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Melting-induced stratification above the Earth’s inner
core due to convective translation
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In addition to its global North–South anisotropy1, there are two
other enigmatic seismological observations related to the Earth’s
inner core: asymmetry between its eastern and western
hemispheres2–6 and the presence of a layer of reduced seismic
velocity at the base of the outer core6–12. This 250-km-thick layer
has been interpreted as a stably stratified region of reduced com-
position in light elements13. Here we show that this layer can be
generated by simultaneous crystallization and melting at the sur-
face of the inner core, and that a translational mode of thermal
convection in the inner core can produce enough melting and
crystallization on each hemisphere respectively for the dense layer
to develop. The dynamical model we propose introduces a clear
asymmetry between a melting and a crystallizing hemisphere
which forms a basis for also explaining the East–West asymmetry.
The present translation rate is found to be typically 100 million
years for the inner core to be entirely renewed, which is one to two
orders of magnitude faster than the growth rate of the inner core’s
radius. The resulting strong asymmetry of buoyancy flux caused
by light elements is anticipated to have an impact on the dynamics
of the outer core and on the geodynamo.

The original observation7 of seismic compressional (P)-wave velo-
cities slower than the adiabatic PREM14 model in the lower outer core
has since been confirmed and incorporated in one-dimensional global
models AK135 (ref. 10) and PREM2 (ref. 11). That discrepancy from
the adiabatic profile could result from a wrong interpretation caused
by the nearby complex inner core, because sensitivity kernels have a
width of several hundred kilometres at body-wave frequencies15, or
might also be attributed to floating crystals12,16. Gubbins et al.13 show
that this last explanation is not possible but that the observed seismic
velocities can be explained by a stratification in light elements (and
temperature). However, the stratification mechanism by crystalliza-
tion and melting of crystals at different depths has not been completely
elucidated.

We propose that a dense layer can develop when melting and
crystallization occur only at the inner-core boundary (ICB). Where
crystallization takes place, light elements are released, providing light
fluid; where melting takes place, dense fluid is produced. It is possible
to quantify these effects in terms of flux of buoyancy. Let us denote
Dr as the fraction of density jump across the ICB that is due to
composition partition between solid and liquid phases. For a rate
of crystallization V, the buoyancy flux is DrgcV, where gc is the
magnitude of gravity17 on the ICB (subscript c is for ‘core’). For
melting, the buoyancy flux is –DrgcV. The idea is that part of the
heavy fluid would remain at the bottom, while the rest would be
entrained by the light fluid. Conversely, part of the light fluid would
mix with the dense fluid in the dense layer while the rest would cross
the dense layer and contribute to convection within the main part of
the outer core. This idea has been validated experimentally as follows.

The experiments consist of simultaneously injecting constant
fluxes of light and dense fluids at the bottom of a fluid cavity. The
cavity is a box of perspex 20 cm high and with a 15 cm 3 15 cm
horizontal cross-section. It is initially filled with salted water (initial
concentration x0, in wt% NaCl). At the bottom of the cavity, there is a
porous layer (sponge) below which the cross-section is divided into
two disconnected parts: on one side light fluid is injected (xl , x0)
and on the other side heavy fluid is injected (xh . x0), where xl and xh

are the salt concentrations of the light and heavy fluids in wt% NaCl.
Both density differences x0 2 xl and xh 2 x0 and both flow rates are
controlled and set to be constant during the experiment. The injec-
tions of fluids start simultaneously through pipes from reservoirs
with the desired concentration. The excess fluid is removed through
an overflow at the top of the cavity.

The geophysically relevant case is when the positive buoyancy flux
exceeds the negative one, because on average the inner core is grow-
ing. When the negative buoyancy flux induced by the heavy fluid is
less than 80% of the amplitude of the light fluid, no dense layer is
observed: the entrainment caused by the rise of light plumes is suf-
ficient to mix the heavy fluid as it is released by the bottom boundary.
However, when the heavy buoyancy flux is more than 80% of the light
buoyancy flux, a dense layer grows at the bottom of the cavity. It has
been observed experimentally that the condition for the existence of
the dense layer is really a condition for the buoyancy fluxes, as
described above; it does not specifically depend either on the volume
flow rates or on the density differences between the fluids. This jus-
tifies our convection experiment as an appropriate model of a melt-
ing/crystallization process for the inner core.

