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3ISTerre, Université de Grenoble 1, CNRS, B.P. 53, 38041 Grenoble, France

Accepted 2013 May 14. Received 2013 April 22; in original form 2012 November 17

S U M M A R Y
Inner core translation, with solidification on one hemisphere and melting on the other, provides
a promising basis for understanding the hemispherical dichotomy of the inner core, as well
as the anomalous stable layer observed at the base of the outer core—the so-called F-layer—
which might be sustained by continuous melting of inner core material. In this paper, we study
in details the dynamics of inner core thermal convection when dynamically induced melting
and freezing of the inner core boundary (ICB) are taken into account.

If the inner core is unstably stratified, linear stability analysis and numerical simulations
consistently show that the translation mode dominates only if the viscosity η is large enough,
with a critical viscosity value, of order ∼3 × 1018 Pa s, depending on the ability of outer core
convection to supply or remove the latent heat of melting or solidification. If η is smaller, the
dynamic effect of melting and freezing is small. Convection takes a more classical form, with
a one-cell axisymmetric mode at the onset and chaotic plume convection at large Rayleigh
number. η being poorly known, either mode seems equally possible. We derive analytical
expressions for the rates of translation and melting for the translation mode, and a scaling
theory for high Rayleigh number plume convection. Coupling our dynamic models with a
model of inner core thermal evolution, we predict the convection mode and melting rate as
functions of inner core age, thermal conductivity, and viscosity. If the inner core is indeed in
the translation regime, the predicted melting rate is high enough, according to Alboussière
et al.’s experiments, to allow the formation of a stratified layer above the ICB. In the plume
convection regime, the melting rate, although smaller than in the translation regime, can still
be significant if η is not too small.

Thermal convection requires that a superadiabatic temperature profile is maintained in the
inner core, which depends on a competition between extraction of the inner core internal heat
by conduction and cooling at the ICB. Inner core thermal convection appears very likely with
the low thermal conductivity value proposed by Stacey & Loper, but nearly impossible with the
much higher thermal conductivity recently put forward by Sha & Cohen, de Koker et al. and
Pozzo et al. We argue however that the formation of an iron-rich layer above the ICB may have
a positive feedback on inner core convection: it implies that the inner core crystallized from an
increasingly iron-rich liquid, resulting in an unstable compositional stratification which could
drive inner core convection, perhaps even if the inner core is subadiabatic.

Key words: Numerical solutions; Instability analysis; Seismic anisotropy; Heat generation
and transport.

1 I N T RO D U C T I O N

In the classical model of convection and dynamo action in Earth’s
outer core, convection is thought to be driven by a combination
of cooling from the core–mantle boundary (CMB) and light el-

ements (O, Si, S, . . . ) and latent heat release at the inner core
boundary (ICB). Convection is expected to be vigorous, and the
core must therefore be very close to adiabatic, with only minute lat-
eral temperature variations (Stevenson 1987), except in very thin,
unstable boundary layers at the ICB and CMB. To a large extent,
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Thermal convection in Earth’s inner core 1311

seismological models are consistent with the bulk of the core being
well-mixed and adiabatic, which supports the standard model of
outer core convection. Yet seismological observations indicate the
existence of significant deviations from adiabaticity in the lower-
most ∼200 km of the outer core (Souriau & Poupinet 1991). This
layer, sometimes called F-layer for historical reasons, exhibits an
anomalously low VP gradient which is most probably indicative of
stable compositional stratification (Gubbins et al. 2008), implying
that the lowermost 200 km of the outer core are depleted in light
elements compared to the bulk of the core. This is in stark contrast
with the classical model of outer core convection sketched above:
in place of the expected thin unstable boundary layer, seismological
models argues for a very thick and stable layer. Note also that the
thickness of the layer, ∼200 km, is much larger than any diffusion
length scales, even on a Gy timescale, which means that if real this
layer must have been created, and be sustained, by a mechanism
involving advective transport.

Because light elements are partitioned preferentially into the liq-
uid during solidification, iron-rich melt can be produced through a
two-stage purification process involving solidification followed by
melting (Gubbins et al. 2008). Based on this idea, Gubbins et al.
(2008) have proposed a model for the formation of the F-layer in
which iron-rich crystals nucleate at the top of the layer and melt back
as they sink towards the ICB, thus implying a net inward transport of
iron which results in a stable stratification. In contrast, Alboussière
et al. (2010) proposed that melting occurs directly at the ICB in
response to inner core internal dynamics, in spite of the fact that the
inner core must be crystallizing on average. Assuming that the inner
core is melting in some regions while it is crystallizing in others, the
conceptual model proposed by Alboussière et al. (2010) works as
follow: melting inner core material produces a dense iron-rich liquid
which spreads at the surface of the inner core, while crystallization
produces a buoyant liquid which mixes with and carries along part
of the dense melt as it rises. The stratified layer results from a
dynamic equilibrium between production of iron-rich melt and en-
trainment and mixing associated with the release of buoyant liquid.
Analogue fluid dynamics experiments demonstrate the viability of
the mechanism, and show that a stratified layer indeed develops
if the buoyancy flux associated with the dense melt is larger (in
magnitude) than a critical fraction (�80 per cent) of the buoyancy
flux associated with the light liquid. This number is not definitive
because possibly important factors were absent in Alboussière et al.
(2010)’s experiments (Coriolis and Lorentz force, entrainment by
thermal convection from above, . . . ) but it seems likely that a high
rate of melt production will still be required.

A plausible way to melt the inner core is to sustain dynamically a
topography that will bring locally the ICB at a potential temperature
lower than that of the adjacent liquid core, which allows heat to
flow from the outer core to the inner core. The melting rate is then
limited by the ability of outer core convection to provide the latent
heat absorbed by melting, and only a significant ICB topography
can lead to a non-negligible melting rate. More recently, Gubbins
et al. (2011) and Sreenivasan & Gubbins (2011) have proposed that
localized melting of the inner core might be induced by outer core
convection, but the predicted rate of melt production is too small to
produce a stratified layer according to Alboussière et al. (2010)’s
experiments. Furthermore, it is not clear that the behaviour observed
in numerical simulations at slightly supercritical conditions would
persist at Earth’s core conditions.

Among the different models of inner core dynamics proposed
so far (Jeanloz & Wenk 1988; Yoshida et al. 1996; Karato 1999;
Buffett & Wenk 2001; Deguen et al. 2011), only thermal convec-

Figure 1. A schematic representation of the translation mode of the inner
core, with the grey shading showing the potential temperature distribution
(or equivalently the density perturbation) in a cross-section including the
translation direction (adapted from Alboussière et al. 2010).

tion (Jeanloz & Wenk 1988; Weber & Machetel 1992; Buffett 2009;
Deguen & Cardin 2011; Cottaar & Buffett 2012) is potentially able
to produce a large dynamic topography and associated melting.
Thermal convection in the inner core is possible if the growth rate
of the inner core is large enough and its thermal conductivity low
enough (Sumita et al. 1995; Buffett 2009; Deguen & Cardin 2011).
One possible mode of inner core thermal convection consists in a
global translation with solidification on one hemisphere and melt-
ing on the other (Monnereau et al. 2010; Alboussière et al. 2010;
Mizzon & Monnereau 2013). The translation rate can be such that
the rate of melt production is high enough to explain the forma-
tion of the F-layer (Alboussière et al. 2010). In addition, inner core
translation provides a promising basis for understanding the hemi-
spherical dichotomy of the inner core observed in its seismological
properties (Tanaka & Hamaguchi 1997; Niu & Wen 2001; Irving
et al. 2009; Tanaka 2012). Textural change of the iron aggregate
during the translation (Bergman et al. 2010; Monnereau et al. 2010;
Geballe et al. 2013) may explain the hemispherical structure of the
inner core. Inner core translation, by imposing a highly asymmetric
buoyancy flux at the base of the outer core, is also a promising
candidate (Aubert 2013; Davies et al. 2013) for explaining the exis-
tence of the planetary scale eccentric gyre which has been inferred
from quasi-geostrophic core flow inversions (Pais et al. 2008; Gillet
et al. 2009).

However, inner core translation induces horizontal temperature
gradients (see Fig. 1), and Alboussière et al. (2010) noted that finite
deformation associated with these density gradients is expected
to weaken the translation mode if the inner core viscosity is too
small. They estimated from an order of magnitude analysis that the
threshold would be at η ∼ 1018 Pa s. Below this threshold, thermal
convection is expected to take a more classical form, with cold
plumes falling down from the ICB and warmer upwellings (Deguen
& Cardin 2011). Published estimates of inner core viscosity range
from ∼1011 to ∼1022 Pa s (Yoshida et al. 1996; Buffett 1997; Van
Orman 2004; Koot & Dumberry 2011; Reaman et al. 2011, 2012)
implying that both convection regime seem possible.

The purpose of this paper is twofold: (i) to precise under what con-
ditions the translation mode can be active, and (ii) to estimate the rate
of melt production associated with convection, in particular when
the effect of finite viscosity becomes important. To this aim, we de-
velop a set of equations for thermal convection in the inner core with
phase change associated with a dynamically sustained topography at
the inner core boundary (Section 3). The kinetics of phase change is
described by a non-dimensional number, noted P for ‘phase change
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1312 R. Deguen, T. Alboussière and P. Cardin

number’, which is the ratio of a phase change timescale (introduced
in Section 2) to a viscous relaxation timescale. The linear stability
analysis of the set of equations (Section 4) demonstrates that the
first unstable mode of thermal convection consists in a global trans-
lation when P is small. When P is large, the first unstable mode is
the classical one cell convective mode of thermal convection in a
sphere with an impermeable boundary (Chandrasekhar 1961). An
analytical expression for the rate of translation is derived in Section
5. We then describe numerical simulation of thermal convection,
from which we derive scaling laws for the rate of melt production
(Section 6). The results of the previous sections are then applied
to the inner core, and used to predict the convection regime of the
inner core and the rate of melt production as functions of the inner
core growth rate and thermophysical parameters (Section 7).

2 P H A S E C H A N G E AT T H E I C B

Any phase change at the ICB will release or absorb latent heat,
with the rate of phase change v being determined by the Stefan
condition,

ρs Lv = −[[q]]icb, (1)

which equates the rate of latent heat release or absorption associated
with solidification or melting with the difference of heat flux [[q]]icb

across the inner core boundary. Here ρs is the density of the solid
inner core just below the ICB, and L is the latent heat of melting.
The heat conducted along the adiabatic gradient on the outer core
side is to a large extent balanced by the heat flow conducted on the
inner core side, the difference between the two making a very small
contribution to [[q]]icb. Convective heat transport in the inner core
is small as well. Convection in the liquid outer core is a much more
efficient way of providing or removing latent heat and −[[q]]icb is
dominated by the contribution of the advective heat flux �(θ , φ) on
the liquid side, which scales as

� ∼ ρl cplu
′δ�, (2)

where δ� is the difference of potential temperature between the
inner core boundary and the bulk of the core (Fig. 2), u′ is a typical
velocity scale in the outer core, and ρ l and cpl are the density and
specific heat capacity of the liquid outer core in the vicinity of the
inner core boundary (Alboussière et al. 2010).

We choose as a reference radius the intersection of the mean
outer core adiabat with the solidification temperature curve (Fig. 2),
and note h(θ , φ) the distance from this reference to the inner core
boundary. At a given location on the ICB, the difference of po-
tential temperature between the ICB and the outer core is δ�(θ ,
φ) = (mp − mad)δp(θ , φ), where δp(θ , φ) is the pressure differ-
ence between the ICB and the reference surface (see Fig. 2), mp =
dTs/dp is the Clapeyron slope, and mad = dTad/dp is the adiabatic
gradient in the outer core. Taking into account the local anomaly
	 ′ of the gravitational potential (due to the ICB topography and in-
ternal density perturbations), we have from hydrostatic equilibrium
δp = −ρ l(gicbh + 	 ′), which gives

δ� = −(m p − mad)ρl gicb

(
h + 	 ′

gicb

)
, (3)

where gicb is the average gravity level on the surface of the inner
core. The surface heq(θ , φ) = −	 ′/gicb is the equipotential surface
which on average coincides with the ICB.

Figure 2. Temperature profiles (thick black lines) in the vicinity of the inner
core boundary. Profile 1 corresponds to a crystallizing region, while profile 2
corresponds to a melting region. The thin black line is the outer core adiabat
Tad and the thin grey line is the solidification temperature profile.

If the inner core is convecting, with a velocity field u(r, θ , φ, t) =
(ur, uθ , uφ), then the total rate of phase change is

v = ṙic + ∂h

∂t
− ur , (4)

where ṙic is the mean inner core growth rate, ric(t) being the inner
core radius. Using eqs. (2)–(4), the heat balance (1) at the inner core
boundary can be written as

ur − ṙic − ∂h

∂t
∼ h + 	 ′/gicb

τφ

, (5)

where the timescale τφ is

τφ = ρs L

ρ2
l cpl

(
m p − mad

)
gicbu′ . (6)

With u′ ∼ 10−4 m s−1 and typical values for the other parameters
(Table1), the phase change timescale τφ is found to be of the order
of 103 years, which will turn out to be short compared to the dy-
namic timescale of thermal convection in the inner core (∼1 Myr
or more). Noting �ρ = ρs − ρ l, the viscous relaxation timescale
τ η = η/(�ρ gicb ric) is at most ∼0.1 Myr (for η = 1022 Pa s), small
as well compared to the inner core dynamic timescale. We therefore
adopt the hypothesis of isostasy and neglect ∂h/∂t in (5), the heat
transfer boundary condition finally adopted being written

ur − ṙic = h + 	 ′/gicb

τφ

, (7)

where the unknown proportionality constant in eq. (2) has been
absorbed in τφ , and will be treated as an additional source of un-
certainty.
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Thermal convection in Earth’s inner core 1313

Table 1. Thermophysical parameters used in this study.

