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S U M M A R Y
The hemispherical asymmetry of the inner core has been interpreted as resulting from a
high-viscosity mode of inner core convection, consisting in a translation of the inner core. A
thermally driven translation, as originally proposed, is unlikely if the currently favoured high
values of the thermal conductivity of iron at core conditions are correct. We consider here the
possibility that inner core translation results from an unstable compositional gradient, which
would develop either because the light elements present in the core become increasingly
incompatible as the inner core grows, or because of a possibly positive feedback of the
development of the F-layer on inner core convection. Though the magnitude of the destabilizing
effect of the compositional field is predicted to be similar to or smaller than the stabilizing effect
of the thermal field, the huge difference between thermal and chemical diffusivities implies
that double-diffusive instabilities can still arise even if the net buoyancy increases upward.
Using linear stability analysis and numerical simulations, we demonstrate that a translation
mode can indeed exist if the compositional field is destabilizing, even if the temperature profile
is subadiabatic, and irrespectively of the relative magnitudes of the composition and potential
temperature gradients. The existence of this double diffusive mode of translation requires
that the following conditions are met: (i) the compositional profile within the inner core is
destabilizing, and remains so for a duration longer than the destabilization timescale (on the
order of 200 Myr, but strongly dependent on the magnitude of the initial perturbation); and
(ii) the inner core viscosity is sufficiently large, the required value being a strongly increasing
function of the inner core size (e.g. 1017 Pa s when the inner core was 200 km in radius,
and �3 × 1021 Pa s at the current inner core size). If these conditions are met, the predicted
inner core translation rate is found to be similar to the inner core growth rate, which is more
consistent with inferences from the geomagnetic field morphology and secular variation than
the higher translation rate predicted for a thermally driven translation.
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1 I N T RO D U C T I O N

Apart from its North–South anisotropy (Poupinet et al. 1983;
Morelli et al. 1986; Woodhouse et al. 1986), the most prominent fea-
ture of Earth’s inner core is the hemispherical dichotomy observed
in its seismological properties: the western hemisphere (west from
Greenwich) exhibits stronger anisotropy, lower P-wave velocity, and
less attenuation than the eastern hemisphere (Tanaka & Hamaguchi
1997; Niu & Wen 2001; Garcia 2002; Irving et al. 2009; Deuss
et al. 2010; Monnereau et al. 2010; Waszek et al. 2011; Tanaka
2012; Lythgoe et al. 2014). This has been proposed to result from
either heterogeneous crystallization due to long-term mantle control
(Sumita & Olson 1999; Aubert et al. 2008; Gubbins et al. 2011) or
from a thermal convection mode consisting in a translation of the
inner core (Alboussière et al. 2010; Monnereau et al. 2010), which
is the focus of this paper. Inner core translation could plausibly ex-
plain the hemispherical structure of the inner core, through textural

change of the iron aggregate during the translation (Bergman et al.
2010; Monnereau et al. 2010; Cormier et al. 2011; Geballe et al.
2013; Lasbleis et al. 2017; Calvet & Margerin 2018), but could
also have profound implications for the dynamics and structure of
the outer core. If fast enough, translation can result in significant
melting on one of the inner core hemisphere. This may be at the
origin (Alboussière et al. 2010) of the so-called F-layer, a layer
of anomalously low P-wave velocity gradient (Souriau & Poupinet
1991) which has been interpreted as an iron-rich, stably stratified
layer (Gubbins et al. 2008). Inner core translation, by imposing a
highly asymmetric buoyancy flux at the base of the outer core, is
also a promizing candidate (Aubert 2013; Aubert et al. 2013; Davies
et al. 2013) for explaining the existence of the planetary scale ec-
centric gyre which has been inferred from quasi-geostrophic core
flow inversions (Pais & Jault 2008; Gillet et al. 2009).

The translation of the inner core proposed by Monnereau et al.
(2010) and Alboussière et al. (2010) is a high-viscosity mode of
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thermal convection. Its existence, therefore, requires the tempera-
ture profile in the inner core to be superadiabatic. Thermal convec-
tion in the inner core may arise because the temperature at the inner
core boundary (ICB) decreases with time as the inner core grows.
This builds a temperature profile decreasing from the centre out-
wards, a situation which could lead to convection if the temperature
profile is steeper than the adiabat. The temperature profile within
the inner core depends on how efficiently heat is extracted from
within the inner core, and on the cooling rate at the ICB. Fast inner
core growth and low thermal diffusivity promote a steep, possi-
bly superadiabatic temperature profile; slow inner core growth and
high thermal diffusivity results in a flatter, subadiabatic temperature
profile.

When the thermally driven convective translation of the inner
core was proposed, existing experiments and models favoured a
rather low value of the inner core thermal conductivity [36 W m−1

K−1 according to Stacey & Davis (2008)] making the existence of
thermal convection in the inner core likely. However, the value of
the thermal conductivity has since been re-evaluated significantly
upward, with all published studies arguing for a thermal conductivity
higher than ∼100 W m−1 K−1 in the outer core and possibly larger
than 200 W m−1 K−1 in the inner core (Sha & Cohen 2011; de Koker
et al. 2012; Pozzo et al. 2012; Gomi et al. 2013; Pozzo et al. 2014;
Gomi et al. 2016; Ohta et al. 2016; Zhang et al. 2016), with the
exception of Konôpková et al. (2016) who estimate the core thermal
conductivity at 18–44 W m−1 K−1. The high thermal conductivity
makes thermally driven convection—and translation—in the inner
core unlikely (Deguen et al. 2013; Labrosse 2014; Pozzo et al. 2014;
Lythgoe et al. 2015).

