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NATURAL CONVECTION
IN RECTANGULAR ENCLOSURES
OF ARBITRARY ORIENTATION WITH MAGNETIC
FIELD VERTICAL - PROBLEM REVISITED

M. D. Cowley, D. J. MacLean, T. Alboussiére

Cambridge University Engineering Department

This paper carries the investigation of natural convection in tilted containers a stage
beyond the asymptotic analysis of [1], with the full equations being solved numerically by
the commercial code CFX. Comparisons are made with the asymptotic solutions and good
agreement is found at low values of Ra/Ha®. On the other hand, the prediction for high
values, that there is a core of stationary fluid in a uniform vertical temperature gradient,

is approached only slowly as Ra/Ha? is increased. The behaviour can be explained by
extending the asymptotic analysis to the next order of approximation.

Introduction. It was suggested in a previous paper [1] that tilted containers
provide an interesting geometry for testing general ideas on natural convection in
the presence of a vertical magnetic field. Particularly simple asymptotic solutions
could be developed for the cases of (i) negligible advection of temperature and (ii)
advection strong enough to lead to a core in which the temperature distribution is
stably stratified. With neglect of inertia and with viscous effects confined to thin
layers (Ha >> 1), the controlling parameter was found to be Ra/Ha?, where Ra is
the Rayleigh number and Ha the Hartmann number, the parameter being much less
than unity for case (i) and much greater than unity for case (ii). The development
by one of us (DJM) of a computational scheme for the numerical simulation of
natural-convection problems in MHD has now provided an opportunity to check
the relevance of the asymptotic analysis.

1. Recapitulation. Definitions and details of the derivation of the govern-
ing equations have been given in the previous paper [1], but the most important
points are as follows. The geometry of the two-dimensional container is illustrated
in Fig. 1. Two plane walls are taken to be thermally insulating and two thermally
conducting with a boundary condition of uniform heat flux ¢,,. In contrast to [1]
the cross-section of the container is square and the full length of each side d is the
scale used for reduction of the equations to non-dimensional form. The reduced
equations expressing balance of rotational forces and of energy are
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where ¥, () and 6 are non-dimensional stream function, vorticity and temperature
respectively, ¥ being such that 0¥ /0Z is the non-dimensional velocity in the X-
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Fig. 1. Tilted container geometry.

direction. The link between ¥ and {2 is given by
Q= V20, (3)

The geometry of the flow and the direction of the magnetic field imply zero electric
field, so that current (direction perpendicular to the flow plane) is proportional to
the velocity component in the X-direction and the e.m. force then takes the form
shown in equation (1).

The non-dimensional parameters of equation (1) are the Rayleigh number,
Prandtl number and Hartmann number, given by

2 g4
p cBggwd cp o
= e — = — f— B —
Ra TR Pr=—, Ha d\/; , (4)

wherein ¢yd/ X is the effective temperature scale.
The boundary conditions are

¥ =0, 0¥¢/0n=0 at all walls;
80/0n = £1 atwalls with heat flux to/from the fluid; (5)
86/0n =0 atthermally insulating walls,

where 80 /0n is the outward normal gradient.

1.1. Negligible advection of temperature. When Ra/ Ha? — 0, heat flow
through the enclosure is governed by conduction only (see Eq. (2)), with isotherms
parallel to the diabatic walls and temperature gradient uniform. As discussed in
[1], if there is a core flow which can be treated as inviscid and inertialess (Ha > 1),
equation (1) reduces to

9*W/8Z* = —~00/8X = const,

so that in the core ¥ = ¥, has a parabolic distribution with Z along field lines
like PP’ on Fig. 1, being zero at the the edges of the core. In a region where
field lines cut two parallel walls, the streamlines will be parallel to those walls
and the flow is one of uniform shear. In regions where field lines cut walls which
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are perpendicular to each other streamlines are rectangular hyperbolae '. It was
suggested in [1] that, where the two types of flow meet, parallel layers of thickness
O(Ha™'/?) occur.