Parameter Symbol Value

Inner core radiusa ricb 1221 km
Solidification temperatureb Ticb 5600 ± 500 K
Gruneisen parameterc γ 1.4 ± 0.1
Thermal expansionc α (1.1 ± 0.1) × 10−5 K−1

Heat capacityd cp 800 ± 80 J kg−1 K−1

Latent heat of meltingd, e L 600–1200 kJ kg−1

Density jump at the ICBa �ρ 600 kg m−3

Density in the inner corea ρs 12 800 kg m−3

Density in the outer core at the ICBa ρl 12 200 kg m−3

Gravity at the ICBa gicb 4.4 m s−2

Radial gravity gradienta g′ 3.6 × 10−6 s−2

Thermal conductivityf k 36–150 W m−1 K−1

Isentropic bulk modulusa KS 1400 GPa
Clapeyron/adiabat slopes ratiog dTs/dTad 1.65 ± 0.11
aFrom PREM (Dziewonski & Anderson 1981).
bAlfè et al. (2002).
cVočadlo (2007).
dPoirier (1994).
eAnderson & Duba (1997).
fStacey & Anderson (2001), Stacey & Davis (2008), Sha & Cohen (2011),
de Koker et al. (2012) and Pozzo et al. (2012).
gDeguen & Cardin (2011).

3 G OV E R N I N G E Q UAT I O N S

3.1 Equations within the inner core

The starting point for the dynamics of thermal convection in the
inner core is expressed as general entropy, momentum, continuity
and gravitational equations:

ρT
Ds

Dt
= ∇ · (k∇T ) + τ : ε, (8)

0 = −∇ p − ρ∇	 + ∇ · τ, (9)

0 = ∂ρ

∂t
+ ∇ · (ρu) , (10)

∇2	 = 4πGρ, (11)

where ρ, T, s, k, τ , ε, p, 	 and u denote density, temperature,
specific entropy, thermal conductivity, shear-stress tensor, rate of
deformation tensor, pressure, gravitational potential and velocity
fields, respectively and where G is the universal gravitational con-
stant. In eq. (9), inertia has been neglected and the gravity field g
has been written using the gravitational potential g = −∇	.

These equations are then linearized around a state of well-mixed
uniform but time dependent entropy, s, hydrostatic pressure p, den-
sity ρ, gravity g and gravitational potential 	 depending only on
radius and time, such that ∂ p/∂r = −ρ g, with g satisfying the grav-
itational equation ∇2	 = 4πGρ and g = −∇	. Linearized vari-
ables are introduced such that s = s + s ′, ρ = ρ + ρ ′, T = T + �,
p = p + p′, 	 = 	 + 	 ′ and g = g + g′. T (r ) corresponds to an
adiabatic profile, and � = T − T (r ) is a potential temperature. The
linearized governing equations take the form

ρ T
Ds ′

Dt
= ∇ · (k∇�) + τ : ε − ρ T

∂s

∂t
+ ∇ · (

k∇T
)
, (12)

0 = −∇ p′ − ρ∇	 ′ − ρ ′∇	 + ∇ · τ, (13)

∂ρ ′

∂t
= −∂ρ

∂t
− ∇ · (ρu) , (14)

∇2	 ′ = 4πGρ ′. (15)

Using Maxwell relations, we obtain a linearized expression of ρ ′ in
terms of s′ and p′

ρ ′ =
(

∂ρ

∂s

)
P

s ′ +
(

∂ρ

∂ P

)
s

p′ = −α ρ T

cp
s ′ − 1

ρ g

∂ρ

∂r
p′, (16)

where α and cp are the volume expansion coefficient and specific
heat capacity corresponding to the reference adiabatic state. With
this expression for density fluctuations, eq. (13) can be written as

0 = −ρ∇
(

p′

ρ
+ 	 ′

)
+ α ρ g T

cp
s ′ er + ∇ · τ, (17)

where er is the unit radial vector. The equation of entropy fluctua-
tions (12) can be rewritten as

ρ
D T s ′

Dt
= −αgT

cp
s ′ur + ∇ · (k∇�) + τ : ε − ρ T

∂s

∂t

+ ∇ · (
k∇T

)
. (18)

Then, the anelastic liquid approximation (Schubert et al. 2001;
Anufriev et al. 2005) can be made, which consists in replacing the
general linearized expression for entropy,

s ′ = cp

T
� − α

ρ
p′, (19)

by its first term only,

s ′ � cp

T
�, (20)

under the condition αT Di � 1 (Anufriev et al. 2005), where
Di = α gicb ric/cp is the dimensionless dissipation number, which
compares the inner core radius ric with the natural length scale for
adiabatic temperature variations, cp/(α gicb). In the inner core, Di
� 0.07 × (ric/1221 km)2 and α T � 5 × 10−2, so that the anelastic
liquid approximation can be made safely. An alternative analysis
(Alboussière & Ricard 2013) indicates that cp/cv − 1 � 1, where
cv is the specific heat at constant volume, is the relevant criterion
for the anelastic liquid approximation. Since cp/cv − 1 = γαT and
the Gruneisen parameter γ is of order unity, this criterion is well
satisfied. Under the liquid anelastic approximation, the momentum
eq. (17) and entropy eq. (18) can then be written as

0 = −ρ ∇
(

p′

ρ
+ 	 ′

)
+ α ρ g � er + ∇ · τ, (21)

ρ
D

(
cp�

)
Dt

= −αρg�ur + ∇ · (k∇�) + τ : ε

− ρ cp
∂T

∂t
+ ∇ · (

k∇T
)
, (22)

where terms involving ∂cp/∂t and ∂ρ/∂t have been neglected in
(22).

The importance of self-gravitation is best estimated by analyzing
its effect in terms of vorticity production. We form the vorticity
equation by taking the curl of eq. (13), which gives

0 = ∇ρ̄ × ∇	 ′ + ∇ρ ′ × ḡ + ∇ × (∇ · τ ) , (23)

= dρ̄

dr
er × ∇h	

′ − ḡ ∇hρ
′ × er + ∇ × (∇ · τ ) , (24)
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1314 R. Deguen, T. Alboussière and P. Cardin

where ∇h denotes the horizontal part of the gradient. The first term
on the right-hand side originates from the interaction between the
mean radial density gradient and the horizontal gradient in 	 ′,
and is to be compared with the second term, which results from the
interaction between horizontal density gradients and the mean radial
gravity field. From the gravitational equation, ∇2	 ′ = 4πGρ ′, we
find that 	 ′ ∼ 4πGρ ′λ2, where λ is the typical length scale of the
temperature and gravitational potential perturbations. Using this
estimate for 	 ′ the ratio of the first two terms in eq. (24) is

|∇ρ̄ × ∇	 ′|
|∇ρ ′ × ḡ| ∼ dρ̄

dr

	 ′

ḡρ ′ ∼ dρ̄

dr

4πGλ2

ḡ
. (25)

Noting that dρ̄/dr = −(dρ̄/dp)ρ̄ ḡ = −ρ̄2 ḡ/KS and that ḡicb =
(4π/3)Gρ̄ ric, we obtain

|∇ρ̄ × ∇	 ′|
|∇ρ ′ × ḡ| ∼ 3

ρ̄ ḡicbric

Ks

λ2

r 2
ic

∼ 3
Di

γ

λ2

r 2
ic

, (26)

where the Grüneisen parameter γ � 1.4 is equal to ᾱKS/(c̄pρ̄).
Since Di/γ � 0.05, the vorticity source arising from self-

gravitation effects might be up to ∼15 per cent of the total vorticity
production if the length scale of convection is similar to the inner
core radius, but has a much smaller contribution when λ/ric is small.
Although the approximation might not be very good in cases where
λ is comparable to ric, we will ignore here the radial variations of
ρ̄, without which the force arising from self-gravitation is potential,
and is therefore balanced by the pressure field. The density in the
inner core is assumed to be uniform: ρ = ρs . To be consistent, g is
assumed to be a linear function of radius, g = gicbr/ric. Density in
the liquid outer core is assumed to be uniform as well: ρl = ρl . This
is not correct for the outer core as a whole, but this is an excellent
approximation within the depth range of the expected topography
of the inner core boundary, so that ρ l is the density of the outer core
close to the inner core for our purpose.

The rheology is assumed to be Newtonian, with uniform effec-
tive viscosity η. Furthermore, viscous and adiabatic heating can be
neglected since the dissipation number is small (Tritton 1988). We
further assume that the thermal conductivity and thermal expansion
are uniform. With κ = k/(ρs cp) the thermal diffusivity, our final
set of equation is

∇ · u = 0, (27)

0 = −∇ (p′ + ρs	
′) + α ρs gicb

ric
� r er + η∇2u, (28)

D�

Dt
= κ∇2 � + S(t), (29)

where the effective heating rate S(t) is defined as the difference
between secular cooling and heat conducted down the adiabat:

S(t) = κ∇2T − ∂T

∂t
. (30)

S can be shown to depend mainly on time, not radius. When this
term is positive (strong secular cooling and/or weak conduction),
the inner core is superadiabatic and natural convection may develop.

3.2 Expression of boundary conditions

Despite the fact that we have stressed the necessity for a non uniform
temperature on the inner core boundary when phase changes occur
(in Section 2), we shall now argue that the boundary condition

for thermal convection within the inner core is well approximated
by � = 0 at r = ric. Indeed, the lateral variations of potential
temperature associated with the ICB dynamic topography will be
found to be of order 10−2 K or smaller (corresponding to a dynamic
topography �100 m), while potential temperature variations within
the inner core will be found to be of order 1 K or larger. We thus
assume

�(r = ric) = 0. (31)

The mechanical boundary conditions are tangential stress-free
conditions (the fluid outer core cannot sustain tangential stress) and
continuity of the normal stress at the inner core boundary. With the
assumption of small topography, the normal vector is very close to
the radial unit vector and the stress-free tangential conditions can
be written as

τrθ = η

[
r

∂

∂r

(uθ

r

)
+ 1

r

∂ur

∂θ

]
= 0, (32)

τrφ = η

[
r

∂

∂r

(uφ

r

)
+ 1

r sin θ

∂ur

∂φ

]
= 0, (33)

where the spherical coordinates (r, θ , φ) are used, while the conti-
nuity of the normal stress gives[[

2η
∂ur

∂r
− p

]]
icb

= 0, (34)

where [[. . .]]icb denotes the difference of a quantity across the ICB.
Using again the decomposition p = p + p′, this becomes

ρl gicbh − p′+ − 2η
∂ur

∂r
− ρs gicbh + p′− = 0, (35)

where the subscripts + and − denote the liquid and solid sides
respectively and where overlapping adiabatic hydrostatic states have
been used for the liquid and solid regions. This condition can also
be written as

− �ρ gicb h + ρl	
′ − 2η

∂ur

∂r
+ p′− = 0, (36)

because integrating the hydrostatic equation in the liquid outer core
leads to p + ρ l	 constant, which applies also to perturbation quan-
tities.

Finally, the radial velocity ur at the ICB is related to the topogra-
phy h and gravitational potential perturbation 	 ′ through the heat
balance at the ICB (eq. 7).

3.3 Set of equations

Introducing two new variables,

ĥ = h + 	 ′

gicb
, (37)

p̂ = p′− + ρs	
′, (38)

one can write the momentum and entropy equation, together with
the boundary conditions relevant when phase change is allowed
between solid inner core and liquid outer core:

∇ · u = 0, (39)

0 = −∇ p̂ + α ρs gicb

ric
� r er + η∇2u, (40)
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Thermal convection in Earth’s inner core 1315

D�

Dt
= κ∇2� + S(t), (41)

with boundary conditions at r = ric from (31), (32), (33), (36) and
(7):

� = 0, (42)

τrθ = η

[
r

∂

∂r

(uθ

r

)
+ 1

r

∂ur

∂θ

]
= 0, (43)

τrφ = η

[
r

∂

∂r

(uφ

r

)
+ 1

r sin θ

∂ur

∂φ

]
= 0, (44)

− �ρ gicb ĥ − 2η
∂ur

∂r
+ p̂ = 0, (45)

ur − ṙic = ĥ

τφ

. (46)

It can be seen from (45) and (46), that ĥ is not necessary for the
resolution of the equations, although it can be recovered once the
problem is solved, and can be eliminated between these two equa-
tions, leaving only one boundary condition:

− �ρgicbτφ(ur − ṙic) − 2η
∂ur

∂r
+ p̂ = 0, (47)

Incidently, it can also be seen that there is no need to explicitly
solve the gravitational eq. (15), since 	 ′ has been absorbed in the
modified pressure (38).

The governing equations and boundary conditions are now made
dimensionless using the age of the inner core τ ic, its time depen-
dent radius ric(t), κ/ric(t), ηκ/r 2

ic(t) and S(t)r 2
ic(t)/(6κ) as scales

for time, length, velocity, pressure and potential temperature, re-
spectively. Using the same symbols for dimensionless quantities,
dimensionless equations can be written as

∇ · u = 0, (48)

0 = −∇ p̂ + Ra(t) � r + ∇2u, (49)

ξ (t)
∂�

∂t
= ∇2� − [u − Pe(t)] · ∇�

+ 6 −
[
ξ (t)

Ṡ(t)τic

S(t)
+ 2 Pe(t)

]
�, (50)

where r = r er and Ṡ(t) = dS(t)/dt . The last terms in (50) are due
to dependency of the temperature scale on time, when used to make
the equations dimensionless. Three dimensionless parameters are
needed

ξ (t) = r 2
ic(t)

κτic
, (51)

Pe(t) = ric(t)ṙic(t)

κ
, (52)

Ra(t) = αρs gicb(t)S(t)r 5
ic(t)

6κ2η
. (53)

The dimensionless boundary conditions, at r = 1, can be written

� = 0, (54)

τrθ = r
∂

∂r

(uθ

r

)
+ 1

r

∂ur

∂θ
= 0, (55)

τrφ = r
∂

∂r

(uφ

r

)
+ 1

r sin θ

∂ur

∂φ
= 0, (56)

− P(t)(ur − ṙic) − 2
∂ur

∂r
+ p̂ = 0, (57)

where we have introduced the ‘phase change number’ P character-
izing the resistance to phase change:

P(t) = �ρ gicb(t) ric(t) τφ(t)

η
. (58)

P is the ratio between the phase change timescale τφ and the viscous
relaxation timescale τ η = η/(�ρ gicb ric) (equivalent to postglacial
rebound timescale). P = 0 corresponds to instantaneous melting
or freezing, while P → ∞ corresponds to infinitely slow melting
or freezing. In the limit of infinite P , the boundary condition (57)
reduces to the condition ur = 0, which corresponds to impermeable
conditions. In contrast, when P → 0, eq. (57) implies that the nor-
mal stress tends towards 0 at the boundary, which corresponds to
fully permeable boundary conditions. The general case of finite P
gives boundary conditions for which the rate of phase change at the
boundary (equal to ur) is proportional to the normal stress induced
by convection within the spherical shell.