Compositional convection might be a viable alternative to ther-
mal convection (Gubbins et al. 2013; Labrosse 2014; Pozzo et al.
2014; Lythgoe et al. 2015): an unstable compositional gradient may
arise in the inner core either because the light elements present in
the core become increasingly incompatible as the inner core grows
(Deguen & Cardin 2011; Gubbins et al. 2013), or because of a pos-
sibly positive feedback of the development of the F-layer on inner
core convection (Deguen et al. 2013). Modelling of the thermal
and compositional evolution of the inner core indicates that the two
contributions are similar in magnitude, though the stabilizing ther-
mal effect is likely larger than the destabilizing compositional effect
(Labrosse 2014). It is well known that in this configuration, double-
diffusive convection can arise owing to the large contrast between
the thermal and compositional diffusivities (Stommel et al. 1956;
Stern 1960; Huppert & Turner 1981). The possibility of double-
diffusive convection of the inner core has been suggested by Pozzo
et al. (2014).

The goal of this paper is to investigate the conditions of existence
of inner core translation in a situation where the temperature field
is stabilizing (subadiabatic temperature profile) and the composi-
tion field destabilizing. The governing equations are presented in
Section 2 and numerical methods are briefly discussed in Section 3.
A linear stability analysis of the governing equations (Section 4)
demonstrates that an instability of double-diffusive type can de-
velop and initiate a translation motion if the compositional field
is destabilizing and the temperature field stabilizing. Expressions
for the steady-state translation rate are then obtained in Section 5.
The deformation induced by lateral temperature and compositional
variations is investigated in Section 6. We then use our results to
discuss in Section 7 the feasibility of double-diffusive translation of
Earth’s inner core. The parameters and variables used in this study
are summarized in Table 1, with their definitions or values when
applicable.

2 G OV E R N I N G E Q UAT I O N S

In this section, we present the systems of equations used here to
model thermochemical convection in the inner core, with melting
and freezing at the ICB. We present both a set of equations for a
viscous (with newtonian rheology) inner core, and a second set of
equations strictly valid in the limit of a rigid inner core (infinite
viscosity), which will be used in Sections 4 and 5 to investigate the
conditions of existence of a double-diffusive mode of translation
and obtain analytical expressions for the steady-state translation
rate. The rigid inner core set of equations generalizes the treatment
presented in Alboussière et al. (2010) to take into account time
dependance, a compositional field in addition to the thermal field,
and non-negligible diffusion.

2.1 Heat and composition transport

We use a potential temperature formulation where we define the
potential temperature as � = T(r, θ , ϕ, t) − Tad(r, t), where Tad(r,
t) is the adiabatic temperature profile anchored at the ICB (Deguen
& Cardin 2011). Under the assumption that the dissipation num-
ber is small (it is about 7 × 10−2 in the inner core) but allowing
for temperature variations of the same order of magnitude as adia-
batic variations, this allows to obtain from the entropy balance the
following transport equation for �:

D�

Dt
= κT ∇2� + ST , �(ric) = 0, (1)

where κT is the thermal diffusivity and

ST = −∂Tad

∂t
+ κT ∇2Tad (2)

is a source term comparing the effects of the secular decrease of
the temperature at the ICB, which helps maintaining a temperature
difference across the inner core, with conduction of heat along the
adiabat.

The equation for the transport of composition can be written
in a mathematically equivalent way (Deguen et al. 2013; Lasbleis
et al. 2015; Lythgoe et al. 2015) by defining a potential composition
χ = cs − cicb

s , where cs(r, θ , ϕ, t) is the concentration of a given
element in the inner core and cicb

s is its concentration at the ICB
on the solid side. We denote by cicb

l the concentration on the liquid
side of the ICB, assumed to be a function of time only, and by k =
cicb

s /cicb
l the equilibrium partition coefficient of this light element at

the ICB conditions. With this formulation, the equation of transport
of composition writes

Dχ

Dt
= κc∇2χ + Sc, χ (ric) = 0, (3)

where κc is the compositional diffusivity and

Sc = −dcicb
s

dt
= −k

dcicb
l

dt
− cicb

l

dk

dt
. (4)

In the few calculations taking into account the growth of the
inner core (Section 7.4), we use a front fixing method which in
effect introduces in eqs (1) and (3) an additional radial advection
term equal to ṙic (r/ric) ∂�/∂r and ṙic (r/ric) ∂χ/∂r , respectively,
where ric(t) is the radius of the inner core at time t and ṙic = dric/dt
is the inner core growth rate. For simplicity, we will only present
in what follows a set of equations assuming a constant inner core
radius. All the details related to properly taking into account inner
core growth can be found in Deguen & Cardin (2011).
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Table 1. Definitions of the main parameters and variables used in this study, with representative values or definition when applicable.