1.2. Strong advection of temperature. The proposal in [1] for asymptotic
behaviour at high values of Ra/Ha® was for a motionless core where the temper-
ature gradient is vertical and uniform. Boundary layers are formed on the walls
in order to adjust temperature gradients so as to satisfy the conditions on 86/dn
imposed by equations (5). Interestingly enough, it is not necessary to solve the
equations governing the layers in order to determine the net flow in them and the
temperature gradient in the core. If we consider a horizontal line such as QQ’
on Fig. 1, there can be no net flow across it and at the limit the temperature
on it is constant. Therefore there is zero net thermal energy flux by convection.
Energy flux by conduction across QQ' must equate to the net flux supplied by
¢w on one side of QQ'. This leads to 80/8Z = sina, so that in the core 6 = 6,
has a uniform Z-wise gradient. Across a vertical line such as PP’, there is no
conduction because the temperature gradient is vertical. However, there is, now a
temperature difference between the ends of the line and consequentially a flux of
energy by convection. Equating this to the net wall flux on either side leads to a
core value ¥, = (Ha®?/Ra) cot a.

2. Numerical simulation. Solutions to Egs (1), (2) and (3) with inertia
and viscous terms retained have been found using the commercial finite-volume
package CFX with appropriate modification to include the electromagnetic-force
term. The grid used had 320 by 320 cells and a geometric progression of common
ratio 1.02 concentrated the mesh close to the walls. The chosen grid ensured that
there were 7 cells or more within the thickness of the Hartmann layers. A sample
of the results is shown in Fig. 2 for containers tilted at a = 30° to the horizontal,
with Ha = 1000 and Pr = 1. Although the latter is not a reasonable value for liquid
metals, it becomes computationally very time consuming to solve for a parameter
range where Pr is small and inertia still weak.

2.1. Weak advection of temperature, Ra/Ha? = 10~2. The top row of plots
in Fig. 2 refers to conditions such that temperature advection is weak, the isotherms
in 2¢ being very nearly parallel to the diabatic walls. The streamlines of 2a con-
form with the asymptotic expectation of a uniform shear flow between the adia-
batic walls and turn-round regions where streamlines are rectangular hyperbolae.
However, it is noticeable that where the two types of flow meet there is a smooth
rounded transition of the streamline direction.

If the stream function ¥. of the asymptotic core flow as Ra/Ha? — 0 is
subtracted from the numerical solution (Fig. 2b, the presence of parallel layers of

thickness O(Ha"l/ %) becomes apparent.

2.2. Moderate advection of temperature, Ra/Ha®> = 1. The next row of plots
refers to conditions where it might be expected that thermal convection is becom-
ing comparable in importance to conduction. Fig. 2f shows that the isotherms
are shifted, but not to a great extent. Similarly, the streamline plot of Fig. 2d
looks hardly different from that of Fig. 2a, but close inspection shows that the
streamlines have been shifted outwards (values of streamfunction on the lines are
the same as those in 2a). Subtraction of the asymptotic streamfunction ¥, as
Ra/Ha? — 0 from the numerical solution results in Fig. 2e, where ¥ — ¥, is
typically 0.1 times ¥.

1The expression for ¥ given in [1] is incorrect. It should read W, = --1/2cos(Z — X tan a)(Z +
X cot ).
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(a) ¥ =0.06,0.12 (b) ¥ -¥=0.003, 0.006 (c) 6=-0.25,0,0.25

(d) ¥ =0.06,0.12 (e) ¥ - W= 0.006, 0.012 (©=-0.25,0,025

(g) 6=-0.25,0,0.25 (h) 8- Bge =+0.005, +0.015, £0.025 (i) WRa/Ha’ =2.0,1.75,1.5

Fig. 2. Streamlines and isotherms for Ra/Ha? = 107 (a,b,¢), 1 (d, e, f) and 10° (e, h, ).
Ha = 10° for all cases. W, is the asymptotic value in the core as Ra/Ha? — 0; 6y is the
asymptotic value in the core as Ra/Ha® — oo.
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2.3. Strong advection of temperature, Ra/Ha? = 10. The strong advection
limit is not approached closely until Ra/Ha? is of order 10*. However, even at 104
subtraction of the asymptotic result for 6. as Ra/Ha® — 00, i.e. 30./07 = sinq
(see 1.2), from the numerical solution (Fig. 2h) shows that there is a signifi-
cant departure from the expected uniformity of core temperature gradient. The
streamlines of 27 present even more of a challenge to the asymptotic theory, which
predicts a motionless core with ¥, = 31/2 (Ha?/Ra) for a = 30°, whereas the nu-
merical solution has ¥ varying over the core region from approximately 1.4 to 2.0
times (Ha?/Ra).