A steady state version of the set of eqs (48)–(58) is found by using
r 2

ic/κ as a timescale instead of τ ic, and keeping ric and S constant.
All the equation remain unchanged except the heat equation which
now writes

∂�

∂t
= ∇2� − u · ∇� + 6. (59)

This will be used in Section 6 where numerical simulations with
constant inner core radius and thermal forcing will be used to derive
scaling laws.

With the assumptions made so far, the velocity field is known to
be purely poloidal (Ribe 2007), and we introduce the poloidal scalar
P defined such that

u = ∇ × ∇ × (Pr) . (60)

Taking the curl of the momentum eq. (49) gives

Ra(t)L2� = (∇2
)2

L2 P, (61)

where the angular momentum operator L2 is

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (62)

Horizontal integration of the momentum equation (see Forte &
Peltier 1987; Ribe 2007, where this is done component-wise in
spherical harmonics) shows that, on r = 1

− p̂ + ∂

∂r

(
r∇2 P

) = C st. (63)

This expression can be used to eliminate p̂ in the boundary condition
(57). Noting that

ur = 1

r
L2 P, (64)
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1316 R. Deguen, T. Alboussière and P. Cardin

continuity of the normal stress at the ICB (eq. 57) gives the following
boundary condition at r = 1:

∂

∂r

(
r∇2 P − 2

r
L2 P

)
− P(t)

(
1

r
L2 P − ṙic

)
= C st, (65)

while the stress-free conditions (55) and (56) take the form

r
∂

∂r

[
1

r 2

∂

∂r
(r P)

]
+ 1

r 2
L2 P = C st, (66)

which can be rewritten as

∂2 P

∂r 2
+ (

L2 − 2
) P

r 2
= C st. (67)

At this stage, there are two unknown scalar field variables, � and
P. They are expanded as

� = tm
l (r, t) Y m

l , (68)

P = pm
l (r, t) Y m

l , l ≥ 1, (69)

where Y m
l (θ, φ), for l ≥ 0, m ∈ [−l; l] are surface spherical har-

monics, which satisfy L2Y m
l = l(l + 1)Y m

l . The momentum eq. (61)
takes the form

Ra(t)tm
l = D2

l pm
l , (70)

where

Dl = d2

dr 2
+ 2

r

d

dr
− l(l + 1)

r 2
. (71)

The stress-free boundary condition (67) can be written as

d2 pm
l

dr 2
+ [l(l + 1) − 2]

pm
l

r 2
= 0, l ≥ 1, (72)

and the boundary condition (65), derived from normal stress bal-
ance, as

d

dr

[
rDl pm

l − 2l(l + 1)
pm

l

r

]
= l(l + 1)P(t)

pm
l

r
, l ≥ 1. (73)

With (72), the equation above can also be written:

r 2 d3 pm
l

dr 3
− 3l(l + 1)

dpm
l

dr
=

[
l(l + 1)P(t) − 6

r

]
pm

l , l ≥ 1. (74)

The thermal equation is also written in spherical harmonic expan-
sion but cannot be solved independently for each degree and order
due to the non-linearity of the advection term, which is evaluated
in the physical space and expanded back in spherical harmonics.

4 L I N E A R S TA B I L I T Y A NA LY S I S

We investigate here the linear stability of the system of equations
describing thermal convection in the inner core with phase change
at the ICB, as derived in Section 3. The calculation given here is a
generalization of the linear stability analysis of thermal convection
in an internally heated sphere given by Chandrasekhar (1961). The
case considered by Chandrasekhar (1961), where a non-deformable,
impermeable outer boundary is assumed, corresponds to the limit
P → ∞ of the problem considered here.

We assume constant Ra and P (and ξ = 1, Pe = Ṡ = 0), thus
ignoring that the base diffusive solution itself is time-dependent.
This assumption is essentially correct when the growth rate of the
fastest unstable disturbance is much larger than the growth rate of

the radius of the inner core. The basic state of the problem is then
given by

�̄ = 1 − r 2, (75)

ū = 0, (76)

which is the steady conductive solution of the system of equa-
tion developed in Section 3. We investigate the stability of this
conductive state against infinitesimal perturbations of the temper-
ature and velocity fields. The temperature field is written as the
sum of the conductive temperature profile given by eq. (75) and
infinitesimal disturbances �̃, �(r, θ, φ, t) = �̄(r ) + �̃(r, θ, φ, t).
The velocity field perturbation is noted ũ(r, θ, φ, t), and has an as-
sociated poloidal scalar P̃(r, θ, φ, t). We expand the temperature
and poloidal disturbances in spherical harmonics,

�̃ =
∞∑

l=0

l∑
m=−l

t̃m
l (r )Y m

l (θ, φ) eσl t , (77)

P̃ =
∞∑

l=1

l∑
m=−l

p̃m
l (r )Y m

l (θ, φ) eσl t , (78)

where σ l is the growth rate of the degree l perturbations (note that
since m does not appear in the system of equations, the growth rate
is function of l only, not m).

The only non-linear term in the system of equations is the advec-
tion of heat u · ∇� in eq. (59), which is linearized as

ũr
∂�̄

∂r
= −2r ũr = −2L2 P̃ . (79)

The resulting linearized transport equation for the potential temper-
ature disturbance is(

∂

∂t
− ∇2

)
�̃ = 2L2 P̃. (80)

Using the decompositions (77) and (78), the linearized system of
equations is then, for l ≥ 1,

Ra t̃m
l = D2

l p̃m
l , (81)

(σl − Dl ) t̃m
l = 2l(l + 1) p̃m

l , (82)

with the boundary conditions given by eqs (72) and (73), with
t̃m
l (r = 1) = 0.

Developing the t̃m
l in series of spherical Bessel functions and

solving for p̃m
l , we obtain an infinite set of linear equations in

perturbation quantities, which admits a non trivial solution only if
its determinant is equal to zero (see Appendix A for the details of
the calculation). This provides the following dispersion equation,∣∣∣∣∣
∣∣∣∣∣[ql

3(P)α2
l,i + ql

4(P)
] [

1 − 4l + 6

α2
l, j

]
− [

ql
1(P)α2

l,i + ql
2(P)

]

+
(

σlα
4
l,i + α6

l,i

2l(l + 1)Ra
− 1

)
1

2
δi j

∣∣∣∣∣
∣∣∣∣∣ = 0, with i, j = 1, 2, . . . (83)

where ||· · ·|| denotes the determinant. Here αl, i denotes the ith zero
of the spherical Bessel function of degree l. The functions ql

1(P)
to ql

4(P) are given in Appendix A by eqs (A24), (A25), (A27) and
(A28).

Solving eq. (83) for a given value of l and σ l = 0 gives the
critical value Rac of the Rayleigh number for instability of the
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Thermal convection in Earth’s inner core 1317

Figure 3. Stability diagram for convection in a sphere with phase change at
its outer boundary. The neutral stability curve (l = 1) obtained by solving eq.
(84) with σ 1 = 0 is shown by the thick black line. The dashed line shows the
approximate stability curve given by eq. (86). The neutral stability curves of
higher modes (l = 2, 3, 4) obtained by solving eq. (83) with σ l = 0 are shown
by the annotated thin black lines. The neutral stability curves for l ≥ 5 are
not shown to avoid overcrowding the figure. The thick grey curve annotated
‘Translation’ is the neutral stability curve of the translation mode, given by
eq. (94). Streamlines of the first unstable mode at points A (P = 0.1), B
(P = 17) and C (P = 104) are shown in the upper figure.

degree l mode, as a function of P . The resulting marginal stability
curves for l = 1–4 are shown in Fig. 3. The first unstable mode is
always the l = 1 mode, for which eq. (83) reduces to∣∣∣∣∣
∣∣∣∣∣
(

Ra − α6
1,i + σ1α

4
1,i

4

)
δi j + α2

1,i

Ra

P + 20

3 α2
1, j

Ra

∣∣∣∣∣
∣∣∣∣∣ = 0. (84)

A useful first approximation is obtained by keeping only the i =
j = 1 terms, thus setting the (1, 1) component of the matrix to zero.
This gives a simple analytical form for the growth rate,

σ1 =
(

4

α4
1,1

+ 80

3 α6
1,1

)
Ra + 4

α2
1,1

Ra

P − α2
1,1 (85)

and for the critical Rayleigh number,

Rac = α6
1,1

4

[
1 + α2

1,1

P + 20

3

1

α2
1,1

]−1

, (86)

with α1, 1 � 4.4934. When P � 1 or P � 1, Rac and σ l have the
following limits:

Rac −→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α8
1,1

4α2
1,1 + 80/3

� 1547 when P → ∞,

α4
1,1

4
P � 101.9P when P → 0,

(87)

σ1 −→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
4

α4
1,1

+ 80

3 α6
1,1

)
Ra − α2

1,1 when P → ∞,

4

α2
1,1

Ra

P − α2
1,1 when P → 0,

(88)

Higher order approximations can be obtained by retaining more
terms in the determinant. For P � 1, the critical value of Ra con-
verges towards

Rac = 1545.6, (89)

in agreement with Chandrasekhar (1961)’s result (the value given
by Chandrasekhar (1961) is twice the value given here, because
of different definitions of Ra). When P � 1, the relevant non-
dimensional parameter is the ratio Ra/P , which is independent of
the viscosity and of the thermal diffusivity. An exact value of the
critical value of Ra/P will be given below (eq. 94).

The pattern of the first unstable mode can be calculated by solving
the system (A39) given in Appendix A for given P and Ra. The
first unstable modes calculated in this way for points A, B and C
(P = 0.1, 17 and 104) in the stability diagram are shown in Fig. 3.
As shown in Appendix A, the l = 1, m ∈ [− 1, 0, 1] components of
the poloidal scalar can be written as

p̃m
1 =

∞∑
i=1

A1,i

[
j1(α1,i r )

α1,i
+ j2(α1,i )

3
(r − r 3) + j2(α1,i )α2

1,i

2P r

]
,

(90)

where the coefficients A1, i are found by solving the system of eqs
(A39). Here j1 and j2 denote the spherical Bessel functions of the
first kind of order 1 and 2, respectively. From eq. (90), it can be seen
that

p̃m
1 →

( ∞∑
i=1

A1,i j2(α1,i )α
2
1,i

)
2

P r when P → 0, (91)

which corresponds to a translation (it can be verified that a l =
1 flow with pm

1 ∝ r corresponds to a flow with uniform velocity).
This is the dominant mode when P is small, as illustrated in Fig. 3
(point A, P = 0.1). There is no deformation associated with this
mode.

At high P , the term in 1/P in eq. (90) becomes negligible, and
the first unstable mode is identical to the classical single cell degree
one mode of thermal convection with shear-free boundary and no
phase change (Chandrasekhar 1961), as illustrated in Fig. 3 (point
C, P = 104). There is no melting or solidification associated with
this mode, which is apparent from the fact that the streamlines of
the flow are closed. At intermediate values of P , the first unstable
mode is a linear combination of the high-P convection mode and
of the small-P translation mode.

Allowing only for the translation (i.e. keeping only the p1,i ∝ r/P
terms), the dispersion relation (84) reduces to∣∣∣∣∣
∣∣∣∣∣δi j − 4

α4
1,i

Ra

P

∣∣∣∣∣
∣∣∣∣∣ = 0. (92)

Using Sylvester’s determinant theorem, we find that∣∣∣∣∣
∣∣∣∣∣δi j − 4

α4
1,i

Ra

P

∣∣∣∣∣
∣∣∣∣∣ = 1 − 4

Ra

P

∞∑
i=1

1

α4
1,i

, (93)

which allows to write the critical value of Ra/P as(
Ra

P

)
c

= 1

4

( ∞∑
i=1

1

α4
1,i

)−1

= 175

2
= 87.5, (94)
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1318 R. Deguen, T. Alboussière and P. Cardin

where we have used Sneddon (1960)’s result that
∑∞

i=1 α−4
1,i =

1/350. The critical value 175/2 is exact, and is to be preferred
to the approximate value (101.9) obtained in eq. (87). Eq. (94) gives
the marginal stability curve shown in grey in Fig. 3. Although the
translation mode can be unstable at all value of P provided that
Ra is large enough, it is apparent in Fig. 3 that the one cell con-
vection mode is the first unstable mode whenever P is larger than
�Rac/(Ra/P)c � 17 (point B in Fig. 3).

Finally, it can be seen in Fig. 3 that the critical Rayleigh number
Ral

c for higher order modes (l > 1) is also lowered when P � 17.
However, the decrease in Ral

c is not as drastic as it is for the l =
1 mode because, whatever the value of P , viscous dissipation al-
ways limits the growth of these modes. The effect of P on Ral

c

becomes increasingly small as l increases. This suggests that allow-
ing for phase change at the ICB would generally enhance large scale
motions at the expense of smaller scale motions.

5 A NA LY T I C A L S O LU T I O N S
F O R S M A L L P
We now search for a finite amplitude solution of inner core convec-
tion at small P . In the limit of infinite viscosity (P → 0), the only
possible motions of the inner core are rotation, which we do not
consider here, and translation. Guided by the results of the linear
stability analysis, we search for a solution in the form of a transla-
tion. Alboussière et al. (2010) found a solution for the velocity of
inner core translation from a global force balance on the inner core,
under the assumption that the inner core is rigid. One of the goal of
this section is to verify that the system of equations developed in
Section 3 indeed leads to the same solution when P → 0.