On Fig. 1, an experimental run is shown. This experiment corre-
sponds to a case in which the heavy fluid buoyancy flux was 83% that
of the light fluid. The initial concentration and concentrations of the
dense and light injected fluids were x0 5 4 wt%, xh 5 6 wt% and
xl 5 1.65 wt% NaCl respectively. The volume flow rate of the dense
fluid was Qh 5 3.9 3 1027 m3 s21 and that of the light fluid was
Ql 5 4.0 3 1027 m3 s21. The experiment was run twice under the
same conditions: in the first instance, the injected dense fluid was
coloured with potassium permanganate and photographs of the set-
up were taken at different times after the beginning of the injections.
A dense coloured layer forms at the bottom and its thickness grows
linearly with time. It is also possible to see convection plumes going
up on the right-hand side, carrying along some of the heavy coloured
fluid in the upper part of the cavity. In the second instance, the
synthetic schlieren method has been used18,19, providing a quantitat-
ive two-dimensional field of refraction index with which to visualize
the concentration gradients: their horizontal components are shown
on the middle row of Fig. 1, showing convection plumes of light fluid
on the right-hand side of the cavity, while their vertical components
are shown on the bottom row, visualizing the dense layer and its
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growth. The concentration field is computed from its gradient, and
averaged along the horizontal direction: the resulting stratification
profile is shown in Fig. 2. There is clearly a region of stratified fluid,
above which density is nearly uniform. The thickness of this layer
grows linearly with time, its volume being 50% to 90% that of the
total volume generated by the light and heavy fluxes.

Melting part of the inner core at a significant rate is difficult while
it is crystallizing (on average over its surface) as a result of secular
cooling. The most plausible mechanism is that a topography is
formed dynamically on the ICB so that the temperature of the adja-
cent fluid of the outer core exceeds the melting temperature. That
excess temperature is then responsible for heat transfer from the
outer core to the ICB, providing latent heat for fusion: in this way
topography can be related to the rate of melting.

The dynamical model we put forward to account for significant
melting on the ICB results from the combination of three physical
elements: the thermal state of a superadiabatic inner core, gravita-
tional equilibrium and finite heat exchange of latent heat with the
outer core. In superadiabatic conditions, a uniform velocity in the
inner-core V, say from west to east along the x-axis (see Fig. 3),
generates a global superadiabatic temperature gradient in the same
direction proportional to the residence time in the inner core; such a
gradient would hence be inversely proportional to V, and propor-
tional to a positive source term S < 10215 K s21 defined by secular
cooling and thermal conduction along the adiabat (see Methods and
ref. 20):

LH

Lx
~

S

V
ð1Þ

where H is the temperature relative to the adiabat Tad in the inner
core anchored to the ICB17. It follows from the volume expansion
coefficient21 a 5 1.1 3 1025 K21 and inner-core density (on the
ICB17) rs 5 1.28 3 104 kg m23 (subscript s is for ‘solid’) that there
exists a density gradient –arshH/hx. The resulting gravity field and
density distribution generate unbalanced forces on the inner core, so
that it is displaced a distance d in the x direction. In the Methods, we
derive the gravitational field and potential associated with this mass
distribution, from which it is possible to calculate the net gravita-
tional force FG exerted on the inner core and the net pressure force FP

exerted by the outer core on the inner core

FGzFP~
16 p2

9
G rlc
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5
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� �
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where G is the universal gravitational constant, c 5 1,220 km is the

radius of the inner core17, rl~1:22 | 104 kg m{3 is the outer core
density on the ICB17 and ex is the unit vector in the direction of the
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Figure 1 | Visualization of the growth of a dense layer in an experimental
run. We used dye injection (a) and measurement of horizontal (b) and
vertical (c) density gradients. The experimental cavity is initially filled with a
4 wt% NaCl water solution. From t 5 0, a constant flux of 1.65 wt% NaCl
solution is injected at the bottom on the right-hand side of the cavity while a
6 wt% NaCl solution is injected on the left-hand side. The dense fluid is
coloured with potassium permanganate (a), visualizing a growing dense
layer at the bottom, at four different times after the injection of the dye. The
synthetic schlieren method is used in a second identical experiment: the
horizontal gradient of refraction index in b highlights the convective plumes
and the vertical gradient in c reveals the dense layer.
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Figure 2 | Evolution of the concentration profile during the growth of a
dense layer. The concentration field is extracted from the gradient of
refraction index. It is averaged along the horizontal direction and shows the
time evolution of the dense layer since injection of the dye.
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Figure 3 | A schematic representation of the translational convective
mode. The centre of the inner core O is shifted by a distance d away from the
centre of the Earth C, which would be its equilibrium position if its density
were uniform. That shift causes a thermal departure from the adiabat at the
ICB, generating melting on one side and crystallization on the other side.
Hence a uniform flow exists in the inner core (arrow labelled V): in the case
of a superadiabatic regime, a gradient of temperature develops, as
represented by greyscale shading. Its associated changes in density and
gravitational potential lead to a new mechanical equilibrium for the inner
core, corresponding to a shift in position in the same direction as initially
assumed. r is the distance from the centre O of the inner core and h is the
angle between the x axis and the direction of the point where H is evaluated.
V is the rate of crystallization, and c is the radius of the core. R is the distance
between the point at which the gravitational potential U is calculated and the
centre of the Earth C. M is a dummy point, used to define r, H and R. The
dotted circle is the position of the ICB in the absence of density gradient
(centred on C). See Methods.
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temperature gradient. The equilibrium condition that both forces
balance provides the shift d as a function of the thermal gradient
hH/hx

