is
to study the effect of a magnetic field in the Bridgman growth of semiconductor or metallic alloys. The characteristic features
of BRAHMS are a uniform axial temperature gradient, a uniform axial magnetic field, and a variable orientation with respect
to gravity. The experimental device is shown schematically in Fig. 1. The hot and cold zones are separated by a gradient
controlled region designed to create a constant axial temperature gradient in the melt, equal to 2400°C/m over a range of 10
cm. Around this furnace is a Bitter coil that creates a uniform steady magnetic field over the same range. The maximum
intensity of this field is about 1.3 T. The charge (@ 6 mm), a tin-bismuth alloy with 0.13 at% Bi — this concentration is
imposed by the interface stability criterion — is contained in a quartz crucible (&, 10 mm) fixed on the pulling device. The
whole device can be tilted from the horizontal position to the vertical at intervals of 15°.

Till now, only the horizontal configuration has been investigated. Since the temperature gradient G is fixed, the
Grashoff number Gr = gBGd'/v* (where g is the intensity of gravity, 8 the thermal expansion coefficient, d the charge
diameter, and » the kinematic viscosity) is fixed and equal to 46,000. The choice of the alloy determines the Schmidt number,
Sc = »/D = 145 (D is the solute diffusivity). The experimental parameters are:

— the pulling rate v; which gives the Pe number; Pe = vd/D ranges from 5 to 100,

— the intensity of the magnetic field B which fixes the Hartmann number; Ha = (o/pv)"2Bd (here o is the electric
conductivity of the liquid and p its density) ranges from O to 270. :

The Gr and Ha numbers are related to the hydrodynamic problem, since Gr scales the buoyancy driving force and Ha
the braking electromagnetic force. The Pe and Sc numbers are related to the solutal problem, Pe characterizes the crystal
growth rate and the product Gr-Sc measures the convective contribution to mass transfer.

In Sec. 2, we present the mechanism of segregation and introduce the convecto-diffusive parameter D and the
effective partition coefficient k¢. The experimental results lead to a value of k. for given Ha and Pe numbers (Sec. 3). Then
we determine the velocity field in the melt which depends on the order of magnitude of the Ha number (Sec. 4). This velocity
field can be used as an input in the mass conservation equations and thus allows us to carry out a numerical analysis (Sec. 5).
A third approach of the segregation problem consists of an order of magnitude analysis, where we obtain a scaling law A(Ha,
Pe, Gr-Sc) in the case of the convection controlled regime (Sec. 6). Finally in Sec. 7, we compare the results of these three

complementary approaches.

2. Mechanism of Segregation
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A local change in the composition occurs due to the equilibrium condition for a binary system containing two phases
(Fig. 2): at the solidifying interface, the concentrations in the liquid and the solid are related by the equilibrium distribution
coefficient k, ¢ = k-c- [4]. This compositional difference will always lead to concentration variations in the solidified alloy
which are known as segregations. Because solute can be transported by diffusion or (and) by convection, the segregation

pattern will be different depending upon the process involved.
- In a coordinate frame moving at a rate v; with respect to the laboratory, the governing equations for mass conserva-

tion in the bulk and at the solid-liquid interface are

bulk: dc/dt + (v*V)c = DAc + vV, 6))
interface: —DVern = ¢(1 — k)vyn, 2

where v is solution of the Navier-Stokes equations. These equations are often very difficult to solve and it is only in highly

idealized cases that an analytical solution of Egs. (1) and (2) can be found.

The first approaches assume complete mixing in the liquid phase which is a priori a rather surprising hypothesis,
since it is clear from Eq. (2) that there is always a concentration gradient at the interface. But when the growth velocity is
very low, the complete mixing hypothesis is likely to be valid. If stands for the solidified fraction, the concentration in the

solid is given by
o) = kel = fF 75 (€)

where ¢, is the initial concentration of the feed. This concentration law is often referred to as Scheil’s law. Let us notice that
it can not be valid over the entire range of f, when k < 1, since the composition will tend to infinity when f reaches unity.

A totally different situation occurs when diffusion alone accounts for all mass transport in the melt. Again this
appears as a Very restrictive hypothesis since convection is always present in all growth processes. But if the growth velocity
is high enough, convective transport can be neglected. Then considering that composition is a function of the axial coordinate

x alone, Tiller et al. [5] found the solution:
c(x) = co(1 + (1 — k)/k exp(—xv/D)), 4

where c,, is the liquid concentration far away from the interface. The composition varies from its value at the interface Ca/k
to ¢, over a length scale Dlv;; at a distance of a few D/v,, the concentration in the liquid is uniform and equal t0 Co-
Following Wilson [6], we can define the size of the solute boundary layer & as

§ = (c(0) — c,)/(—aclon (n = 0)). ©)