Present-day inner core radiusa r p
ic 1221 km

Density in the inner corea ρ 13 000 kg m−3

Density jump at the ICBa 	ρ 600 kg m−3

Gravitational accelerationa g 4.4 m2 s−1 at the ICB
Radial gravity gradienta g′ = dg/dr 3.6 × 10−6 s−2

Isentropic bulk modulusa KS 1400 GPa
Dynamic viscosityb η 1011 to 1022 Pa s
Thermal parameters and variables Compositional parameters and variables
Temperature T Concentration (solid, liquid) cs, cl

Adiabat Tad Solid/liquid partition
coefficient

k = cicb
s /cicb

l

Potential temperature � = T − Tad Potential composition χ = cs − cicb
s

Thermal diffusivityc κT 0.5–2 × 10−5 m2 s−1 Compositional diffusivityf κc 10−12 m2 s−1

Thermal expansion
coefficientd

αT 10−5 K−1 Compositional expansion
coefficientf

αc 1

Thermal source term ST eq. (2) Compositional source term Sc eq. (4)
Gruneisen parameterd γ 1.4
Clapeyron/adiabat slopes ratioe dTs/dTad 1.65
Relevant timescales
Phase change timescale τϕ ∼1 ky
Viscous relaxation timescale τη η/(	ρ g′ r2

ic) ∼ 5 min to 0.1 My
Thermal diffusion timescaleg τκT r2

ic/κT ∼ 5 Gy
Compositional diffusion
timescaleg

τκc r2
ic/κc ∼ 5 × 107 Gy

Advection timescale τV ric/V
Non-dimensional parameters
Phase change number P τϕ /τη

Lewis number Le κT /κc = τκc /τκT ∼ 107

Buoyancy ratio B αTST/(αcSc)
Thermal Rayleigh number Ra� eq. (9) Compositional Rayleigh

number
Raχ eq. (9)

R� = Ra�/P Rχ = Raχ /P
Thermal Péclet number PeT τκT /τV Compositional Péclet number Pec τκc /τV

a From PREM (Dziewonski & Anderson 1981).
b Yoshida et al. (1996); Buffett (1997); Van Orman (2004); Mound & Buffett (2006); Koot & Dumberry (2011); Reaman et al. (2011, 2012).
c corresponding to a thermal conductivity between 50 and 200 W m−1 K−1 (Sha & Cohen 2011; de Koker et al. 2012; Pozzo et al. 2012; Gomi et al. 2013;
Pozzo et al. 2014; Gomi et al. 2016; Konôpková et al. 2016; Ohta et al. 2016; Zhang et al. 2016).
d Vocadlo (2015).
e Deguen & Cardin (2011).
f Gubbins et al. (2013).
g The free-decay timescale of a spherically symmetric field and of a degree 1 heterogeneity in a sphere are respectively r2

ic/(α2
01κ) and r2

ic/(α2
11κ), where

α01 = π and α11 � 4.4934 are the first zeros of the degree 0 and degree 1 spherical Bessel function of the first kind. This is respectively a factor 9.87 and 20.2
smaller than the timescales given in the table.

2.2 Dimensionless equations

We denote by 	� the difference of potential temperature across
the inner core, and by 	χ the difference of potential composition
across the inner core. The acceleration of gravity is taken to vary
linearly with radius, g(r) = g′ r. Scaling lengths by ric, time by
r 2

ic/κT , velocity by κT/ric, temperature by 	�, and composition by
	χ , the equations of conservation of momentum, continuity, heat
and composition transport write

0 = −∇ p +
(

Ra�� + Raχ

Le
χ

)
r + ∇2u, (5)

∇ · u = 0, (6)

D�

Dt
= ∇2� + ST r 2

ic

κT 	�
, (7)

Le
Dχ

Dt
= ∇2χ + Scr 2

ic

κc	χ
, (8)

where p is the dynamic pressure, u the velocity, r = r er . The ther-
mal and compositional Rayleigh numbers and the Lewis number
are defined as

Ra� = αT ρ g′	� r 4
ic

κT η
, Raχ = αcρ g′	χ r 4

ic

κcη
, Le = κT

κc
, (9)

where αT and αc are the thermal and compositional expansion coef-
ficients, ρ the density of the inner core and η the dynamic viscosity.

Following Alboussière et al. (2010), we assume that melting and
freezing happens at the ICB at a rate proportional to the topography
h of the ICB, and inversely proportional to a timescale τϕ which
depends on how efficiently convection in the outer core is able to
transport the latent heat associated with melting or freezing. If the
topography varies slowly with time compared to τϕ [estimated to
be ∼1 kyr (Alboussière et al. 2010)], this amounts to state that the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/214/1/88/4953422 by C

N
R

S user on 22 M
ay 2022



Double-diffusive inner core translation 91

radial velocity ur at the ICB is

ur = h

τφ

. (10)

Using this phase change law to relate the radial velocity at the ICB
to the topography, the continuity of normal stress across the ICB
can be written as

− 2η
∂ur

∂r
+ p = 	ρ g(ric) τφur (11)

(Deguen et al. 2013), where 	ρ is the density jump across the ICB.
Once made dimensionless, this can be written as

− 2
∂ur

∂r
+ p = Pur , (12)

where

P = 	ρ g′ r 2
ic τφ

η
(13)

is the ‘phase change number’ introduced in Deguen et al. (2013),
which quantifies the resistance to phase change at the ICB. P is the
ratio of τϕ to the timescale η/(	ρ g(ric) ric), which is best understood
in this context as the time needed to build from zero a topography
balancing the internal stresses: Consider a flow within the inner
core with a radial velocity ur varying radially over the lengthscale
ric. Starting from a state with no topography, this flow will deform
the ICB up to a point where the normal stress at r = ric, which is
∼ηur/ric, is balanced by the topography weight ∼	ρ g(ric) h. This
happens when h ∼ ηur/(	ρ g(ric) ric). The time needed to build this
topography is h/ur ∼ η/(	ρ g(ric) ric).