If the viscosity is taken as infinite and P is formally put to
zero, searching for a pure translation solution and ignoring any
deformation in the inner core leads to an undetermined system.
Translation is an exact solution of the momentum equation, but the
translation rate is left undetermined, because all the terms in the
boundary conditions (55), (56) and (57) (zero tangential stress and
continuity of the normal stress) vanish. This of course does not mean
that the stress magnitude vanishes, but rather that the rheological
relationship between stress and strain via the viscosity becomes
meaningless if the viscosity is assumed to be infinite. The ICB
topography associated with the translation is sustained by the non-
hydrostatic stress field which, even if η → ∞, must remain finite.
One way to calculate the stress field is to evaluate the flow induced
by the lateral temperature variations associated with the translation,
for small but non-zero P , and then take the limit P → 0. If only the
‘rigid inner core’ limit is wanted, it suffices to calculate the flow at
O(P). The effect of finite viscosity on the translation mode can be
estimated by calculating the velocity field at a higher order in P .

5.1 Translation velocity at zeroth order in P
Noting V0 the translation velocity at zeroth order in P , the poloidal
scalar takes the form

p0
1 = V0

2
r, (95)

with Y 0
1 = cos θ , in a cylindrical coordinate system of axis parallel

to the velocity translation. If V0 is large enough, the temperature
eq. (50) has a fast convective solution whereby u · ∇� balances
the constant 6. Imposing � = 0 at the ICB on the crystallizing

Figure 4. Temperature field (left, red = hot, blue = cold) and vorticity field
atO(P) (right, blue = negative, red = positive) in a meridional cross-section
(the direction of translation is arbitrary).

hemisphere, and ignoring a thin boundary layer below the ICB on
the melting hemisphere, the temperature field, shown in Fig. 4, is

� = 6

V0

(
r cos θ +

√
1 − r 2 sin2 θ

)
(96)

(Alboussière et al. 2010). This results in a uniform temperature
gradient in the translation direction, with the l = 1, m = 0 component
of the temperature field being

t0
1 = 6

V0
r. (97)

This temperature field induces a secondary l = 1, m = 0 flow which
must vanish when P → 0. We therefore write p0

1 as

p0
1 = V0

2

[
r + p̂0

1,1P + O(P2)
]
. (98)

Inserting this form for p0
1 and the temperature degree one compo-

nent t0
1 into the momentum eq. (70) gives

12
Ra

P
1

V 2
0

r = D2
1 p̂0

1,1, (99)

from which we can already infer that

V0 ∼
√

Ra

P . (100)

Eq. (99) has a general solution of the form

p̂0
1,1 = Ar + Br 3 + Cr 5, (101)

where A, B and C are constants to be determined.
From the momentum eq. (99), we obtain

C = 3

70

Ra

P
1

V 2
0

. (102)

The stress-free boundary condition (72) for a degree one compo-
nent,

d2 p0
1

dr 2

∣∣∣∣
r=1

= 0, (103)

leads to

B = −10

3
C = −1

7

Ra

P
1

V 2
0

. (104)

Finally, the condition of continuity of the normal stress (74) leads
to

(−3B + 18C − 1)P − 2P2(A + B + C) + O(P2) = 0, (105)
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Thermal convection in Earth’s inner core 1319

which implies that

− 3B + 18C − 1 = 0. (106)

Note that the constant A is left undetermined: considerations of the
velocity field at order P2 and of the temperature field at order P
are required to determine it. With B and C given by eqs (104) and
(102), eq. (106) gives the translation velocity V0 as

V0 =
√

6

5

Ra

P . (107)

In dimensional unit, the translation rate is given by

κ

ric

√
6

5

Ra

P =
(

1

5

ρs

�ρ

αS

τφ

)1/2

ric (108)

which, with τφ given by eq. (6), is exactly the same solution as that
found in Alboussière et al. (2010) from an analysis of the global
force balance on the inner core. As expected, the translation rate
is independent of the inner core viscosity η and of the thermal
diffusivity, and is an increasing function of the heating rate S and a
decreasing function of the phase change timescale.

The potential temperature difference across the inner core is
12/V0 in non-dimensional units, and

12
Sr 2

ic

6κ

(
5

6

P
Ra

)1/2

=
(

20
�ρ τφ S

ρs α

)1/2

(109)

in dimensional units.

5.2 Translation velocity at O(P)

The translation velocity at O(P) can be obtained by calculating the
temperature field at O(P) and the velocity field at O(P2), which
allows to determine the constant A in the expression of the poloidal
scalar at O(P) (eq. 101). The procedure, detailed in Appendix B, is
complicated by the non-linearity of the heat equation: coupling of
higher order harmonics component of the temperature and velocity
fields contribute to the l = 1 component of the temperature field.
Taking into account the effect of the non-linear coupling of the l =
2 components of the temperature and velocity fields, we obtain

V =
√

6

5

Ra

P
[
1 − 0.0216P + O(P2)

]
. (110)

which suggests that the effect of deformation becomes important
when P is a significant fraction of 1/0.0216 � 46, in agreement
with the prediction of the linear stability analysis.

The temperature field and the φ-component of the vorticity field
at O(P), as calculated in Appendix B, are shown in figure (4).

5.3 The effect of the boundary layer

Let us finally discuss the influence of the thermal boundary layer
that must develop in the solid inner core near the melting side
when a convective translation exists. From the thermal eq. (50),
and with the boundary condition (54), a thermal boundary layer
of thickness V −1 results from the balance between convective and
diffusive terms, so that the degree one temperature component (97)
may be approximated by

t0
1 � 6

V

[
r − eV (r−1)

]
. (111)

We now note that

D1

[
eV (r−1)

] =
(

1 + 2

V r
− 2

V 2r 2

)
V 2eV (r−1), (112)

so that to a good approximation,

D1

[
eV (r−1)

] � V 2eV (r−1) and D2
1

(
eV r

) � V 4eV (r−1) (113)

when V � 1. Under this assumption, the resulting general solution
for the velocity poloidal component (101) becomes

p0
1 � V0

2

{
r +

[
Ar + Br 3 + Cr 5 − 10

V 2
0

V 6
eV (r−1)

]
P + O(P2)

}
.

(114)

Following the same path as above, in the limit of infinite viscosity,
the translation velocity V is found to be

V � V0

(
1 − 5

V0
− 5

V 2
0

+ 30

V 3
0

− 30

V 4
0

)
(115)

when the effect of the boundary layer is taken into account.

5.4 Melt production

We define the rate of melt production Ṁ as the volume of melt
produced at the surface of the inner core by unit area and unit of
time, averaged over the ICB. In the case of a pure translation, the
volume of melt produced by unit of time is simply given by the trans-
lation velocity V multiplied by the cross-section πr 2

ic of the inner
core, so Ṁ is given by

Ṁ = V × πr 2
ic

4πr 2
ic

= V

4
. (116)

For a more general inner core flow, Ṁ can be calculated from the
radial velocity at the ICB as

Ṁ = 1

2
|ur (ric) − ṙic| = 1

8π

∫
θ,φ

|ur (ric) − ṙic| sin θ dθdφ, (117)

where the overbar . . . denotes the average over a spherical surface.
In the case of a l = 1, m = 0 flow, this reduces to

Ṁ = 1

4π

∫
θ,φ

|p0
1 cos θ | sin θ dθdφ = 1

2
|p0

1 | (118)

and gives Ṁ = V/4 for a pure translation, which has p0
1 = V/2.

6 N U M E R I C A L R E S U LT S
A N D S C A L I N G L AW S

6.1 Method

The code is an extension of the one used in Deguen & Cardin (2011),
with the boundary condition derived in Section 3 now implemented.
The system of equations derived in Section 3 is solved in 3-D, using
a spherical harmonic expansion for the horizontal dependence and
a finite difference scheme in the radial direction. The radial grid
can be refined below the ICB if needed. The non-linear part of
the advection term in the temperature equation is evaluated in the
physical space at each time step. A semi-implicit Crank- Nickolson
scheme is implemented for the time evolution of the linear terms and
an Adams–Bashforth procedure is used for the non-linear advection
term in the heat equation. The temperature field is initialized with
a random noise covering the full spectrum. We use up to 256 radial
points and 128 spherical harmonics degree. Care has been taken
that the ICB thermal boundary layer, which can be very thin in the
translation mode, is always well resolved.

The code has the ability to take into account the growth of the
inner core and the evolution of the internal heating rate S(t), which is
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1320 R. Deguen, T. Alboussière and P. Cardin

calculated from the thermal evolution of the outer core (Deguen &
Cardin 2011). In this section, we will first focus on simulations with
a constant inner core radius and steady thermal forcing (internal
heating rate S constant). Simulations with an evolving inner core
will be presented in Section 7.

Each numerical simulation was run for at least 10 overturn times
ric/Urms, where Urms is the rms velocity in the inner core.

6.2 Overview

As already suggested by the linear stability analysis (Section 4) and
the small P analytical model (Section 5), the translation mode is
expected to be dominant when P is small. This is confirmed by
our numerical simulations. As an example, Fig. 5 shows outputs of
simulations with the same Rayleigh number value of Ra = 107 and
P = 1, 30, 102 and 103. Snapshots of cross-sections of the potential
temperature field and vorticity (its component perpendicular to the
cross-section plane) are shown in the first and second columns, and
maps of radial velocity ur(ric) at the ICB are shown in the third
column. ur(ric) is equal to the local phase change rate, with positive

values corresponding to melting and negative values corresponding
to solidification.

At the lowest P (P = 1), the translation mode is clearly dom-
inant, with the pattern of temperature and vorticity similar to the
predictions of the analytical models of Section 5 shown in Fig. 4. In
contrast, the convection regime at the largest P (P = 103) appears
to be qualitatively similar to the regime observed with impermeable
boundary conditions (Weber & Machetel 1992; Deguen & Cardin
2011), which corresponds to the limit P → ∞. At the Rayleigh
number considered here, convection is chaotic and takes the form
of cold plumes originating from a thin thermal boundary layer below
the ICB, with a passive upward return flow. At intermediate values
of P (P = 30 and 102), phase change has still a significant effect
on the pattern of the flow, with large scale components of the flow
enhanced by phase change at the ICB, in qualitative agreement with
the prediction of the linear stability analysis. Note that at P = 102,
there is still a clear hemispherical pattern, with plumes originating
preferentially from one hemisphere.

More quantitative informations on the structure of convection can
be found by estimating a characteristic length scale of the flow. We
calculate here the mean degree �̄u of the flow from the time averaged

Figure 5. Snapshots from numerical simulations with Ra = 107 and P = 1, 30, 100 and 103, showing potential temperature � (first column), azimuthal
vorticity ω⊥ (second column) and radial velocity ur(ric) at the outer boundary (third column).
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Thermal convection in Earth’s inner core 1321

Figure 6. Mean degree �̄u of the kinetic energy (as defined in eq. 119), as
a function of P , for simulations with Ra = 104, 105, 106 and 107. The grey
scale of the markers give the Rayleigh number of the simulation. �̄u is close
to 1 for P � 29 for all Ra, although the departure from 1 increases with Ra
when P approaches 29 from below.

kinetic energy spectrum, defined by Christensen & Aubert (2006)
as

�̄u =
∑

� �E�
k

Ek
, (119)

where

E�
k = 1

2

∑
m

(um
� )2 and Ek =

∑
�

E�
k . (120)

With this definition, �̄u → 1 if the flow is dominated by degree
1 components, as in the translation mode, and increases as the
characteristic length scale of the flow decreases.

Fig. 6 shows the calculated value of �̄ for Ra = 104, 105, 106

and 107 as a function of P . �̄ remains very close to 1 as long as
P is smaller than a transitional value Pt � 29. There is a rapid
increase of �̄u above Pt , showing the emergence of smaller scale
convective modes at the transition between the translation mode and
the high-P regime. We interpret this sharp transition as being due
to the negative feedback that the secondary flow and smaller scale
convection have on the translation mode: advection of the potential
temperature field by the secondary flow decreases the strength of
its degree one component and therefore weakens the translation
mode, which in turn give more time for smaller scale convection to
develop, weakening further the degree one heterogeneity. The value
of Pt does not seem to depend on Ra in the range explored here.
Fig. 6 further shows that ICB phase change has a strong influence on
the flow up to P � 300, which is confirmed by direct visualization
of the flow structure.

Fig. 7a shows the translation rate V (circles) and time averaged
rms velocity (triangles) as a function of P for various values of Ra.
Here both V and Urms are multiplied by Ra−1/2. The grey dashed line
shows the analytical prediction for the translation rate in the rigid
inner core limit. Below Pt , there is a good quantitative agreement
between the numerical results and the analytical model. The fact
that Urms � V for P < Pt indicates that there is, as expected, neg-
ligible deformation in this regime. V and Urms diverge for P > Pt ,
the translation rate becoming rapidly much smaller than the rms
velocity. As already suggested by the evolution of �̄, phase change
at the ICB has still an effect on the convection for P up to ∼300.
Phase change at the ICB has a positive feedback on the vigor of the

Figure 7. (a) Rms velocity (triangles) and translation velocity (circles) as a
function of P , for Rayleigh numbers between 3 × 103 and 107 (grey scale).
The inner core translation rate is found by first calculating the net translation
rate Vi = x, y, z of the inner core in the directions x, y, z of a cartesian frame,
given by the average over the volume of the inner core of the velocity
component ui = x, y, z [which can be written as functions of the degree 1
components of the poloidal scalar at the ICB, see eq. (B42) in Appendix

B]. We then write the global translation velocity as V =
√

V 2
x + V 2

y + V 2
z .