d~
a LH

Lx
rsc

2

5 rs{rlð Þ ð3Þ

Then, the displacement d is associated with a non-uniform pressure
distribution on the ICB (see Methods), yielding a small temperature
departure dT from the adiabat (see Fig. 4)

dT~rlgc d cos h mP{madð Þ ð4Þ
where mP 5 8.5 3 1029 K Pa21 is the Clapeyron slope22,
mad 5 (aTad)/(rcp) 5 6 3 1029 K Pa21 is the adiabatic gradient,
gc~G 4p

3
rsc is the gravity on the ICB and cp 5 850 J kg21 K21 is the

specific heat capacity23. That departure is accommodated by a ther-
mal boundary layer in the outer core, with a corresponding heat
transfer of typical magnitude u9cpdT, where u9 5 1024 m s21 is a
typical velocity scale in the outer core. That heat transfer must be
balanced by the release or absorption of latent heat

L V cos h~u’cpdT ð5Þ
where L 5 900 kJ kg21 is the latent heat coefficient24,25. Finally, com-
bining equations (1), (3), (4) and (5), we can express the translational
velocity as

V 2~
4pG

15

u’ cp r2
s rl a mP{madð Þ S

L rs{rlð Þ c3 ð6Þ

Depending on the heat flux at the core–mantle boundary, the history

of the inner core shows a first phase dominated by growth _cc!c{1,
followed by the development of the translational instability (see
Supplementary Information), when its radius was around 400 km,
leading to the dominant present translation V / c3/2 of the order of
5 3 10210 m s21, while the growth rate is of the order of 10211 m s21

(Fig. 5).
The latter scaling law implies that the translational convection is

faster along a long axis of the inner-core oblate spheroid (see
Supplementary Information), that is, perpendicular to the rotation
axis. It follows that the temperature gradient is preferentially aligned
with such a long axis, which again reinforces convection in that
direction. Moreover, the Earth’s aspherical mass distribution—
which has essentially a degree 2, order 2 geometry26—is responsible
for elongating the inner core slightly along an east–west axis and
induces a degree 1 translational convection in the inner core through
a bifurcation produced by instability (see Supplementary
Information). We propose that the translational flow has a west to
east orientation, which is responsible for the observed hemispherical

asymmetry of the inner core: grain growth during the transit from the
western hemisphere to the eastern hemisphere may explain the dif-
ference in seismic properties27. The temperature difference of a few
kelvin between the hemispheres is another source of asymmetry.

According to our experiments, a melting rate above 80% of the
crystallization rate is necessary for a dense layer to form, which geo-
metrically implies that the translation velocity V is more than 20
times that of the inner-core growth rate. From Fig. 5, we see that this
happens only when the core–mantle boundary heat flux exceeds
10 TW, and only since the inner-core radius was 1,100 km, some
200 million years ago. Extrapolating from our experiments, 50% of
the volume of melt produced since then would correspond to a layer
250 km thick. The experimental excess concentration is found to be
10% of the concentration difference between light and heavy injected
fluids. In the Earth’s core, where the concentration of light elements
is about 10%, a difference in concentration of around 1% across the
dense layer is expected. This is indeed coherent with the observed
seismic velocities13.