In the limit of infinite P , the boundary condition (12) reduces to
the condition ur = 0, which corresponds to impermeable conditions.
In this limit, the timescale of topography building is short compared
to the phase change timescale, which implies the formation of a
topography balancing the internal stresses.

In contrast, when P → 0, eq. (12) implies that the normal stress
tends towards 0 at the ICB, which corresponds to fully perme-
able boundary conditions. In this limit, the timescale of topography
building is long compared to the phase change timescale, which
implies that phase change is too fast to allow the development of a
topography balancing the internal stresses.

The general case of finite P gives boundary conditions for which
the rate of phase change at the boundary (equal to ur) is proportional
to the normal stress induced by convection within the inner core.

We further impose shear stress free conditions. By construction,
� = χ = 0 at the ICB.

2.3 The rigid inner core limit

In the limit of a rigid inner core (no deformation allowed), the
possible motions of the inner core are restricted to either rotational
motions (which we will not consider here) and translation motions,
which can arise in response to degree 1 density heterogeneities in
the inner core.

An expression for the translation rate can be obtained by combin-
ing the phase change law eq. (10) with the force balance on the inner
core, which we use to obtain the displacement of the inner core from
a reference state as a function of the internal density distribution.
The force balance on the inner core comes down to an equilibrium
between buoyancy forces associated with density anomalies within
the inner core and pressure forces applied by the outer core on the
inner core surface. This force balance gives the displacement of the
inner core and the degree 1 component h1 of the ICB topography.

Using the phase change law eq. (10) to relate the translation rate V
to h1 through V = h1/τϕ , we obtain the following expression for the
translation rate:

V = ρ

	ρ r 3
icτφ

∫ ricb

0
[αT �1(r ) + αcχ1(r )] r 3dr (14)

(see Appendix A1 for the derivation). Once made dimensionless,
this writes

V =
∫ 1

0

(
R��1 + Rχ

Le
χ1

)
r 3dr, (15)

where

R� = αT ρ	�

	ρ

r 2
ic/κT

τφ

= Ra�

P ,

Rχ = αcρ	χ

	ρ

r 2
ic/κc

τφ

= Raχ

P .

(16)

R� and Rχ are independent of the viscosity, as appropriately de-
fined non-dimensional numbers should be since here no deformation
is allowed. Note that they are also independent of the acceleration
of gravity.

In the translation mode, the potential temperature and compo-
sition fields are symmetric about the translation direction, and the
equations of transport of heat and composition are given by eqs (1)
and (3) in which advective transport is restricted to the translation
direction:

∂�

∂t
+ V · ∇� = ∇2� + ST r 2

ic

κT 	�
, �(ric) = 0, (17)

Le

(
∂χ

∂t
+ V · ∇χ

)
= ∇2χ + Scr 2

ic

κc	χ
, χ (ric) = 0, (18)

where V is the translation velocity. Expanding � and χ as series of
Legendre polynomials of cos θ , where θ is the angle between r and
the translation direction, eqs (17) and (18) can then be written, as
demonstrated in Appendix A2, as

∂�l

∂t
= − V

l + 1

2l + 3

(
l + 2

r
+ ∂

∂r

)
�l+1

+ V
l

2l − 1

(
l − 1

r
− ∂

∂r

)
�l−1

+ Dl�l + ST r 2
ic

κT 	�
δ0l , ∀l ≥ 0,

(19)

∂χl

∂t
= − V

l + 1

2l + 3

(
l + 2

r
+ ∂

∂r

)
χl+1

+ V
l

2l − 1

(
l − 1

r
− ∂

∂r

)
χl−1

+ 1

Le

(
Dlχl + Scr 2

ic

κc	χ
δ0l

)
, ∀l ≥ 0,

(20)

which have to be solved together with the boundary conditions
�l(r = 1) = χ l(r = 1) = 0. The operator Dl is defined as

Dl = d2

dr 2
+ 2

r

d

dr
− l(l + 1)

r 2
. (21)

3 N U M E R I C A L M E T H O D S

In the following sections, we will perform a linear stability anal-
ysis of double-diffusive convection with a phase-change interface
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(Section 4), derive analytical solutions for the steady-state trans-
lation rate (Section 5) and quantify the conditions of existence of
the translation mode (Section 6). The theoretical predictions will
be compared with numerical simulations obtained by running two
different codes: the first one [an extension of the code used in
Deguen et al. (2013)] solves the Stokes equation and the tempera-
ture and composition transport equations, and has been used here
in an axisymmetric configuration; the second is a simpler code only
allowing the translation mode, the evolution of which is obtained
by solving eqs (15), (19) and (20). The latter approach has the ad-
vantage of being highly efficient (the Stokes equation does not need
to be solved, and the nonlinear term of the advection equations is
solved in the spectral domain).

Up to 512 radial levels and maximal harmonic degree of 256
have been used. Care has been taken to always correctly resolve the
compositional boundary layer below the ICB, which can be quite
thin.

4 O N S E T O F D O U B L E - D I F F U S I V E
C O N V E C T I O N

4.1 Marginal stability

We consider here an initial state at rest, with the potential tempera-
ture and composition fields following spherically symmetric profiles
�̄(r ) and χ̄(r ). This state is perturbed by infinitesimal perturbations
�′(r, θ , ϕ, t) and χ ′(r, θ , ϕ, t), and we write

�(r, θ, φ, t) = �̄(r ) + �′(r, θ, φ, t), (22)

χ (r, θ, φ, t) = χ̄(r ) + χ ′(r, θ, φ, t). (23)

The evolution of the perturbations is controlled by the equations of
conservation of momentum, heat and composition given by eqs (5),
(1) and (3).