The grey dashed line shows the prediction of the rigid inner core model. (b)
Ṁ × Ra−1/2 as a function of P , the grey scale of the markers giving the
value of Ra. The grey dashed line shows the prediction of the rigid inner core
model, showing excellent agreement between the theory and the numerical
calculations for P small.

convection: melting occurs preferentially above upwelling, where
the dynamic topography is positive, which enhances upward mo-
tion. Conversely, solidification occurs preferentially above down-
wellings, thus enhancing downward motions. This effect becomes
increasingly small as P is increased, and the rms velocity reaches
a plateau when P � 103, at which the effect of phase change at the
ICB on the internal dynamics becomes negligible.

Fig. 7(b) shows the rate of melt production (defined in eq. 117),
multiplied by Ra−1/2, as a function of P for various values of Ra.
Again, the prediction of the rigid inner core model (eq. 116, grey
dashed line in Fig. 7 b) is in very good agreement with the numerical
results as long as P < Pt . For P > Pt , the rate of melt production
appears to be inversally proportional to P .
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1322 R. Deguen, T. Alboussière and P. Cardin

Figure 8. Translation rate and melt production, normalized by the low P
limit estimate given by eq. (107), as a function of Ra/P , for P = 10−2.

6.3 Scaling of translation rate, convective velocity
and melt production

We now turn to a more quantitative description of the small-P
and large-P regimes. We first compare the results of numerical
simulations at P < Pt with the analytical models developed in
Section 5. We then focus on the large-P regime, and develop a
scaling theory for inner core thermal convection in this regime,
including a scaling law for the rate of melt production.

6.3.1 Translation mode

Fig. 8 shows the translation rate (circles) and the rate of melt pro-
duction Ṁ (diamonds), normalized by the rigid inner core estimate
given by eq. (107), as a function of Ra/P , for P = 10−2. The trans-
lation rate increases from zero when Ra/P is higher than a critical
value (Ra/P)c which is found to be in excellent agreement with the
prediction of the linear stability analysis. Increasing Ra/P above
(Ra/P)c, the translation rate increases before asymptoting towards
the prediction of the rigid inner core model (dashed line). The pre-
diction of our model including a boundary layer correction (eq. 115,
black line in Fig. 8) is in good agreement with the numerical results
for Ra/P � 103, demonstrating that our analytical model captures
fairly well the effect of the thermal boundary layer. As expected
(see Section 5.4), the rate of melt production is equal to 1/4 of the
translation rate.

Fig. 9 shows the effect of increasing P on the translation rate. In
this figure, we have kept only simulations with Ra/P larger than 105

to minimize the effect of the boundary layer, and further corrected
the translation velocity with the boundary layer correction (eq. 115)
found in Section 5.3, in order to isolate as much as possible the effect
ofP on the translation mode. TheO(P) model developed in Section
5.2 (eq. 110, black line) agrees with the numerical simulations
within 1 per cent for P up to ∼3, but fails to explain the outputs
of the numerical simulations when P is larger, which indicates that
higher order terms in P become important.

Overall, our analytical results (stability analysis and finite am-
plitude models) are in very good agreement with our numerical
simulations when P is small, which gives support to both our the-
ory and to the validity of the numerical code.

Figure 9. Translation rate (normalized by the low P limit estimate given by
eq. (107)) as a function of P , for different values of Ra/P . The thick black
line show the prediction of the O(P) model given by eq. (110).

6.3.2 Plume convection

If P is large, the translation rate of the inner core becomes van-
ishingly small, but, as long as P is finite, there is still a finite rate
of melt production associated with the smaller scale topography
arising from plume convection. A scaling for the melt production
in the limit of large P and large Ra can be derived from scal-
ing relationship for infinite Prandtl number convection with im-
permeable boundaries. Parmentier & Sotin (2000) derived a set
of scaling laws for high Rayleigh number internally heated ther-
mal convection in a cartesian box, in the limit of infinite Prandtl
number, but we found significant deviations from their model in
our numerical simulations, which we ascribe to geometrical ef-
fects due to the spherical geometry. We therefore propose a set
of new scaling laws for convection in a full sphere with internal
heating.

Quantities of interest are the horizontal and vertical velocities u
and w, the mean inner core potential temperature 〈�〉, the thermal
boundary layer thickness δ, the thermal radius of the plumes a, the
average plume spacing λh, and a length scale for radial variations of
the velocity, which we note λr (see Fig. 10). The horizontal length
scale λh is related to the number N of plumes per unit area by
N ∼ 1/λ2

h .
Outputs of numerical simulations (〈�〉, δ, rms velocity Urms, rms

radial velocity wrms, rms horizontal velocity urms, N) are shown in
Figs 11(a)–(d) for Ra between 105 and 3 × 108. The boundary layer
thickness δ is estimated as the ratio of the mean potential tempera-
ture in the inner core, 〈�〉, over the time and space averaged potential
temperature gradient at the ICB: δ = −〈�〉/〈∂�/∂r〉icb. The time-
averaged number N of plume per unit area is estimated by counting
plumes on horizontal surfaces on typically 50 different snapshots.
Both 〈�〉 and δ follow well-defined power law behaviours over this
range of Ra. In contrast, the rms velocities and plume density N
seem to indicate a change of behaviour at Ra close to 107. For Ra <

107, the vertical velocity increases faster than the horizontal ve-
locity, while at larger Ra horizontal and vertical velocities increase
with Ra at roughly the same rate.

We start our analysis by first noting that under statistically steady
state conditions, the heat flux at the ICB must be equal, in a time-
averaged sense, to the heat production within the inner core. In the
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Thermal convection in Earth’s inner core 1323

Figure 10. A schematic of inner core plume convection, and definition of
the length scales used in the scaling analysis. Streamlines of the flow are
shown with thin arrowed grey lines.

thermal boundary layer, heat transport is dominated by conduction
and the non-dimensional heat flux −〈∂�/∂r〉icb is equal to 〈�〉/δ.
This must be in balance with the non-dimensional internal heat pro-
duction. With our scaling, the mean potential temperature gradient

should be equal to –2 on average, which implies that δ should be
equal to 〈�〉/2. We can therefore write

δ = 〈�〉
2

∼ Raβ, (121)

where β is to be determined. We further assume that the thickness of
the thermal boundary layer is set by a local stability criterion, that is,
that the boundary layer Rayleigh number Raδ = (αρsgicb�δ3)/(κη)
is on average equal to some constant, which is equivalent to state
that Raδ ∼ 1. Using non-dimensional 〈�〉 and δ, Raδ is related to
the inner core Rayleigh number Ra by Raδ = Ra 〈�〉δ3. Given that
〈�〉 ∼ δ, this implies that Ra〈�〉δ3 ∼ Ra δ4 ∼ 1, which gives
β = −1/4.

The best fit of the numerical results (Figs 11a and b) gives
〈�〉 ∼ Ra−0.240 ± 0.005 and δ ∼ Ra−0.236 ± 0.003, in fair agreement
with the predicted scaling. In Cartesian geometry, Parmentier &
Sotin (2000) found β = −0.2448. Deschamps et al. (2012) found
β = −0.238 for thermal convection in internally heated spherical
shells.

The vertical plume velocity w is set by a balance between the
buoyancy stress, ∼Ra〈�〉a, and the viscous stress, ∼w/λh. This
gives

w

λh
∼ Ra 〈�〉 a. (122)

In addition, the heat flux advected by the plumes, Nw〈�〉a2, must
scale as the ICB heat flux, which, as already discussed above, must
be ∼1. Since the number of plumes per unit area is N ∼ 1/λ2

h , this

Figure 11. (a) Mean potential temperature 〈�〉 as a function of Ra for P larger than 103. (b) Boundary layer thickness δ. (c) RMS velocity Urms (squares),
rms vertical velocity wrms (diamonds), and rms horizontal velocity urms (circles). (d) Number of plumes N per unit surface. In figures (a) to (d), the thick red
lines show the predictions of the scaling theory developed in Section 6.3.2 with β = −0.238. The dashed lines show the result of the individual least square
inversion for each quantity for Ra ≥ 105.
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1324 R. Deguen, T. Alboussière and P. Cardin

gives

1 ∼ a2

λ2
h

〈�〉w. (123)

The plume thermal radius a is related to the thermal boundary layer
thickness through the conservation of mass, which when applied at
the roots of the plumes implies that

δu ∼ aw. (124)

Finally, conservation of mass in one convective cell implies that

u

λh
∼ w

λr
. (125)

This gives four eqs (122)–(125) for five unknowns (u, w, a, λh,
λr). The system can be solved if additional assumptions are made on
the scaling of λr. For high Pr, low Re convection, a natural choice
would be to assume that radial variations of w occur at the scale of
the radius of the inner core. This implies λr ∼ 1, and solving the
system of eqs (122)–(125) with β = −0.24 gives a ∼ Ra−0.14, u ∼
Ra0.82, w ∼ Ra0.72 and N ∼ Ra−0.2, which agrees very poorly with
the numerical results.

This poor agreement might be due to the spherical geometry. In a
sphere, plumes converge towards each others while sinking, which
is not the case in cartesian boxes, and is not a very significant effect
in a spherical shell for which, like in Earth’s mantle, the radius of the
inner shell is a significant fraction of that of the outer shell. If Ra is
large and the average plume spacing is small compared to the inner
core radius, we might expect that the geometry of the convective
cells becomes self-similar, with λr ∼ λh. With this assumption, we
obtain

λh ∼ λr ∼ Ra1+5β, (126)

u ∼ w ∼ Ra2+7β, (127)

a ∼ δ ∼ 〈�〉 ∼ Raβ . (128)

Assuming a scaling of the form given by eqs (126)–(128), it is
possible to inverse simultaneously all variables for β, the result of
the inversion being β = −0.238 ± 0.003 (±1σ ). The prediction of
eqs (126)–(128) with this value of β are shown with red lines in
Fig. 11a–d for Ra ≥ 107. They agree with the numerical outputs
almost as well as individual inversions, which demonstrates the
self-consistency of our scaling theory.

We can now derive a scaling for the rate of melt production Ṁ .
The starting point is the continuity of the normal stress at the ICB,
given by eq. (57). The local melting/solidification rate is given by
the value of ur − ṙic at the ICB (ur − ṙic > 0 means melting, and
ur − ṙic < 0 means solidification) which, according to eq. (57), can
be written as

ur − ṙic = P−1

(
−2

∂ur

∂r
+ p̂

)
. (129)

As discussed above, we have

∂ur

∂r

∣∣∣∣
icb

∼ w

λr
∼ Ra1+2β . (130)

The dynamic pressure is given by the horizontal component of the
Stokes equation,

0 = −∇H p̂ + (�u)H (131)

Figure 12. Rate of melt production (multiplied by P) as a function of Ra,
for numerical simulations with P ≥ 103. The value of the critical Rayleigh
number as predicted by the linear stability analysis in the limit of infinite P
(eq. 89, Rac = 1545.6) is indicated by the arrow.

which implies that

p̂ ∼ u

λh
∼ Ra1+2β . (132)

Both terms follow the same scaling, which implies that the global
rate of melt production scales as

Ṁ ∼ Ra1+2βP−1. (133)

With β = −0.238 ± 0.003, we obtain Ṁ ∼ Ra0.524±0.006P−1.
Fig. 12(b) shows P Ṁ as a function of Ra, for P ≥ 103 cor-

responding to the plume convection regime. There is an almost
perfect collapse of the data points, which supports the fact that
Ṁ ∝ P in this regime. The kink in the curve at Ra � 3 × 104

corresponds to the transition from steady convection to unsteady
convection. Above this transition, the data points are well fitted by
a power law of the form Ṁ = aP−1 Rab. Least-square regression
for Ra ≥ 3 × 105 gives a = 0.46 ± 0.04 and b = 0.554 ± 0.006, in
reasonable agreement with the value found above. In dimensional
terms, Ṁ � a(κ/ric)P−1 Rab and the mass flux of molten material
is ρic Ṁ � ak/(cpric)P−1 Rab.

7 A P P L I C AT I O N

7.1 Evolutive models

The analytical model for the translation mode and the scaling laws
for large-P convection derived in the previous sections strictly apply
only to convection with ric and S constant. We therefore first check
that our models correctly describe inner core convection when ric

and S are time-dependent, by comparing their predictions with the
outcome of numerical simulations with inner core growth and ther-
mal history determined from the core energy balance.

To account for the inner core secular evolution, we follow the
procedure explained in Deguen & Cardin (2011), where the growth
of the inner core and its cooling rate are determined from the core
energy balance. In this framework, a convenient way to write S(t)
is

S = ρs g′γ T

KS
3κ

[
f (ric) T −1

ic − 1
]
, (134)
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Thermal convection in Earth’s inner core 1325

Table 2. Correspondence between τ ic and Tic for three values of
inner core thermal conductivity, assuming dTs/dTad = 1.65 ± 0.11
(Deguen & Cardin 2011).

k (W m−1 K−1)
36 79 150

0.8 1.18 ± 0.23 Gy 0.54 ± 0.11 Gy 0.28 ± 0.06 Gy
Tic = 1.0 1.48 ± 0.29 Gy 0.68 ± 0.13 Gy 0.36 ± 0.07 Gy

1.2 1.77 ± 0.35 Gy 0.81 ± 0.16 Gy 0.43 ± 0.08 Gy

where f (ric) is a decreasing order one function of ric defined in
Deguen & Cardin (2011) (eq. 19, p. 1104), g′ = dg/dr , KS is the
isentropic bulk modulus, γ the Grüneisen parameter, and

Tic =
(

dTs

dTad
− 1

)−1
τic

τκ

, (135)

where τ ic is the age of the inner core, τκ = r∗2
ic /(6κ) is the cur-

rent inner core thermal diffusion time, and dTs/dTad is the ratio
of the Clapeyron slope dTs/dP to the adiabat dTad/dP . The non-
dimensional inner core age Tic is a convenient indicator of the
thermal state of the inner core, with Tic < 1 implying unstable strat-
ification for most of inner core history (see Deguen & Cardin 2011,
fig. 3a). We give for reference in Table 2 the values of the age of the
inner core τ ic corresponding to Tic = 0.8, 1 and 1.2, for a thermal
conductivity equal to 36, 79 and 150 W m−1 K−1. With the inner
core growth history determined from the core energy balance and
S(t) calculated from eq. (134), the evolution of Ra(t) and P(t) can
then be calculated.