In the reference diffusive case, we get 8§ = 6y = D/v;. In all real cases, the boundary layer thickness takes an
intermediate value between 0 and D/v,, or equivalently, the so-called convecto-diffusive parameter A = /8y, varies from 0 to
1. Let us assume that after an initial transient, a quasi-steady state is reached; it is then possible to define an effective

partition coefficient:

kg = kc(0)/Cas (6)
where c(0) and c,, are respectively the concentration at the interface and in the bulk of the fluid. The effective partition
coefficient thus ranges from & (complete mixing) to 1 (diffusive regime) depending of course on the intensity of convection in

the melt. A very important result is that segregation will always be governed by Scheil’s law (3) provided the equilibrium
partition coefficient & is changed to the effective partition coefficient ke- This coefficient is closely related to A by the exact

relation
k= kil -1 - k)A). ©)

It is generally easier to estimate the boundary layer thickness from a scaling analysis (see Sec. 6), whereas experimental

measurements allow us to estimate an effective partition ratio.
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Fig. 3. Segregation for GrSc = 6.7 X 10° and Pe = 12.5.
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Fig. 4. Segregation for GrSc = 6.7 X 10° and Pe = 25.

3. Experimental Results

Our experiments are carried out in the BRAHMS device on Sn—Bi alloys. This means that the Grashoff and Schmidt
lumbers remain constant; the relevant parameter for segregation studies is their product which takes the value GrSc = 6.7 X
10°. The equilibrium partition coefficient & is equal to 0.25. We study the influence of the growth velocity and of the imposed
axial magnetic field. For growth rates of 2.5 and 5 um/s, the corresponding Peclet numbers are respectively 12.5 and 25.
The importance of the magnetic field is expressed through the Hartmann number which ranges between zero and 270.
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Fig. 5. Geometrical model.

In each growth experiment, controlled solidification is performed on a growth length of 200 mm under stationnary
conditions of Pe, GrSc, and Ha numbers, the rest of the alloy sample being not studied. The initial length is about 350 mm.
For each solidified sample, 3 mm long pieces are picked along the 200 mm of controlled solidification and their global Bi
concentration is measured using an atomic absorption method. Then, using a least square method, we find the best fit of the
measured values with Scheil’s law.

The measured values are shown on Fig. 3 for Pe = 12.5 and on Fig. 4 for Pe = 25. In the second case of Pe,
experiments are carried out for Hartmann numbers equal to 66, 133, and 266 and the effective partition ratio increases
slowly. For Pe = 12.5, this ratio seems to grow quickly with Ha (0, 30, and 66), but we are not greatly confident in both
the concentration measurements of the first and third Ha value cases since there was not a good correlation with the nearest
Scheil’s law (as opposed to the other experiments). Further measurements using another method, like ICP (Induced Coupled
Plasma), should allow one to get more accurate experimental values.

4. Velocity Field under Magnetic Field

Now, for theoretical as well as numerical modeling of segregation, the knowledge of the velocity field is needed. We
only consider the case of a dilute alloy such that convection is purely thermally driven: indeed, the concentration level in our
experiments allows us to neglect the buoyancy effects due to the solute gradients. Furthermore, we assume a good thermal
conduction and hence a uniform axial thermal gradient in the liquid and a planar growth interface. During BRAHMS
experiments, let us recall that uniform conditions of thermal gradient and magnetic field exist along a 10 cm long zone from
the solidification front (which is very long compared to the 6 mm diameter).

We model the geometry for the fluid flow as a semi-infinite cylinder bounded with a planar interface. This geometry
may also be idealized by considering the vertical mid-plane of the cylinder [7], otherwise stated by assuming the flow
between two horizontal plates. This greatly simplifies the modeling since it is now two-dimensional (see Fig. 5).

Even in this simplified configuration, there is no available analytical solution for the steady flow with an axial
magnetic field. We have found a Fourier series expansion solution for the velocity. The coefficients could not be obtained in
a formal way — they were calculated by an iterative numerical method. This flow presents the following features:

— a Hartmann layer of thickness d/Ha exists along the growth interface, where an important velocity gradient can be
observed;

— at a fixed position, say x = d and z = 0, the vertical velocity decreases as 1/Ha;

— the length of the recirculating zone increases from one diameter without magnetic field to a length of order d-Ha

at high Hartmann number.
For the purpose of analytical study of segregation, we observed on the Fourier series expansion that the flow near the

interface had the following approximate form:

v, = (Gr-x/Ha* — Gr/18Ha (1 — 8z + 16z*))(1 — exp(—Hax)), (8)
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Fig. 6. Segregation for GrSc = 105 and 10° at Pe = 1.
v, = 8Gr/9Ha (—xz + 4xz°) + 8/9 Gr/Ha? (z — 42°)(1 — exp(—Ha-x)), ©)

where the length scale is d and the reference velocity »/d. These expressions feature the Hartmann layer (factor "1 —
exp(—Hax)"), the 1/Ha variation of the vertical component of the velocity and the slow variation of v, with respect to the
axial coordinate (factor "Gr-x/Ha*") hence the Ha length of the recirculating area.