Taking twice the curl of the Stokes, eq. (5) gives

0 = −∇2

(
Ra��′ + Raχ

Le
χ ′

)
r − ∇4u, (24)

where ∇4(...) = ∇ × ∇ × ∇ × ∇ × (...). Linearizing the heat and
composition transport equations gives

ur
∂�̄

∂r
= ∇2�′, (25)

ur
∂χ̄

∂r
= 1

Le
∇2χ ′. (26)

Multiplying eq. (25) by Ra�, eq. (26) by Raχ and adding the two
equations, gives

ur

(
Ra�

∂�̄

∂r
+ Raχ

∂χ̄

∂r

)
= ∇2

(
Ra��′ + Raχ

Le
χ ′

)
, (27)

which we inject into eq. (24) to obtain

0 = ur

(
Ra�

∂�̄

∂r
+ Raχ

∂χ̄

∂r

)
r + ∇4u. (28)

This can be solved with the boundary conditions given by the conti-
nuity of stress at the ICB (eq. 12 plus shear-stress-free conditions).

Assuming for illustration that the base profiles �̄ and χ̄ have the
same r dependency, this gives the exact same equation as would
have been obtained in the case of purely thermal convection, with

Ra� + Raχ instead of Ra�. In this case, the results on the marginal
stability of thermal convection in the inner core obtained in Deguen
et al. (2013) can be extended to the case of two-components con-
vection by simply replacing Ra� by Ra� + Raχ . Instability requires
that

Ra� + Raχ > Racr(P), (29)

where the critical Rayleigh number Racr is a function of P , which
can be calculated numerically as explained in Deguen et al. (2013).
Racr is well approximated by

Racr =
{

175
2 P if P 
 102,

1545.6 if P � 102.
(30)

Eq. (29) demonstrates that the convection instability can develop
even when the sum of the thermal and compositional buoyancy
αT� + αcχ increases upward: since κc 
 κT, Ra� + Raχ can be
positive with Ra� < 0 (	� < 0) even if |αT	�| > |αc	χ |. This
is typical of double-diffusive convection, and a direct consequence
of the differential diffusion of the thermal and compositional fields:
convective motions can develop because the much larger thermal
diffusivity allows temperature heterogeneities to diffuse much faster
than compositional heterogeneities.

The mathematical analogy at the marginal state between the two-
components case and the thermal case also holds when calculating
the first unstable mode. The analysis of Deguen et al. (2013; Section
4), thus, implies that the first unstable mode consists in a translation
if P � 30. In this limit, taking Racr = 175

2 P and dividing eq. (29)
by P gives the following criterion for instability:

R� + Rχ >
175

2
. (31)

Again, the instability criterion can be met even when αT� + αcχ

increases upwards if κc 
 κT, suggesting that a double-diffusive
translation mode is possible.

4.2 The P → 0 limit

4.2.1 Marginal stability

If we restrict ourselves to the emergence of the translation mode, the
critical value of R� and Rχ for more general forms of the potential
temperature and composition profiles can be found by analysing
the set of equations developed in Section 2.3 for a pure translation.
The inner core is unstable against the translation instability if any
arbitrarily small perturbations of the degree one components of the
thermal and compositional fields initially grow with time, that is, if

1

�1

∂�1

∂t
= 1

�1

[
−V

2

5

(
3

r
+ ∂

∂r

)
�2 − V

∂�0

∂r
+ D1�1

]
> 0,

(32)

1

χ1

∂χ1

∂t
= 1

χ1

[
−V

2

5

(
3

r
+ ∂

∂r

)
χ2 − V

∂χ0

∂r
+ D1χ1

Le

]
> 0.

(33)

The marginal stability state (neither growth or decay of any in-
finitesimal perturbations) corresponds to ∂�1/∂t = ∂χ 1/∂t = 0.
Linearizing eqs (32) and (33) and keeping only terms of order 1 in
perturbation quantities (i.e. ignoring the terms in V�2 and Vχ 2),
the marginal stability state corresponds to

0 = −V
∂�0

∂r
+ D1�1, (34)
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0 = −V
∂χ0

∂r
+ 1

Le
D1χ1. (35)

At this stage, we let the mathematical forms of �0 and χ 0 unspeci-
fied and just write

�1 = V D−1
1

{
∂�0

∂r

}
and χ1 = Le V D−1

1

{
∂χ0

∂r

}
(36)

the solutions of eqs (34) and (35) which vanish at r = 1, as must �1

and χ 1. Injecting these expressions in eq. (15) gives the following
relation between R� and Rχ at marginal stability:

R�

∫ 1

0
D−1

1

{
∂�0

∂r

}
r 3dr + Rχ

∫ 1

0
D−1

1

{
∂χ0

∂r

}
r 3dr = 1. (37)

The critical values of R� and Rχ corresponding to either purely
thermal or purely compositional convection are given by

R�,cr =
[∫ 1

0
D−1

1

{
∂�0

∂r

}
r 3dr

]−1

, (38)

Rχ,cr =
[∫ 1

0
D−1

1

{
∂χ0

∂r

}
r 3dr

]−1

, (39)

which will be calculated explicitly below for given forms of the
temperature and compositional profiles. Convection sets in if