Fig. 13(a) shows the trajectories of the inner core state in a
Ra − P space for four different scenarios, superimposed on a
regime diagram for inner core thermal convection. According to
eq. (6), the ICB phase change timescale scales as τφ ∝ r−1

ic , and
therefore P ∝ ric always increases during inner core history. In
contrast, the evolution of Ra(t) is non monotonic, with the effect of
the increasing inner core radius and gravity opposing the decrease
with time of the effective heating rate S(t). Because S eventually
becomes negative at some time in inner core history, Ra reaches
a maximum before decreasing and eventually becoming negative,
resulting in a bell shaped trajectory of the inner core in the Ra − P
space. The maximum in Ra may or may not have been reached yet,
depending on the value of Tic.

The scenarios A–D shown in Fig. 13a have been chosen to illus-
trate four different possible dynamic histories of the inner core. In
cases A and C, which have Tic = 0.8, Ra remains positive and su-
percritical up to today, thus always permitting thermal convection.
In cases B and D, which have Tic = 1, Ra has reached a maximum
early in inner core history, before decreasing below supercriticality,
at which point convection is expected to stop. In these two cases,
only an early convective episode is expected (Buffett 2009; Deguen
& Cardin 2011). In cases A and B, which have η = 1020 Pa s, P(t)
is always smaller than the transitional Pt and thermal convection
therefore should be in the translation regime; Cases C and D, which
have η = 1017 Pa s, have P(t) > 102 > Pt and thermal convection
should be in the plume regime.

Fig. 13(b) shows outputs from numerical simulations correspond-
ing to the inner core histories shown in Fig. 13(a). The numerical
results are compared to the predictions for the rms velocity Urms

Figure 13. (a) Trajectories of the inner core state in a Ra − P space, for the four cases A, B, C and D discussed in the text. The line annotations give the
value of Tic for each case. The dashed lines shows the future trajectory of the inner core. (b) Time evolution of V, Ṁ , Urms and ṙic for cases A to D. Red line:
inner core growth rate ṙic. Black line: translation rate V. Orange line-: rms velocity Urms. Blue line: dimensional melting rate (κ/ric)Ṁ . Predictions for the rms
velocity (or translation velocity in the translation regime) and melting rate Ṁ are shown with thick dashed and dash-dotted lines, respectively. In the η = 1020

Pa s cases, the translation model (eq. 115) is used to predict V and Ṁ . In the η = 1017 Pa s case, the high-P scaling is used for Urms and Ṁ . In the η = 1020

Pa s, Tic = 0.8 and Tic = 1 cases, the translation rate and the rms velocity are equal. For these simulations, the Rayleigh number was calculated assuming a
thermal conductivity k = 79 W m−1 K−1 and a phase change timescale τφ = 1000 yr. Values of other physical parameters used for these runs are summarized
in Table 1.
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1326 R. Deguen, T. Alboussière and P. Cardin

(equal to the translation rate Vtr in the translation regime) and melt-
ing rate Ṁ from the analytical translation model (eq. 116) and the
large-P scaling laws (eq. 133). The agreement is good in both the
translation and plume convection regimes, except at the times of
initiation and cessation of convection.

There is always a lag between when conditions become supercrit-
ical and when the amplitude of convective motions become signif-
icant, due to the finite growth rate of the instability. From eq. (88),
the timescale for instability growth, τ = 1/σ , is approximately (in
dimensional form)

τ � 5
r 2

ic

κ

(
Ra

P − Ra

P

∣∣∣∣
c

)−1

�
( ric

600 km

)2 90 Myr
Ra
P

Ra
P

∣∣
c

− 1 (136)

in the translation regime, and

τ � 77
r 2

ic

κ
(Ra − Rac)−1 �

( ric

600 km

)2 80 Myr

Ra/Rac − 1
(137)

in the large-P regime. In both cases, the timescale for the growth of
the instability will typically be a few tens of Myr, thus explaining the
delayed initiation of convection seen in the numerical simulations.

In cases B and D, the flow occurring after t � −0.46 Gy, at a time
where the models predict no motion (because S < 0), corresponds
to a slow relaxation of the thermal heterogeneities left behind by
the convective episode.

Apart during the initiation and cessation periods of convection,
the models developed for steady internal heating and constant inner
core radius agree very well with the full numerical calculations, and
can therefore be used to predict the dynamic state of the inner core
and key quantities including rms velocity and melt production rate.

7.2 Melt production

Experiments by Alboussière et al. (2010) have shown that the de-
velopment of a stably stratified layer above the ICB by inner core
melting is controlled by the ratio �B of the buoyancy fluxes arising
from the melting and freezing regions of the ICB. By using the ana-
lytical translation model and the scaling laws for plume convection
developed in the last two sections, we can now estimate today’s
value of �B as a function of the state and physical properties of the
inner core, and assess the likelihood of the origin of the F-layer by
inner core melting.

With Ṁ being the non-dimensional rate of melt production de-
fined in eq. (117), the mean solidification rate is (κ/ric)Ṁ + ṙic from
conservation of mass. The buoyancy flux associated with the release
of dense fluid by melting can be written as −�ρχ gicb(κ/ric)Ṁ ,
while the buoyancy flux associated with the solidification is
�ρχ gicb[(κ/ric)Ṁ + ṙic], where �ρχ is the fraction of the ICB
density jump due to the compositional difference. According to Al-
boussière et al. (2010)’s experiments, a stratified layer is expected
to form above the ICB if the magnitude of the buoyancy flux asso-
ciated with melting is more than 80 per cent of the buoyancy flux
associated with solidification, that is, if

�B = �ρχ gicb(κ/ric)Ṁ

�ρχ gicb[(κ/ric)Ṁ + ṙic]
= Ṁ

Ṁ + ṙic ric/κ
> 0.8, (138)

which requires that
κ

ric
Ṁ > 4 ṙic. (139)

In the translation regime, in which Ṁ = V/4, this requires that
the rate of translation is at least 16 times larger than the mean
solidification rate of the inner core.

The current inner core growth rate can be expressed as

ṙic = 3κ

ric

f (ric)(
dTs
dTad

− 1
)
Tic

(140)

where the function f (ric) � 0.8 at the current inner core radius
(Deguen & Cardin 2011). Using this expression, the buoyancy ratio
�B is

�B = 1 −
[

1 +
(

dTs

dTad
− 1

) Tic

3 f (ric)

V

4

]−1

(141)

in the translation regime, with the translation velocity V given by
eq. (115), and

�B = 1 −
[

1 +
(

dTs

dTad
− 1

) Tic

3 f (ric)
aP−1 Rab

]−1

(142)

in the high-P regime.

7.3 Today’s inner core regime and rate of melt production

The inner core dynamic regime depends mostly on the value of
its non-dimensional age Tic and of P , both parameters being very
poorly constrained. The value of Tic dictates whether the inner core
has a stable or unstable temperature profile, and the parameter P
determines the convection regime if the inner core is unstable against
thermal convection. Other parameters have a comparatively small
influence on the inner core dynamics, and on the value of �B. With
this idea in mind, it is useful to rewrite the Rayleigh number as a
function of P and Tic:

Ra = αρs gicb Sr 5
ic

6κ2η

= A
[

f (ric) T −1
ic − 1

]
P, with A = α2ρ2

s gicbr 3
icT

2 k �ρ τφ

. (143)

The exact value of the pre-factor A affects the value of �B, but
not the inner core regime (stably stratified inner core, translation,
or plume convection) which is determined by P and Tic. The un-
certainty on A comes mostly from the uncertainty on τφ , which is
difficult to estimate without a better understanding of the dynamics
of the F-layer. If P and Tic are kept constants, changing A by an
order of magnitude would change the translation velocity and melt-
ing rates (in both regimes) by a factor of ∼3. Fig. 14 shows �B as a
function of Tic and P , calculated from eqs (141) and (142) with Ra
given by eq. (143) and A = 3 × 105 (corresponding to parameters
values given in Table 1). Fig. 14 serves both as a regime diagram
for the inner core, and as a predictive map for �B and the likelihood
of the development of a stratified layer at the base of the outer core.

The inner core has currently an unstable thermal profile only if
Tic is smaller than �0.87. The mode of thermal convection then
depends on P , with the translation regime (small P) being the most
efficient at producing melt. Plume convection generates less melt,
but the rate of melt production still remains significant as long as
P is not too large (η not too small). The critical value of �B =
0.8 (white contour in Fig. 14) suggested by the experiments of
Alboussière et al. (2010) is almost always reached in the translation
regime, but only in a small part of the parameter space in the plume
convection regime.
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Figure 14. Inner core regime diagram and map of the buoyancy ratio �B, as
functions ofP andTic. The corresponding values of η assuming τφ = 1000 yr
are given on the right hand size vertical axis. According to Alboussière et al.
(2010)’s experiments, inner core melting can produce a stably stratified layer
at the base of the outer core if �B > 0.8 (white contour).

8 C O M P O S I T I O NA L E F F E C T S

We have so far left aside the possible effects of the compositional
evolution of the outer and inner core on the inner core dynamics.
We will argue here that the development of an iron rich layer above
the inner core can have a possibly important positive feedback on
inner core convection: irrespectively of the exact mechanism at the
origin of the F-layer (Gubbins et al. 2008, 2011; Alboussière et al.
2010), its interpretation as an iron rich layer implies a decrease
with time of light elements concentration in the liquid just above
the ICB. This in turn implies that the newly crystallized solid is in-
creasingly depleted in light elements, and intrinsically denser, which
may drive compositional convection in the inner core. The recipro-
cal coupling between the inner core and the F-layer may create a
positive feedback loop which can make the system (inner core + F-
layer) unstable. The mechanism releases more gravitational energy
than purely radial inner core growth with no melting, and should
therefore be energetically favored.

We note c s and cl the light element concentration in the inner
and outer core, respectively, cs,l

icb their values at the ICB, and ċs,l
icb =

dcs,l
icb/dt their time derivatives at the ICB. The concentration in

the liquid and solid sides of the ICB are linked by the partition
coefficient k, cs

icb = k cl
icb. Introducing c̃ = c − cs

icb, the equation of
transport of light element can be written as

Dc̃

Dt
= κc∇2c̃ + Sc, c̃(ric) = 0, (144)

with

Sc = −ċs
icb = −k ċl

icb − cl
icb

dk

dt
, (145)

which is an exact analogue of the potential temperature transport eq.
(29). The only—but important—difference is that the source term
Sc is a dynamic quantity which depends on the convective state of
the inner core and on the dynamics of the F-layer rather than being
externally imposed like the effective heating rate S, which means
that the dynamics of the inner core and F-layer must be considered
simultaneously.

In general, the fact that the thermal and compositional diffusiv-
ities are different can be of importance, and would lead to double-
diffusive type convection. However this is not the case in the trans-

lation regime, for which diffusion does not play any role as long
as the translation rate is large enough (i.e. if the Péclet number
Pe = Vric/κ � 1). Thanks to the potential temperature/composition
analogy noted above, the translation model developed for thermal
convection can be extended to include compositional effects, the
translation rate being given by

V =
[

1

5

ρs

�ρ

(αS + αc Sc)

τφ

]1/2

ric (146)

when compositional effects are accounted for. We therefore
need to compare the magnitudes of αS and αc Sc = −αc k ċl

icb −
αc cl

icb dk/dt . Assuming (Gubbins et al. 2008) that the light element
concentration at the base of the F-layer is currently about twice
smaller than the outer core mean concentration, coc � 5 wt. per
cent, we obtain ċl

icb ∼ −0.5 coc/τic ∼ −10−18 wt. per cent s−1 with
τ ic ∼ 1 Gy. With αc � 1, this gives −αc k ċl

icb ∼ 10−19 s−1 if k � 0.1
and −αc k ċl

icb ∼ 10−20 s−1 if k � 0.01, which is similar or larger
than the thermal contribution α S ∼ 10−5 × 10−15 ∼ 10−20 s−1. The
term −αc cl

icb dk/dt might be positive as well. According to cal-
culations by Gubbins et al. (2013), the variation with temperature
of the partitioning behaviour of Oxygen can produce an unstable
compositional gradient. As discussed in Alboussière et al. (2010)
and Deguen & Cardin (2011), the effective partition coefficient may
also decrease with time because of dynamic reasons (the efficiency
of melt expulsion from the inner core increases with inner core
size), which would also imply that this term is positive.

There is an additional feedback, this time negative, which comes
from the effect of composition on the solidification temperature,
which increases with decreasing light element concentration. The
decreasing light element concentration at the base of the F-layer
implies that the ICB temperature decreases with time at a slower
rate than if the composition is fixed, which results in a smaller
effective heating rate S (eq. 30). For a fixed inner core growth rate,
this decreases the ICB cooling rate by an amount equal to −mc ċl

icb,
where mc = ∂Ts/∂c ∼ −104 K (Alfè et al. 2002) is the liquidus slope
at the inner core boundary pressure and composition. This adds a
term −α mc ċl

icb in eq. (146). If only one light element is considered,
the ratio of the stabilizing term α mc ċl

icb over the destabilizing term
−αc k ċl

icb is ∼α mc/(αc k) ∼ −0.1/k. The two terms are of the same
order of magnitude if k ∼ 0.1, but the negative feedback dominates
if k is smaller.

The above estimates are clearly uncertain, and a dynamic model
of the F-layer will be required for assessing in a self-consistent
way the effect of the development of the F-layer on inner core
convection. There are several feedbacks of the formation of an
F-layer on inner core convection, either positive or negative, and
it is not clear yet whether the net effect would be stabilizing or
destabilizing. Still, it does suggest that the effect could be important,
and worth considering in more details.