3. Further analysis for Ra/Ha® >> 1.

3.1. Temperature field. According to [1] boundary layers at the walls when
Ra/Ha? is large have thickness O(g), where € = Ha/Ra'/?. If it is supposed that
solutions for 6 can be expanded as power series in ¢,

0 =00 +eb) + €%, - (6)

bo is the leading-order solution, with dfo/dZ = sina (see 1.2) in both boundary
layers and core. Although the next term in the series is of order ¢, its gradient
in a boundary layer is of order unity because the length scale is of order € there.
Thus the boundary condition at the wall on heat flux (see Eq. (5)) can be met.
Consistent with the series (6) for @ is a series for ¥ of the form

U =T,y + 630, .. (7)

where £2¥, takes the leading-order value (Ha?/Ra) cota in the core (see 1.2.),
but, whereas ¥, is constant there, it varies in the boundary layers, being zero at
the walls.

Solutions of the equations for 6; and ¥, have been given in essence by [1] for
the case of € > Ha™!, when viscous action is confined to thin Hartmann layers on
the walls, and in the main body of the boundary layers 6, and ¥y have exponential
form

b1 = 01c + x cosa (dbp/d 2)*/? exp(kn/e), (8)
Uy = cot a{l — exp (kn/e)}, (9)
where on diabatic walls y = —1 and k = cot o (d6o/dz )1/ ?, and on adiabatic walls

X =cot’a and k = tan a (dfy /dZ)l/ %, n is the outward normal co-ordinate and
01 the core value of 61, taken to be a function of Z only.

To determine ;. a similar method to that of 1.1. is adopted. Consider the
horizontal line QQ’ in the sketch of Fig. 3. In the core the line co-incides with
a particular isotherm 6. + €b1¢, but near the diabatic walls it departs from that
isotherm. Arrows on the sketch indicate the direction of flow in the boundary
layers associated with ¥,. It will be seen that on the horizontal 4 is less than
the core temperature where the flow is downward and greater where the flow is
upward. In contrast to the solution taken to leading-order only there is now a net
upward flux of thermal energy by convection across QQ'. The amount associated
with each layer is given by integration across it as

—00
6/ (61 "910) d‘Pz

n=0
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Fig. 3. Isotherm shape for Ra/Ha? > 1.

Fig. 4. Energy flux function for O(¢) contribution (a < 45°).

However, the above integral is not the only correction to the energy flux. Con-
duction is affected by the temperature gradient associated with 6; — 6. in each
layer and with 61, over the full length of QQ’. Let the contribution to energy flux
(convection and conduction) for each diabatic-wall layer be e®4, where

£dy = g/ (01 — 610) AT, +€/ (0 (61 = b1c) /0Z)dX =
n=0 n=0
L 2 dfo v
= 5esin a(cot® a — 2) (EZ) ) (10)

the integrals being evaluated using expressions (8) and (9). In a similar fashion
the contribution from each adiabatic-wall layer e®, is found to be

d00> 1/2

3 (11)