R�

R�,cr
+ Rχ

Rχ,cr
> 1. (40)

Let us now evaluate R�,cr and Rχ,cr for different forms of the
thermal or compositional profiles. Taking into account the variation
of the partition coefficient with temperature (Gubbins et al. 2013),
Labrosse (2014) found that the composition profile in the inner core
is well approximated by

χ0 =
3
2 r∗

ic(1 − r 2) − (1 − r 3)
3
2 r∗

ic − 1
, (41)

where r∗
ic is the inner core radius (here normalized by the current

inner core radius) at which the effect of the secular enrichment of
the outer core in incompatible elements becomes dominant over the
effect of the variation of the partition coefficient with temperature.
The radial composition gradient is then given by

∂χ0

∂r
= −2

r 2 − r∗
icr

2/3 − r∗
ic

. (42)

The critical value of Rχ is thus given by

Rχ,cr = r∗
ic − 2/3

2

[∫ 1

0
D−1

1

{
r 2 − r∗

icr
}

r 3dr

]−1

. (43)

It can be verified that, for any number α, the solution of the equation
D1(x) = rα which vanishes at r = 1 is

D−1
1 (rα) = rα+2 − r

α2 + 5α + 4
. (44)

Using this expression, we find from eq. (43) that

Rχ,cr = 80
3
2 r∗

ic − 1
48
35 r∗

ic − 1
. (45)

The case of a constant partition coefficient k corresponds to the
limit r∗

ic = 0 in eq. (45), which gives

Rχ,cr = 80. (46)

In the thermal case, the basic potential temperature profile is set
by an equilibrium between cooling and thermal diffusion (Deguen
& Cardin 2011). The potential temperature difference across the
inner core is given by 	� = ST r 2

ic/(6κT ), and the non-dimensional
temperature profile is given by 1 − r2, which corresponds mathe-
matically to the limit r∗

ic → ∞ in eq. (45). This gives

R�,cr = 175

2
= 87.5, (47)

in agreement with the value found by Deguen et al. (2013) from a
more general linear stability analysis (not restricted to the translation
mode).

In the case of a positive Rχ and negative R�, the instability
condition eq. (40) can be recast as

αc	χ

−αT 	�
>

(Rχ,cr

R�,cr
− Rχ,cr

R�

)
Le−1. (48)

R� and Rχ are both expected to be large in magnitude compared
with their critical values. Since in addition the critical values R�,cr

and Rχ,cr are of the same order of magnitude, the condition for
instability in practice reduces to

−αT 	�

αc	χ
� Le. (49)

Le � 2 × 107 in the inner core (Gubbins et al. 2013), which implies
that the inner core can be unstable against the translation instability
even if the magnitude of the destabilizing compositional density
gradient is much smaller than a stabilizing thermal density gradi-
ent. Labrosse (2014) obtained values of αT 	�

αc	χ
ranging from about

−5 to positive values, depending on the outer core composition
and assumptions on the evolution of the core. In what follows, we
will take −3 as a representative value of the stabilizing thermal
stratification/destabilizing compositional stratification case.

4.2.2 Growth rate of the translation instability

Though instability appears almost unavoidable when the composi-
tional profile is destabilizing, whether the translation rate eventually
becomes significant depends on the growth rate σ of the instability
compared to the inner core age, and on the magnitude of the initial
perturbations. It is, therefore, useful to estimate the growth rate of
the instability when the conditions are supercritical. This is done
in Appendix A3, where the growth rate is obtained by decompos-
ing the spherical harmonics degree 1 component of the composition
and temperature fields as series of spherical Bessel functions, before
solving numerically the linear system of equations obtained from
the linearized conservation equations and boundary conditions.

Fig. 1 shows with thick solid lines the growth rate of the transla-
tion instability as a function of Rχ , with αT 	�

αc	χ
fixed at −3, Le = 104

or 2 × 107, and different forms of the base compositional profile
(r∗

ic = 0, 1, and ∞ in eq. (41)). When Rχ is increased above the
critical value for instability, σ initially increases in proportion to
Rχ before reaching a plateau.

In the limit of Le � 1, a good approximation of the growth rate
σ of the translation instability is given (in dimensional form) by

σ = κT

r 2
ic

1/3 − 2/5r∗
ic

2/3 − r∗
ic

Rχ/Le

1 − R�

175/2

(50)
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Figure 1. Growth rate of the translation instability as a function of Rχ

at αT 	�
αc	χ

= −3, Le = 104 or 2 × 107, and (a) r∗
ic = 0, (b) r∗

ic = 1 and
(c) r∗

ic = ∞ . The thick solid lines show the numerical solutions of the
dispersion equation (A43); the dashed lines show the approximate solution
given in eq. (50). The thin grey lines show the two asymptotes given by
eq. (51).

(see Appendix A3.3 for the derivation). This has the two following
limits:

σ � κT

r 2
ic

1/3 − 2/5r∗
ic

2/3 − r∗
ic

⎧⎨
⎩
Rχ/Le if − R� 
 175/2,
175

2

αc	χ

−αT 	�
if − R� � 175/2.

(51)

The approximate solution eq. (50) is shown on Fig. 1 with thick
dashed lines. The thin grey lines show the two asymptotes given by
eq. (51). The two asymptotes intersect at R� = −175/2, the corre-
sponding value of Rχ being given by αc	χ

αT 	�
LeR� = − 175

2
αc	χ

αT 	�
Le.