9 S U M M A RY A N D C O N C LU S I O N S

Inner core translation can potentially explain a significant part of
the inner core structure, but its existence depends critically on the
value of a number of poorly constrained parameters. In this paper,
we have studied in details the conditions for and dynamics of inner
core thermal convection when melting and solidification at the ICB
are allowed. We summarize here the main results and implications
of our work:

(i) If the inner core is convectively unstable, linear stability anal-
ysis (Section 4), asymptotic calculations (Section 5), and direct
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1328 R. Deguen, T. Alboussière and P. Cardin

Table 3. Summary of theoretical results and scaling laws for the translation (P � 29) and plume
convection (P � 29) regimes. In the plume convection regime, the value of β obtained by fitting the
numerical outputs to our scaling theory is β = −0.238 ± 0.003.

Translation regime Plume convection regime
P � 29 P � 29

Onset ( Ra
P )c = 175

2 Rac = 1545.6

Velocity scaling , V or Urms
κ

ric

√
6
5

Ra
P 0.96 κ

ric
Ra2+7β

Rate of melt production, Ṁ 1
4

κ
ric

√
6
5

Ra
P 0.46 κ

ric
Ra1+2βP−1

〈�〉 Sr2
ic

κ
( 10

3
P
Ra )1/2 2.9 Sr2

ic
κ

Raβ

Number of plumes per unit area, N – 0.07
r2
ic

Ra−2−10β

Strain rate ε̇ ∼ Urms
λ

∼ √
NUrms – 0.25 κ

r2
ic

Ra1+2β

Ra = αρs gicb Sr5
ic

6κ2η
, P = �ρ gicb ric τφ

η
.

numerical simulations (Section 6) consistently show that the con-
vection regime depends mostly on a non-dimensional number, the
‘phase change number’ P , characterizing the resistance to phase
change (eq. 58). The convective translation mode dominates only if
P < 29, which requires that the inner core viscosity is larger than a
critical value estimated to be ∼3 × 1018 Pa s. If P is larger (smaller
viscosity), melting and solidification at the ICB have only a small
dynamic effect, and convection takes the usual form of low Prandtl
number internally heated convection, with a one-cell axisymmetric
mode at the onset, and chaotic plume convection if the Rayleigh
number is large.

(ii) With published estimates of the inner core viscosity rang-
ing from 1011 to 1022 Pa s (Yoshida et al. 1996; Buffett 1997; Van
Orman 2004; Mound & Buffett 2006; Koot & Dumberry 2011;
Reaman et al. 2011, 2012), the question of which mode would
be preferred is open (although we note that the latest estimate
from mineral physics, 1020–1022 Pa s (Reaman et al. 2012), would
put the inner core, if unstably stratified, well within the translation
regime).

(iii) The two convection regimes have been characterized in de-
tails in Sections 4–7; a summary of theoretical results and scaling
laws for useful dynamic quantities (rms velocity, rate of melt pro-
duction, mean potential temperature, number of plumes per unit
area, and strain rate) is given in Table 3. If the inner core is unstably
stratified, the rate of melt production predicted by our models is
always large enough to produce an iron-rich layer at the base of the
outer, according to Alboussière et al. (2010)’s experiments, if the
inner core is in the translation regime (Fig. 14). In the plume con-
vection regime, the rate of melt production can still be significant if
P is not too large (η not too small).

(iv) Being driven by buoyancy, a prerequisite for the existence
of convective translation is that an unstable density profile is main-
tained within the inner core. Thermal convection requires that a su-
peradiabatic temperature profile is maintained with the inner core,
which is highly dependent on the core thermal history and inner
core thermal conductivity. With k = 36 W m−1 K−1 as proposed
by Stacey & Davis (2008), this would be very likely (Buffett 2009;
Deguen & Cardin 2011). However, several independent groups (Sha
& Cohen 2011; de Koker et al. 2012; Pozzo et al. 2012) have re-
cently argued for a much higher core thermal conductivity, around
150 W m−1 K−1 or higher. This would make thermal convection
in the inner core, whether in the translation mode or in the plume
convection mode, impossible unless the inner core is very young

(�300 Myr or less, which would require a probably excessively
high CMB heat flux).

(v) Compositional convection might be a viable alternative to
thermal convection, either because the temperature dependency of
the light elements partitioning behaviour can produce an unstable
compositional profile (Gubbins et al. 2013), or because of a possibly
positive feedback of the development of the F-layer on inner core
convection. As proposed in Section 8, the formation of an iron-rich
layer at the base of the outer core over the history of the inner
core implies that the inner core crystallizes from a source which is
increasingly depleted in light elements. This in turn implies that the
newly crystallized solid is increasingly depleted in light element,
which results in an unstable density profile. Whether this positive
feedback is strong enough to overcome the stabilizing effect of a
possibly subadiabatic temperature profile depends on the dynamics
of the F-layer, and further work is needed to test this idea.
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Gubbins, D., Alfè, D. & Davies, D., 2013. Compositional instability of
Earth’s solid inner core, Geophys. Res. Lett., 40(1–5), 361–363.

Irving, J., Deuss, A. & Woodhouse, J., 2009. Normal mode coupling due
to hemispherical anisotropic structure in Earth’s inner core, Geophys. J.
Int., 178(2), 962–975.

Jeanloz, R. & Wenk, H.-R., 1988. Convection and anisotropy of the inner
core, Geophys. Res. Lett., 15, 72–75.

Karato, S.-I., 1999. Seismic anisotropy of the Earth’s inner core resulting
from flow induced by Maxwell stresses, Nature, 402, 871–873.

Koot, L. & Dumberry, M., 2011. Viscosity of the earth’s inner core: con-

straints from nutation observations, Earth planet. Sci. Lett., 308(3–4),
343–349.

Mizzon, H. & Monnereau, M., 2013. Implications of the lopsided growth for
the viscosity of Earth’s inner core, Earth planet. Sci. Lett., 361, 391–401.

Monnereau, M., Calvet, M., Margerin, L. & Souriau, A., 2010. Lopsided
growth of Earth’s inner core, Science, 328, 1014–1017.

Mound, J.E. & Buffett, B.A., 2006. Detection of a gravitational oscillation
in length-of-day, Earth planet. Sci. Lett., 243, 383–389.

Niu, F.L. & Wen, L.X., 2001. Hemispherical variations in seismic velocity
at the top of the Earth’s inner core, Nature, 410, 1081–1084.

Pais, A. & Jault, D., 2008. Quasi-geostrophic flows responsible for the
secular variation of the Earth’s magnetic field, Geophys. J. Int., 173,
421–443.

Parmentier, E.M. & Sotin, C., 2000. Three-dimensional numerical experi-
ments on thermal convection in a very viscous fluid: implications for the
dynamics of a thermal boundary layer at high Rayleigh number, Phys.
Fluids, 12, 609–617.

Poirier, J.-P., 1994. Physical properties of the Earth’s core, C.R. Acad. Sci.
Paris, 318, 341–350.

Pozzo, M., Davies, C., Gubbins, D. & Alfè, D., 2012. Thermal and elec-
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A P P E N D I X A : L I N E A R S TA B I L I T Y
A NA LY S I S

We investigate here the linear stability of the system of equations
describing thermal convection in the inner core with phase change
at the ICB, as derived in Section 3. The calculation given here is a
generalization of the linear stability analysis of thermal convection
in an internally heated sphere given by Chandrasekhar (1961).

We assume constant Ra and P . The basic state of the problem is
then

�̄ = 1 − r 2, (A1)

ū = 0, (A2)

which is the steady conductive solution of the system of equa-
tion developed in Section 3. We investigate the stability of this
conductive state against infinitesimal perturbations of the temper-
ature and velocity fields. The temperature field is written as the
sum of the conductive temperature profile given by eq. (A1) and
infinitesimal disturbances �̃, �(r, θ, φ, t) = �̄(r ) + �̃(r, θ, φ, t).
The velocity field perturbation is noted ũ(r, θ, φ, t), and has an as-
sociated poloidal scalar P̃(r, θ, φ, t). We expand the temperature
and poloidal disturbances in spherical harmonics,

�̃ =
∞∑

l=0

l∑
m=−l

t̃m
l (r )Y m

l (θ, φ) eσl t , (A3)

P̃ =
∞∑

l=1

l∑
m=−l

p̃m
l (r )Y m

l (θ, φ) eσl t , (A4)

where σ l is the growth rate of the degree l perturbations.
The only non-linear term in the system of equations is the advec-

tion of heat u · ∇T , which is linearized as

ũr
∂�̄

∂r
= −2r ũr = −2L2 P̃. (A5)

The resulting linearized transport equation for the potential temper-
ature disturbance is

∂�̃

∂t
= ∇2�̃ + 2L2 P̃ + 6. (A6)

Using the decompositions (A3) and (A4), the linearized system of
equations is then, for l ≥ 1,

Ra t̃m
l = D2

l p̃m
l , (A7)

(σl − Dl ) t̃m
l = 2l(l + 1) p̃m

l (A8)

with the boundary conditions given by eqs (72) and (73), with
t̃m
l (r = 1) = 0.

We expand the temperature perturbations t̃m
l (r ) as a series of

spherical Bessel functions of the first kind jl,

t̃m
l =

∑
i

Al,i jl (αl,i r ). (A9)

The spherical Bessel functions are defined as

jl (r ) =
√

π

2r
Jl+ 1

2
(r ), (A10)

where J denotes Bessel functions of the first kind. αl, i is the ith zero
of Jl+ 1

2
, and therefore of jl as well. The functions jl(αl, ir) for i = 1,

2, . . . , ∞ and a given l form a complete set of orthogonal functions
on [0, 1], and satisfy the orthogonality relation∫ 1

0
r 2 jl (αl,i r ) jl (αl, j r )dr = δi, j

2

[
jl+1(αl, j )

]2
. (A11)

The spherical Bessel functions are eigenfunctions of the operator
Dl , such that

Dl jl (αl,i r ) = −α2
l,i jl (αl,i r ). (A12)

Writing the poloidal scalar perturbations p̃m
l as

p̃m
l =

∑
i

Al,i pl,i , (A13)

the functions pl, i are solutions of

Ra jl (αl,i r ) = D2
l pl,i , (A14)

which has a general solution of the form

pl,i = Ra

α4
l,i

jl (αl,i r ) + Bl,i r
l + Cl,i r

l+2. (A15)

We now use the boundary conditions at r = 1 to find the constants
Bl, i and Cl, i. The condition of zero tangential stress (eq. 72) can be
rewritten as

Dl p̃m
l − 2

d p̃m
l

dr
+ 2 [l(l + 1) − 1] p̃m

l = 0, (A16)

which, recalling that jl(αl, i) = 0 and noting that

Dl p̃m
l =

∑
i

Al,i

[
− Ra

α2
l,i

jl (αl,i r ) + Cl,i (4l + 6)r l

]
, (A17)

gives

Cl,i = 1 − l2

l(l + 2)
Bl,i + 1

l(l + 2)

Ra

α3
l,i

j ′
l (αl,i ). (A18)

From the continuity of the normal stress at r = 1 (eq. 73), we obtain

Bl,i = − [2(l − 1) + P]−1

[
1

l(l + 1)
+ 2

α2
l,i

]
j ′
l (αl,i )

αl,i
Ra

−Cl,i + [2(l − 1) + P]−1 6

l
Cl,i . (A19)

The derivative of jl which appears in eqs (A18) and (A19) can be
evaluated from the recurrence relation

n

r
jn − d jn

dr
= jn+1 (A20)
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Thermal convection in Earth’s inner core 1331

(Abramovich & Stegun 1965). Recalling that jl(αl, i) = 0, eq. (A20)
with n = l gives

j ′
l (αl,i ) = − jl+1(αl,i ). (A21)

Inserting eq. (A18) in eq. (A19), we obtain{
4l(l + 1) − 2 + (2l + 1)P − 6

l

}
Bl,i

=
{

l + 2

l + 1
+

[
2(l2 + 3l − 1) + P − 6

l

]
1

α2
l,i

}
jl+1(αl,i )

αl,i
Ra,

(A22)

which we rewrite as

Bl,i =
(

ql
1(P) + ql

2(P)

α2
l,i

)
jl+1(αl,i )

αl,i
Ra, (A23)

where

ql
1(P) = l + 2

l + 1

[
4l(l + 1) − 2 + (2l + 1)P − 6

l

]−1

, (A24)

ql
2(P) = 2(l2 + 3l − 1) + P − 6

l

4l(l + 1) − 2 + (2l + 1)P − 6
l

. (A25)

With this expression for Bl, i, the constants Cl, i are given by

Cl,i = −
(

ql
3(P) + ql

4(P)

α2
l,i

)
jl+1(αl,i )

αl,i
Ra, (A26)

where

ql
3(P) = (l2 − 1)

l(l + 2)
ql

1(P), (A27)

ql
4(P) = (l2 − 1)ql

2(P) + 1

l(l + 2)
. (A28)

Now, using eqs (A13) and (A15) for p̃m
l and eq. (A9) for t̃m

l , the
heat eq. (A8) gives

∑
i

Al,i

(
σl + α2

l,i

2l(l + 1)
− Ra

α4
l,i

)
jl (αl,i r )

=
∑

i

Al,i

(
Bl,i r

l + Cl,i r
l+2

)
. (A29)

Multiplying eq. (A29) by r2jl(αl, jr) where j is an integer in [0; ∞],
integrating in r over [0; 1], and using the orthogonality relation
(A11), we obtain

Al, j

(
σl + α2

l, j

2l(l + 1)
− Ra

α4
l, j

)
1

2

[
jl+1(αl, j )

]2

=
∑

i

Al,i Bl,i

∫ 1

0
r l+2 jl (αl, j r )dr

+
∑

i

Al,i Cl,i

∫ 1

0
r l+4 jl (αl, j r )dr, ( j = 1, 2, . . .). (A30)

Eq. (A30) forms a set of linear homogeneous equations for the
constants Al, j, which admits non-trivial solutions only if its secular
determinant is equal to zero.