Our convection mechanism ignores deformation in the inner core
and compositional buoyancy. With a finite effective viscosity, tem-
perature variations along gravity isopotentials induce an internal
flow with deformation that affects the translational mode. We have
estimated that the internal flow is weak compared to translation for
an effective viscosity above 1018 Pa s. Enrichment in light elements of
the outer core (a few per cent) has been invoked28,29 to imagine a
stabilizing mechanism for convection in the inner core. This is specu-
lative, however, because the fraction of light elements incorporated in
the inner core may have decreased more rapidly than the fraction of
light elements incorporated into the outer core increased, given that
gravity on the ICB is getting larger, reinforcing convection and com-
paction in the mush.

Invoking an excessively asymmetric buoyancy flux on the ICB calls
for further study of the dynamics of the outer core and the geody-
namo. The stratified layer is expected to be dynamically isolated and
to act as a filter between the inner core and the rest of the outer core,
but there might subsist some hemispherical asymmetry in the outer-
core dynamics.

METHODS SUMMARY
The mode of convection associated with the translation of the inner core is not

standard. Therefore, it is presented in the Methods. Thermal buoyancy is the

driving force; however, unlike classical convection, the damping is not due to
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Figure 4 | Thermal departure from the adiabat due to the displacement of
the inner core and heat transfer at the ICB. A thermal boundary layer forms
in the outer core to adjust to the different radii of the ICB on the melting and
crystallization sides.
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Figure 5 | Growth rate of the radius of the inner core and uniform
convective velocity as functions of the inner-core radius. They are plotted
for different values of the heat flux Q at the core–mantle boundary. Thin
solid lines show the mean solidification (crystallization) rates ċ of the inner
core. Dash-dotted lines show the translation velocities V, calculated with the
assumption of a constant S. Thick solid lines show the translation velocities
V, with S(t) calculated (see Supplementary Information) from the core
thermal evolution model of ref. 30.
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viscous and/or thermal diffusion. Damping is set by the capacity of the outer core
to extract or supply latent heat on the ICB.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

We present here in some detail an analytical model of inner-core translation. The

model results from the combination of three physical phenomena: the thermal

state of the inner core, gravitational equilibrium and phase change restrictions

due to finite heat exchange with the outer core.

Thermal evolution of the inner core. In the inner core, owing to secular cooling,

any parcel of matter experiences a decrease in temperature with respect to its

initial curve of constant entropy. However, as the inner core grows, newly solidi-

fied material is set to a lower and lower entropy value. Hence the inner core is

thermally stable if formerly solidified matter is colder than the current adiabatic

profile attached to the liquidus temperature at the ICB, as a result of diffusion. If

not, it is unstable to thermal convection.

It is convenient to introduce a potential temperature H(r, t) 5 T 2 Tad(r, t),

where the adiabat Tad(r, t) is anchored at the ICB (that is, H 5 0 at the ICB). At

inner-core conditions, the equation of conservation of entropy can be simplified

(see Supplementary Information) and written as

LH

Lt
z vN+ð ÞH~k+2HzS tð Þ ð7Þ

where k is the thermal diffusivity of solid iron. This form of the entropy equation

captures first-order effects of compressibility by retaining the contribution of

adiabatic heating or cooling during vertical advection31. The source term is

S tð Þ~k+2Tad{ _TT ad ð8Þ

where _TT ad~LTad=Lt is the difference between thermal diffusion along the adia-
bat and secular cooling and is independent of space. The sign of S determines

whether or not the inner core is superadiabatic and likely to convect. It is

uncertain because S is the difference between two poorly constrained quantities

of comparable magnitude. A young inner core (large secular cooling) and small

thermal diffusivity favour a superadiabatic temperature regime (positive S) and

instability. The low estimate of thermal conductivity given recently by Stacey and

Davis20 together with the young inner core age favoured by recent core thermal

models30, 32,33 make it plausible: with a conductivity k 5 36 W m21 K21 as sug-

gested by ref. 20, the inner core would be superadiabatic if its age is of the order of

a billion years or less. S(t) can be calculated for any given thermal history of the

core (see Supplementary Information); it is a decreasing function of time, with

typical values of 10–100 K per billion years. In what follows, we assume that S is

indeed positive, and will use a nominal value of S 5 10215 K s21 < 30 K per

billion years.

If it is superadiabatic, the inner core is mechanically unstable. Classical ther-

mal convection will develop if the inner-core viscosity is not too large34–36, but

the fact that the ICB is not fixed allows for a new instability consisting of a

translation (see Supplementary Information for a linear stability analysis).