ed, = ge sin a cot? a (
These energy fluxes for a < 45° are illustrated in Fig. 4, which also shows
that, to achieve energy balance, there must be consequent fluxes, downward through
the core and feeds between the core and the layers at the corners of the container.
The fluxes differ slightly for @ > 45°, but the principles are the same as for o < 45°.
Within the lozenge shaped region at the centre of the container (bounded by
two horizontals and two parallel walls) the energy flux in the core can be uniformly
distributed and can therefore be driven by conduction due to a uniform gradient
dfic/dZ. On the other hand, within the top and bottom triangular regions, the
length of a horizontal line between walls (one diabatic, the other adiabatic) varies
linearly with distance from the top and bottom corners respectively. To maintain a
constant heat flux through each region d61./dZ must vary inversely with distance
from top or bottom corner, as appropriate, i.e. 6. must vary logarithmically
with Z, becoming singular at the top and bottom corners, where the present
approximations will break down. A further complication arises from df;./dZ
being non-uniform. In order to satisfy the thermal energy equation (2) in the
core, there must be a convective term to balance d%6;./dZ2. However, this can
be achieved with an order * flow interacting with the leading-order temperature
field and calculations based on an order €2 flow field are not invalidated.
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Fig. 5. Comparison of O(e) corrections to leading order predictions of temperature
distributions in the core for the 6, (solid curve) and (6 — foc)/e (dashed curve). o = 30°
(0), 52.2° (b), 60° (c). Ha = 10°, Ra = 10'° in all cases.

In Fig. 5 analytical results for 61c are plotted against the Z co-ordinate, the
origin being at the centre point of the container and the results are compared
with predictions for (8 — 6o.) /e. 6 is evaluated from the numerical simulation on
a straight line between the top and bottom corners and g, from the asymptotic
results. The origin for the Z co-ordinate is the centre point of the container. For
Fig. 5a the tilt angle a = 30° is the same as for Fig. 2k and it is seen that
the departure of the numerical solution from the leading-order asymptotic result
is almost entirely associated with the O(e) correction. A feature of this case is
that the contribution of £6;. to the temperature gradient is comparatively small
in the central lozenge. Reference to Fig. 4d shows that additional flux in the
lozenge will be zero when ®4 is zero and according to equation (10) this occurs
when cot?a = 2, ie. a = 35.3°, which is not very much greater than the tilt angle
of Fig. 5a.

Of particular interest is the case where the angle of tilt is such that Dy =—P,.
According to equations (10) and (11), this happens when cot? q — 2 = —3cot?
i.e. when a = 52.2°. At this angle of tilt there will be no O(e) flux in the triangular
regions and ;. will be constant there (see Fig. 5b).

When a is greater than 52.2°, &, is less than @, and the direction of the O(e)
fluxes in the triangular regions reverses. In contrast to cases where a is less than
52.2° and the O(e) temperature gradient reinforces the leading-order gradient, the
O(e) contribution now acts in opposition to dfoc/dZ. This behaviour is illustrated
in Fig. 5¢ for a = 60°.

3.2. The flow field. Fig. 4 shows that there is another flux-balancing require-
ment with e (&, — ®4) being fed into the core from the right-hand corner and the
same flux into the left-hand corner. The plot of streamlines in figure 25 provides
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the clue to the mechanism for this flux. If there can be an effective flow doublet
at each corner with velocity to the left where the leading-order temperatures are
relatively high and velocity to the right where they are relatively low, there will be
a net flux of thermal energy to the left. It is easily verified that a substantially hor-
izontal layer can be formed with vertical length scale O(e'/2), while ¥ = O(e°/?)
and § = O(3/?). The implication is that the series (6) and (7) must be modified so
as to include terms like £%/263 5 and €%/2¥; 5. With this scaling and with inertia
and viscous action neglected, equations (1) and (2) may be re-cast as

9, (d8\'* @ déo\ '/
(56Z2“t<d_z) ax) (0nt (3) won)=0 @

i.e. a combination of two linear diffusion equations. Complexity of boundary con-
ditions precludes a simple analytical solution to equation (12), although similarity
solutions are easily found and provide some indication of behaviour. It may be
shown that they relate to the horizontal layer which was derived in [1]. For present
purposes the interesting points are first that the temperature levels do not formally
invalidate the previous O(e) analysis for 6;. and second the stream function differs
from leading order by a factor O(g'/?), which is only 0.1 for the case shown in
Fig. 2i. A signicant departure from the leading-order prediction, e?¥s., is not
surprising.

Conclusions. The results of numerical simulation have confirmed the find-
ings of asymptotic analysis for small and for large values of Ra/ Ha?.
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