The agreement with the full solution (thick solid lines) is excellent
for −R� 
 175/2. At −R� � 175/2, the approximate solution
underestimates the actual growth rate, by up to a factor 3 at r∗

ic = 0,
but is still rather good at r∗

ic around 1.
Note that sinceRχ/Le ∝ 1/κT , the growth rate is independent of

the thermal and compositional diffusivities if −R� 
 175/2. On
the other hand, the growth of the instability is limited by the diffusion
of the temperature heterogeneity when −R� � 175/2; the growth
rate is inversely proportional to the thermal diffusion timescale, but
independent of the compositional diffusion timescale.

5 S T E A DY- S TAT E T R A N S L AT I O N

We now derive expressions for the translation rate in steady-state
conditions, still focusing on the limit P → 0 described by the set
of equation of Section 2.3. The radius of the inner core is assumed
to be constant, and so are the heat and composition source terms ST

and Sc in eqs (1) and (3). In the stability analysis of Section 4, the
base potential temperature and composition profiles were imposed,
and the definition of the Rayleigh numbers were based on the as-
sumed potential temperature and composition differences across the
inner core, which were left unspecified. This cannot be done any-
more because the potential temperature and composition profiles
now depend on the translation rate, and are therefore outputs of the
problem. We, therefore, non-dimensionalize the potential temper-
ature and composition by constructing potential temperature and
composition scales 	� and 	χ from the heat and composition
sources terms:

	� = ST r 2
ic

6 κT
, 	χ = Scr 2

ic

6 κc
, (52)

which correspond to steady-state conductive profiles.

5.1 Phenomenology

Fig. 2 shows the translation rate V obtained by solving the set of
equations corresponding to the rigid inner core limit [eqs (15),
(19) and (20)], for various values of Rχ , Le and of the buoyancy
ratio B defined as the ratio of the production rates of thermal and
compositional buoyancy:

B = αT ST

αc Sc
= R�

Rχ

Le2 = Ra�

Raχ

Le2. (53)

(Note that this ratio is different from the ratio αT 	�

αc	χ
used in Sec-

tion 4.) Here the compositional field is always assumed to be desta-
bilizing (Rχ > 0), so B > 0 means that both compositional and
thermal fields are destabilizing, while B < 0 means that the com-
positional field is destabilizing and the thermal field stabilizing. The
steady-state potential temperature and composition fields in cross-
sections of the inner core are shown in Fig. 3 for three of these
calculations (red diamonds denoted a to c on Fig. 2).

Several different regimes are found depending on the rela-
tive importances of advection and diffusion of heat and com-
position, which are measured, respectively, by the thermal
Péclet number PeT = Vric/κT, and compositional Péclet number
Peχ = Vric/κc = LePeT. The translation rate being normalized
by κT/ric, the thermal Péclet number is simply equal to the non-
dimensional translation rate, and the compositional Péclet number
is equal to the Lewis number times the translation rate. Since we
focus on the translation regime, the relevant diffusion timescales
are those of a degree 1 heterogeneity. The free-decay thermal
diffusion timescale of a degree 1 temperature heterogeneity is
r 2

ic/(α2
11κT ) � r 2

ic/(20.2κT ) , where α11 � 4.4934 is the first zero
of the degree 1 spherical Bessel function of the first kind.1 Thermal
(resp. compositional) diffusion would, therefore, be small compared
to advection if PeT (resp. Peχ ) is large compared to 20.2.

If B > −1, the net buoyancy gradient is destabilizing, and the
translation mode is found to be very similar to thermally driven
translation: the compositional and thermal fields display degree
1 heterogeneity patterns, which are more or less pronounced de-
pending on the value of the Péclet numbers. Fig. 3(a) shows the
composition and potential temperature fields in a case where both

1The free-decay thermal diffusion timescale is obtained by looking for a
solution of the heat equation of the form �l (r, t) = �̃l (r )Pl (cos θ )e−λt .
The solution satisfying the condition �l(ric, t) = 0 is �l (r, t) =
jl (αl1r/ric)Pl (cos θ )e−t/(α2

l1κ/r2
ic), where jl is the spherical function of the

first kind of degree l and αl1 its first zero.
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Double-diffusive inner core translation 95

Figure 2. Steady-state translation rate as a function of the buoyancy ratio, Lewis number and compositional Rayleigh number. Filled diamonds show results
from the rigid inner core limit numerical model. Black lines are the predictions of the analytical models in the large thermal and compositional Péclet numbers
[dashed lines, eq. (57)] and large compositional Péclet number, O(1) thermal Péclet number [solid lines, eq. (66)] regimes. The red symbols denoted a to c
correspond to the snapshots shown in Fig. 3.

the compositional and thermal Péclet numbers are large compared
to 1. The translation rate is V = 13.2, which gives PeT = 13.2
and Peχ = 1.32 × 103. The composition and potential temperature
fields show a degree 1 pattern with higher concentration and poten-
tial temperature on the melting side. The composition and potential
temperature go back to zero across a boundary layer on the melting
side to satisfy the boundary conditions (the compositional boundary
layer cannot be seen on the figure, but is resolved in the numerical
calculation). The thermal boundary layer is much thicker, owing
to the much larger thermal diffusivity (since the boundary layer is
where diffusion balances advection, its thickness is on the order of
1/PeT). Fig. 3(b) shows the composition and potential temperature
fields in a case where the compositional Péclet number is large
compared to 1 (Peχ = 105), while the thermal Péclet number is on
the order of 1 (PeT = 1.05). The compositional field is similar to the
case of Fig. 3(a), though the boundary layer is thicker. In contrast,
the potential temperature field is only slightly affected by the trans-
lation: it is close to a diffusive field, the isotherms being only slightly
shifted towards the melting side of the inner core. An expression
for the translation rate in this regime is obtained in Section 5.2.