5. Numerical Results of Segregation

Assuming the mean concentration of the melt to change slowly, we consider a quasi-steady model for segregation. At
an axial length of two diameters, we imposed a fixed value of unity! for the solute concentration. Along the horizontal plates,
no solute flux is assumed and at the interface, Eq. (2) applies. Then, Eq. (1) is solved, without the time dependent term, the
velocity being given by the Fourier series expansion for a semi infinite cavity derived in Sec. 4. As a result, we get the mean
concentration at the interface, which multiplied by the equilibrium partition ratio, leads to the numerical effective partition
ratio.

We first solved numerically the segregation problem related to the experimental conditions (see Figs. 3 and 4). Then,
we considered two other cases at a unity Peclet number: Gr-Sc = 10° and 10°, for Hartmann numbers from 0 to 500 (see
Fig. 6). These numerical results were obtained using the FIDAP software that is based on the finite elements method. We
chose a 47 X 49 nodes mesh and rectangular 9 nodes elements. The variable mesh was quite dense near the interface such
that the Hartmann layer (at Ha = 500) could extend over several elements.

6. Scaling Analysis

Besides numerical analysis, we have looked for an approximate solution for the axial segregation using a scaling
analysis of the segregation Eq. (1). This method has already been successfully applied to growth configurations without a
magnetic field by Garandet et al. [8]. Its application requires the knowledge of an approximate solution for the velocity field

—_—

1 . - . .
It may be any value since our model is linear with respect to the concentration.
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near the interface. The purpose of this method is to determine §, the characteristic solutal layer thickness defined in Sec. 2.
In this respect, it is assumed that at the distance & from the solidification front, the derivative terms along x can be replaced
by a division by & and that the concentration does not greatly vary along z. Then the mean value of Eq. (1) is considered
along the upper half cavity at x = 8. This leads to the following equation for the solute layer thickness:

12

Pe—2Scl v, (8,2)dz = 1/8. (10)

Solving (10) leads to a value for § when v, is replaced using expression (9). In the following, we restrict ourselves to the
convective case, for which the first term of (10) can be neglected: this is the case of a small solute layer thickness compared
to the diffusive case. Then two cases may be distinguished. The solute layer may be contained in the Hartmann layer, or on
the contrary, the Hartmann layer thickness may be small compared to that of the solute. In the first case, the exponential
velocity profile is linearized, leading to the following expression for Eq. (10), in terms of A:

A = 2.62Pe(GrSc)™"~. a1n

In the second case, the Hartmann layer is not taken into account and Eq. (10) writes
A = 3Pe(GrSc)~?Ha'?, (12)

These results can be used to determine a posteriori the validity field of each regime. It is easily found that for
Hartmann numbers less than 0.5(Gr-Sc)'* Eq. (11) holds and otherwise, Eq. (12) is valid. The scaling analysis results on
Figs. 3, 4 and 6 are shown to compare well with numerical calculations, and in particular, the two distinct regimes are
present on Fig. 6 in the case of Gr-Sc = 105. The threshold Ha value separating them is about 50, according to the
0.5(Gr-Sc)' estimate. On the contrary, for the case of Gr-Sc = 10°, only the first regime is observed, even for Ha values up

to 500.

7. Conclusion

Further experimental results are certainly needed to ensure the validity of both numerical and scaling analysis results,
which are in good agreement together. It is of great interest to notice the existence of a minimum Ha value depending on
Gr-Sc under which the axial magnetic field has no inflence on the axial segregation: numerical results show that this segrega-
tion may even be slightly enhanced under a magnetic field. Then above this value, in the convective limit, the convecto-
diffusive parameter A grows at the rate Ha'”2, which may be compared to the 1/Ha reduction of the velocity field. It can be
considered that an axial magnetic field is not an efficient tool to reduce axial segregation, especially at high Gr-Sc values.

For high growth rates (10 to 20 um/s) the morphological stability threshold is exceeded and the Bi concentration must
be reduced to 0.04 at%. Otherwise the Grashoff number can be artificially modified by tilting the experimental device, angles
of 60 and 75° dividing Gr by 2 each time. These experiments will be carried out in the near future.

In the vertical position, the problem is quite different since convection close to the solidification front is driven by
radial temperature gradients due to interface curvature [9], [10]. The first experiments showed that the radial temperature
gradients in the BRAHMS furnace are weak since in all cases the solidification was diffusion controlled. Another experimen-
tal configuration that should be studied is the case of a transversal magnetic field: a second furnace of the same type is
available and should be adapted to the transverse electromagnet of the MASCOT experiment at the Madylam laboratory in

Grenoble.
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