Under the assumption that the viscosity of the inner core is large enough, this

mode becomes dominant and the motion is effectively restricted to be a trans-

lation, with velocity V. Assuming that the Péclet number (Pe 5 Vc/k, where c is

the radius of the inner core) is very large, the terms hH/ht and k=2H can be

neglected in equation (7), which now takes the simple form

LH

Lx
~

S

V
ð9Þ

for a uniform velocity V in the direction of the x axis (see Fig. 3). With a

boundary condition of H 5 0 on the crystallization side, the solution is

H~ rcos hz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2{r2sin2h
p� � S

V
ð10Þ

where r is the distance from the centre O of the inner core and h is the angle

between the x axis and the direction of the point where H is evaluated (see Fig. 3).

The component H goes back to zero on the melting side within a thin boundary

layer (not visible on the schematic Fig. 3) of thickness k/V= c, which can be

resolved when thermal diffusion is considered. The maximal temperature devi-

ation from spherical symmetry is thus DT 5 2cS/V.

Mechanical equilibrium. The thermal asymmetry induced by a translation of

the inner core is accompanied by a density asymmetry and it is anticipated that

the inner core as a whole will be shifted in the direction of the thermal gradient in

an attempt to move the centre of mass of the inner core towards the centre of the

Earth: the light part is emerging while the dense part is sinking. We show here

that a new equilibrium state with the inner core translated by a distance d in the x

direction results from a balance between the gravitational forces applied on the

inner core and the pressure forces on the ICB. A correct estimate of the position

of the inner core requires the evaluation of the change in self-gravitational
potential resulting from the change in mass distribution.

For the sake of simplicity and tractability, density in the outer core is supposed

to be uniform. In the inner core, density variations in the direction of the

uniform velocity are kept in the analysis, but perpendicular variations are

ignored. They would lead to degree 2 spherical harmonic contributions with

little contribution to the displacement d. Adiabatic spherical symmetric density

variations are ignored because they contribute to d only by slightly changing the
average density of the inner core. Density in the inner core is thus expressed as

r~rlz rs{rlð Þ{a
S

V
rsrcos h ð11Þ

where a is the volume thermal expansion coefficient of the inner core, and rl and

rs are the density of the liquid outer core and solid inner core. In equation (11),

the first term on the right-hand side (that is, rl) is the contribution of the liquid

core, centred on C, and the other two terms on the right-hand side are the

contributions of the inner core, centred on O, separated from C by a distance

d. Let us introduce the gravitational potential U, such that gravity is g 5 2=U,

obeying the Poisson equation =2U 5 4pGr, with G the universal gravitational

constant. From equation (11), the corresponding gravitational potential is found

to be

U

4pG
~rl

R2

6
z rs{rlð Þ r2

6
{a

S

V
rs

r3

10
{

c2r

6

� �
cosh ð12Þ

where r denotes the distance between the point at which U is calculated and the

centre of the inner core O and R the distance between the same point and the

centre of the Earth C (see Fig. 3). In the derivation of equation (12), the potential

had to be determined inside and outside the inner core, whereas potential and

gravity are continuous across the ICB. The formula (12) is the gravitational

potential within the inner core. Noting that R2 5 r2 1 2drcosh 1 d2, equation

(12) becomes

U

4pG
~rs

r2

6
zrl

d2

6
{a

S

V
rs

r3

10
{

c2r

6

� �
cos hzd rl

r

3
cosh ð13Þ

The total gravitational forces exerted on the inner core can be readily evaluated as

FG~{

ð
inner core

r+U dV~{4pG d rlrs

ð
inner core

+
r

3
cosh

� �
dV ð14Þ

Only the contribution from the last term in equation (13) remains, because the

other terms cancel out or have no contribution. Indeed, the distribution of
masses within the inner core exerts no net gravity force on the inner core itself

and only the outer core has a non-zero contribution when the inner core is not

centred. We finally obtain

FG~{
16 p2

9
G d rlrsc

3 ex ð15Þ

Within the liquid outer core, we assume hydrostatic equilibrium

{+P{rl+U~0, which provides a simple relationship between pressure P

and the potential U evaluated in equation (13)

P~{rl U ð16Þ
up to an additive constant. It is then possible to evaluate the net pressure force

exerted by the outer core on the ICB

FP~{

þ
ICB

Per dS~
16 p2

9
G rlc

3 a
S

V
rs

c2

5
zrld

� �
ex ð17Þ

The net force exerted on the inner core is then

F~FPzFG~
16 p2

9
Grlc

3 a
S

V
rs

c2

5
{ rs{rlð Þd

� �
ex ð18Þ

Static equilibrium of the inner core (F 5 0) is reached when the inner core is

translated by a distance equal to

d~
a S

V
rsc

2

5 rs{rlð Þ ð19Þ

Kinetics of phase change at the ICB. The displacement of the inner core

implies that pressure is no longer uniform on the ICB. This corresponds to a

temperature difference dT between the adiabat and the liquidus temperature

along the interface:

dT~{dP mP{madð Þ ð20Þ
where dP denotes the pressure variation on the ICB and mP and mad are the

Clapeyron slope and adiabatic gradient (in the liquid phase) respectively.