Before calculating the secular determinant of the system of equa-
tions, we evaluate the two integrals on the right hand side, starting
with the integral of r l + 2jl(αl, jr). Using the formula(

1

x

d

dx

)m [
xn+1 jn(x)

] = xn−m+1 jn−m(x) (A31)

(Abramovich & Stegun 1965) with m = 1 and n = k + 1 gives

d

dx

[
xk+2 jk+1(x)

] = xk+2 jk(z), (A32)

which allows to write, with k = l,∫ 1

0
r l+2 jl (αl, j r )dr = 1

αl+3
l, j

∫ αl, j

0
xl+2 jl (x)dx

= 1

αl+3
l, j

[
xl+2 jl+1(x)

]αl, j

0
= jl+1(αl, j )

αl, j
. (A33)

Now, using the recurrence relation

jn−1 + jn+1 = 2n + 1

r
jn (A34)

(Abramovich & Stegun 1965) with n = l + 1, we rewrite the integral
of r l + 4jl(αl, jr) as∫ 1

0
r l+4 jl (αl, j r )dr = 1

αl+5
l, j

∫ αl, j

0
xl+4 jl (x)dx (A35)

= − 1

αl+5
l, j

∫ αl, j

0
xl+4 jl+2(x)dx

+ 2l + 3

αl+5
l, j

∫ αl, j

0
xl+3 jl+1(x)dx . (A36)

The two integrals on the RHS can be calculated using the relation
(A32) with k = l + 2 and k = l + 1, respectively. With further use
of the recurrence relation (A34), we finally obtain∫ 1

0
r l+4 jl (αl, j r )dr =

[
1 − 4l + 6

α2
l, j

]
jl+1(αl, j )

αl, j
. (A37)

With the integrals estimated above, the system of eqs (A30) can
be rewritten as

Al, j

(
σl + α2

l, j

2l(l + 1)Ra
− 1

α4
l, j

)
1

2

[
jl+1(αl, j )

]2

=
∑

i

Al,i

{(
ql

3(P) + ql
4(P)

α2
l,i

)[
4l + 6

α2
l, j

− 1

]

+ ql
1(P) + ql

2(P)

α2
l,i

}
jl+1(αl,i )

αl,i

jl+1(αl, j )

αl, j
, ( j = 1, 2, . . .).

(A38)

Introducing Ai = ( jl+1(αl,i )/α3
l,i )Al,i , and dividing by jl + 1(αl, j)/

αl, j, we finally obtain

∑
i

Ai

{ [
ql

3(P)α2
l,i + ql

4(P)
] [

1 − 4l + 6

α2
l, j

]

− [
ql

1(P)α2
l,i + ql

2(P)
] (

σlα
4
l,i + α6

l,i

2l(l + 1)Ra
− 1

)
1

2
δi j

}

= 0, ( j = 1, 2, . . .). (A39)
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1332 R. Deguen, T. Alboussière and P. Cardin

This forms an infinite set of linear equations, which admits a non
trivial solution only if its determinant is zero:∣∣∣∣∣
∣∣∣∣∣[ql

3(P)α2
l,i + ql

4(P)
] [

1 − 4l + 6

α2
l, j

]
− [

ql
1(P)α2

l,i + ql
2(P)

]

+
(

σlα
4
l,i + α6

l,i

2l(l + 1)Ra
− 1

)
1

2
δi j

∣∣∣∣∣
∣∣∣∣∣ = 0, (A40)

with i, j = 1, 2, . . . . Solving eq. (A40) for a given value of l and σ l =
0 gives the critical value Rac of the Rayleigh number for instability
of the l mode as a function of P . When solving numerically eqs
(A40), the precision on Rac depends on the maximum value of i
and j retained in the calculation, but the value of Rac converges
relatively fast with i, j.

The pattern of the first unstable mode can be calculated by solving
the system (A39) in Ai for given P and Ra, which gives Al, i and
allows to calculate the poloidal scalar p̃m

l from eqs (A13) and (A15).
With l = 1, we have q1

1 = 1/(2P), q1
2 = 1/3, q1

3 = 0 and q1
4 = 1/3,

so that the functions p1, i can be written as

p1,i = j1(α1,i r )

α1,i
+ j2(α1,i )

3
(r − r 3) + j2(α1,i )α2

1,i

2P r, (A41)

and the general form of the l = 1, m ∈ [−1, 0, 1] components of the
poloidal scalar is

p̃m
1 =

∞∑
i=1

A1,i

[
j1(α1,i r )

α1,i
+ j2(α1,i )

3
(r − r 3) + j2(α1,i )α2

1,i

2P r

]
.

(A42)

To a good approximation, the first unstable mode is given (to within
a multiplicative constant) by keeping only the i = j = 1 term,

P̃ �
{

j1(α1,1r )

α1,1
+ j2(α1,1)

3
(r − r 3) + j2(α1,1)α2

1,1

2P r

}
cos θ. (A43)

A P P E N D I X B : T R A N S L AT I O N R AT E
AT O(P)

In order to estimate the translation velocity at O(P), we need to
determine the parameter A in the O(P) expansion of p1 (eq. 101),
which was left undetermined. To do so, we need to consider the
thermal field at O(P) and the velocity field at O(P2). This is more
challenging because, owing to the non-linearity of the heat equa-
tion, coupling of higher order components of the temperature and
velocity fields contribute to the l = 1 component of the temperature
field at O(P), and to the l = 1 component of the velocity field at
O(P2).

As before, we consider a steady state approximation of the heat
equation where advection and internal heating balance,

u · ∇� = ur
∂�

∂r
+ uθ

r

∂�

∂θ
= 6. (B1)

Using Legendre polynomial expansions of the poloidal and temper-
ature field,

� =
∞∑

l=0

tl Pl (cos θ ), P ′ =
∞∑

l=0

pl Pl (cos θ ), (B2)

eq. (B1) can be rewritten as

6 =
[∑

l

l(l + 1)
pl

r
Pl (cos θ )

]
×

[∑
l

dtl
dr

Pl (cos θ )

]

+1

r

[∑
l

1

r

d

dr
(r pl )

dPl (cos θ )

dθ

]
×

[∑
l

tl
dPl (cos θ )

dθ

]
(B3)

(We can use Legendre polynomials rather than full spherical har-
monics because we restrict the calculation to axisymmetric flows.
This gives slightly simpler expressions.) The l = 1 and l = 2 com-
ponent of the temperature field being much larger than higher order
components (with odd l components being zero), we consider only
the l = 1 and 2 terms. Multiplying eq. (B3) by sin θ and integrating
over [0 π ] in θ then gives

12 = 4

3

p1

r

dt1

dr
+ 12

5

p2

r

dt2

dr
+ 4

3

1

r 2

d

dr
(r p1) t1

+ 12

5

1

r 2

d

dr
(r p2) t2 (B4)

which can be rewritten as

3r 2 = d

dr

(
1

3
r p1t1 + 3

5
r p2t2

)
. (B5)

Integrating eq. (B5) gives

r 3 + cst = 1

3
r p1t1 + 3

5
r p2t2. (B6)

We now expand the Legendre components of the temperature and
poloidal scalar fields as

t1 = 6

V0

[
r + t̂1,1P + O(P2)

]
, t2 = 1

V0

[
t̂2,0 + O(P]

)

p1 = V0

2

[
r + p̂1,1P + O(P2)

]
, p2 = V0

[
p̂2,1P + O(P2]

)
(B7)

and insert these expressions in eq. (B6). The zeroth order terms
cancel, and eq. (B6) then writes

0 =
(

r p̂1,1 + r t̂1,1 + 3

5
p̂2,1 t̂2,0

)
P + O(P2) (B8)

which implies that

t̂1,1 = − p̂1,1 − 1

r

3

5
p̂2,1 t̂2,0. (B9)

B1 l = 2 components of the thermal field and velocity field

We now calculate the l = 2 component of the temperature field
at zeroth order in P , which will then be used to find the l = 2
component of the velocity field at O(P).

It will be useful to first note that

D2
l (ra) = [a(a + 1) − l(l + 1)] [(a − 2)(a − 1) − l(l + 1)] ra−4,

(B10)

from which we find that

(
D2

1

)−1
(ra) = ra+4

(a + 6)(a + 4)(a + 3)(a + 1)
(B11)

and

(
D2

2

)−1
(ra) = ra+4

(a + 7)(a + 5)(a + 2)a
. (B12)
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Thermal convection in Earth’s inner core 1333

The l = 2 component of the temperature field at zeroth order in
P can be found by direct integration of the temperature field given
by eq. (96):

t2 = 5

2

6

V0

∫ π

0

√
1 − r 2 sin2 θ P2(cos θ ) sin θdθ

= 5

2

9

4V0

{
1

r 2
− 1

3
+ 1 − r 2

2r

(
1

3
+ 1

r 2

)
log

(
1 − r

1 + r

)}

= 15

8V0

+∞∑
k=1

(
1

2k − 1
+ 2

2k + 1
− 3

2k + 3

)
r 2k

= 1

V0

+∞∑
k=1

αkr 2k (B13)

with

αk = 30k

(2k + 3)(2k + 1)(2k − 1)
. (B14)

From this, we can calculate the associated velocity field,

p2 = Ra
(
D2

2

)−1
t2 (B15)

= Ra

V0

(
D2

2

)−1

(+∞∑
k=1

αkr 2k

)
(B16)

= 5

6
V0P

(
D2

2

)−1

(+∞∑
k=1

αkr 2k

)
(B17)

= V0P
+∞∑
k=1

5

6

αk

(2k + 7)(2k + 5)(2k + 2)2k
r 2k+4. (B18)

The general solution for p̂2,1 is

p̂2,1 = A2r 2 + B2r 4 +
+∞∑
k=1

βkr 2k+4, (B19)

where

βk = 5

6

αk

(2k + 7)(2k + 5)(2k + 2)2k
(B20)

= 25

2(2k + 7)(2k + 5)(2k + 3)(2k + 2)(2k + 1)(2k − 1)
, (B21)

The constants A2 and B2 have to be determined from the boundary
conditions. The stress free condition gives

3A2 + 8B2 +
+∞∑
k=1

βk [2 + (k + 2)(2k + 3)] = 0 (B22)

and the continuity of normal stress gives, ignoring O(P) terms,

− 15A2 − 21B2 +
+∞∑
k=1

βk(2k + 7)(2k2 + 2k − 3) = 0. (B23)

From eqs (B22) and (B23), we obtain

B2 = − 1

19

+∞∑
k=1

(k + 1)(4k2 + 24k + 19)βk � −0.0211 (B24)

and

A2 = 1

57

+∞∑
k=1

k(32k2 + 186k + 211)βk � 0.0346. (B25)

B2 l = 1 temperature field at O(P) and velocity field
at O(P2)

Inserting in eq. (B9) the expression found above for the l = 2
component of the velocity field, t̂1,1 is now given by

t̂1,1 = − p̂1,1 − 3

5

(
A2r + B2r 3 +

+∞∑
k=1

βkr 2k+3

)(+∞∑
k=1

αkr 2k

)
.

(B26)

After some rearrangements, we obtain

t̂1,1 = − p̂1,1 − 3

5

+∞∑
k=0

(A2αk+1 + B2αk + γk − β0αk) r 2k+3, (B27)

where

γk =
k∑

i=0

αiβk−i . (B28)

We can now determine the l = 1 flow field by integrating the
Stokes equation with the above temperature field. Noting

p1 = V0

2

[
r + p̂1,1P + p̂1,2P2 + O(P3)

]
(B29)

the second order contribution is given by

V0

2
P2 p̂1,2 = 6

V0
PRa

(
D2

1

)−1
t̂1,1, (B30)

or

p̂1,2 = 10
(
D2

1

)−1
t̂1,1 + Dr + Er 3. (B31)

We obtain

p̂1,2 = − 1

28
Ar 5 − 5

756
Br 7 − 5

2376
Cr 9

−30

5

+∞∑
k=0

A2αk+1 + (B2 − β0)αk + γk

(2k + 9)(2k + 6)(2k + 7)(2k + 4)
r 2k+7

+Dr + Er 3 (B32)

which gives

p̂1,2 = − 1

28
Ar 5 + 25

31752
r 7 − 5

66528
r 9

−30

5

+∞∑
k=0

A2αk+1 + (B2 − β0)αk + γk

(2k + 9)(2k + 6)(2k + 7)(2k + 4)
r 2k+7

+Dr + Er 3. (B33)

The constants A and E can be determined from the boundary con-
ditions. The no-stress condition gives

E = 5

42
A − 115

24948
+

+∞∑
k=0

A2αk+1 + (B2 − β0)αk + γk

(2k + 9)(2k + 4)
(B34)

and continuity of the normal stress gives

23

7
A = −6E + 316

1173
− 30

5

+∞∑
k=0

A2αk+1 + (B2 − β0)αk + γk

(2k + 9)(2k + 6)(2k + 7)(2k + 4)

× 2(k + 3)(4k2 + 24k + 29). (B35)
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1334 R. Deguen, T. Alboussière and P. Cardin

Using eqs (B34) and (B35), we obtain

A = 131

1764
− 3

2

+∞∑
k=0

A2αk+1 + (B2 − β0)αk + γk

2k + 7
� 0.0617.

(B36)

The average velocity ūx in the x direction, defined as

ūx = 1

Vic

∫
Vic

ux dV (B37)

is less than the infinite viscosity limit (here Vic is the volume of the
inner core). Indeed, noting that ux = urcos θ − uθ sin θ , and that

ur =
∑
l,m

l(l + 1)
pm

l

r
Pl , (B38)

uθ =
∑
l,m

1

r

d

dr

(
r pm

l

) ∂ Pl

∂θ
, (B39)

we find

ūx = 3

4π

∫ 1

0

∫ π

0

[
2 p1 cos2 θ + d

dr
(r p1) sin2 θ

]
r sin θdrdθdφ

(B40)

=
∫ 1

0

[
4p1 + 2r

dp1

dr

]
r dr =

∫ 1

0
2

d

dr

(
r 2 p1

)
dr (B41)

= 2 p1(r = 1) (B42)

= V0

[
1 + (A + B + C)P + O(P2)

]
, (B43)

which gives

ūx �
√

6

5

Ra

P
[
1 − 0.0216P + O(P2)

]
. (B44)
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