Pressure variations on the ICB can readily be determined from the previous

calculations on gravitational equilibrium. Pressure in the liquid is related to

the gravitational potential (through equation (16)). The gravitational poten-

tial (13) is evaluated on the ICB r 5 c, with equation (19) taken into account
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U

4pG
~

rs

6
c2zd2z2 dccosh
� 	

ð21Þ

Hence, the pressure variation on the ICB follows from equations (16) and

(21)

dP~{rlgcdcosh ð22Þ

where gc~G 4p
3

rsc is the gravitational acceleration in r 5 c. From equation

(20), the temperature departure from the adiabat is

dT~rlgc d cosh mP{madð Þ ð23Þ
The adiabat is thus higher than thermodynamic equilibrium on the eastern

side and lower by the same amount on the western side. We do not assume

that the actual temperature of the solid–liquid interface is dependent on the

rate of melting or crystallization, dynamic undercooling being very small for

metals. We consider instead that a thermal boundary layer develops in the

outer core, which is the cause of heat exchange, that is, supply or extraction

of latent heat (see Fig. 4). Heat conduction in the solid and in the liquid are

smaller contributions and are fairly equal and opposite. Moreover, it is

assumed that the rate of crystallization (and melting on the other side) is

much bigger than the growth rate of the inner-core dc/dt, where c(t) is the

radius of the inner core. Fusion and crystallization are thus supposed to be of

equal magnitude: this can be expressed in a single form Vcosh, where V is the

assumed uniform velocity of the inner core. Heat transfer in the liquid outer

core is related to the amplitude of velocity fluctuations u9 in the outer core:

we have little knowledge regarding u9 near the ICB, so we take them to be of

the same order of magnitude as the velocity at the core–mantle boundary

estimated from the secular variation of the magnetic field, which is

1024 m s21. The simplest estimate for the heat transfer coefficient is cpu9.

Hence, the heat budget at the ICB is

L V cosh~u’ cp dT ð24Þ
where L is the latent heat. This equation relates the velocity V (rate of

crystallization on one side, melting on the other side) to the thermal depar-

ture from the adiabat dT at the interface, which is itself related to the dis-

placement d of the inner core by equation (23).

Results of the model. All elements of the model have been analysed and now we
put them together. Equations (23) and (24) provide a relationship between d and V

L V~u’cprlgc mP{madð Þd ð25Þ
corresponding to the thermal aspect of the problem. Using the independent mech-

anical equation (19), the displacement d can be eliminated and the solution for the

translation velocity V can be obtained as

V 2~
4pG

15

u’ cpr2
s rl a mP{madð ÞS
L rs{rlð Þ c3 ð26Þ

Representative values of the parameters involved are G 5 6.67 3 10211

m3 kg21 s22, u9 5 1024 m s21, cp 5 850 J kg21 K21 (ref. 23), rs~12,800

kg m{3 and rl~12,200 kg m{3 (ref. 17), a 5 1.1 3 1025 K21 (ref. 21),

mP 5 8.5 3 1029 K Pa21 (ref. 22), mad~ aTð Þ



rlcp

� �
~6|10{9 K Pa{1,

L 5 900 kJ kg21 (refs 24, 25), and c 5 1,221 km (ref. 17). With S 5 10215 K s21,

the translation velocity obtained for the present state of the inner core is found to

be V^7:7 | 10{10 m s{1, which is faster than the growth rate of the radius of

the inner core by a factor of around 70. This is a justification for neglecting the

growth of the inner core in the analysis. The associated displacement is derived

from equations (25) or (19). Its value is d^95 m. The maximal temperature

disequilibrium is dT^0:01 K, while the non-adiabatic temperature difference

across the inner core is DT 5 2cS/V^ 3.2 K. Because dT is very small compared

toDT, the boundary condition H 5 0 is justified to a good approximation from the

point of view of the inner core. It is also possible to determine the maximal time of

residence in the solid inner core, which is 2c=V^100 million years.
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