If B < −1, we find that the translation mode still exists even
though the stabilizing thermal density gradient is now larger in
magnitude than the destabilizing compositional density gradient,
in agreement with the stability analysis of Section 4. The transla-
tion rate—hence the thermal Péclet number—is found to be always
smaller than about 10, which means that the Péclet number based
on the degree 1 diffusion timescale, V ric/(α2

11κT ) , is always smaller
than �0.5. This implies that thermal diffusion is always of impor-
tance. This is confirmed by inspection of the potential temperature
field pattern. For example, Fig. 3(c) shows the composition and po-
tential temperature fields in a case where Le = 102, Rχ = 106 and
R� = −103, which gives B = −10. The translation rate is V = 3.3,
which gives PeT = 3.3 and Peχ = 330. The compositional field is
very similar to the B = 1 cases, but the asymmetry of the potential
temperature field is much less pronounced because of the effect
of diffusion. This is a distinctive feature of the double-diffusive
nature of the translation mode: the translation can perdure only
if the degree 1 potential temperature heterogeneity diffuses fast
enough for the net buoyancy contribution of the thermal field to

remain smaller than the compositional contribution. In practice, the
volume integrated thermal buoyancy almost balances the compo-
sitional buoyancy, but thermal diffusion allows a small imbalance
which drives the translation. This is similar to the mechanism of
the more classical salt finger regime of double-diffusive convection
(e.g. Turner 1974), except that it happens at a much larger length
scale. In the classical salt finger regime, convection develops in the
form of narrow vertical plumes with a width selected by the insta-
bility to allow efficient heat diffusion but negligible compositional
diffusion (Stern 1960). This has the effect of reducing the stabi-
lizing effect of thermal buoyancy while letting the compositional
buoyancy unaffected, hence promoting convection. In the transla-
tion regime, the length scale is fixed at ∼ric (i.e. there is only one
’salt finger’), and the translation rate is limited by the necessity to
smooth out the lateral temperature heterogeneities by diffusion. In
other words, the translation rate is selected to allow for efficient heat
diffusion but negligible compositional diffusion.

We derive in the next two subsections analytical expressions for
the translation rate obtained under the assumption that both the ther-
mal and compositional Péclet numbers are large (Section 5.2), or
that the compositional Péclet number is large and the thermal Péclet
number on the order of 1 or smaller (Section 5.3). The Peχ � 1, PeT

� 1 case is not relevant for the double-diffusive regime, but would
be relevant for the inner core if its thermal history and thermal dif-
fusivity are such that the temperature field is destabilizing. It is also
a direct extension of the model of thermal translation developed in
Alboussière et al. (2010) and Deguen et al. (2013), and is therefore
useful as a reference. The analytical solutions are shown on Fig. 2
in black dashed lines and black solid lines, respectively. Note that
the domain of validity of these solutions are really defined in terms
of the Péclet numbers, which depend on the Rayleigh numbers and
Lewis number. In particular, the Peχ � 1, PeT = O(1) solution is
valid in the double-diffusive regime (B < −1) but happens to also
correctly predict V for the B > −1 cases when the translation rate
is not too large.
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(a)

(b)

(c)

Figure 3. Steady-state composition (left) and potential temperature (right)
fields in a cross-section of the inner core including the translation direction,
obtained by solving the system of equations corresponding to the rigid inner
core limit (Section 2.3). The black arrows show the translation direction.
Reds means high potential temperature/composition, and blue means low
potential temperature/composition. Panels (a) and (b) show the composition
and potential temperature fields in cases where they are both destabilizing.
Panel (c) corresponds to a case where the composition field is destabilizing
and the potential temperature stabilizing.

5.2 Large thermal and compositional Péclet numbers

We assume here that diffusion of heat and composition are negligible
compared to advection (large thermal and compositional Péclet
numbers), and look for a steady-state solution of the translation
equations. The translation rate is given by eq. (15) as a function of the
degree 1 components of the potential temperature and compositional
fields, which can be obtained by considering eqs (19) and (20) with
l = 0, in which diffusion is neglected and a steady state is assumed:

0 = −V
1

3

(
2

r
+ ∂

∂r

)
�1 + 6, (54)

0 = −V
1

3

(
2

r
+ ∂

∂r

)
χ1 + 6Le−1. (55)

The solutions of these two equations are

�1 = 6

V
r, χ1 = Le−1 6

V
r. (56)

Inserting these expressions into eq. (15) and solving for V gives the
following expression for the translation rate:

V =
[

6

5

(
R� + Rχ

Le2

)]1/2

=
[

6

5

Rχ

Le2
(1 + B)

]1/2

. (57)

This is plotted as black dashed lines in Fig. 2. In dimensional form,
this writes

V = ric

(
ρ

	ρ

αT ST + αc Sc

5 τφ

)1/2

. (58)

The translation rate is independent of the thermal and composi-
tional diffusivities, which is consistent with the assumption of large
thermal and compositional Péclet numbers. The Sc = 0 limit of
eq. (58) corresponds to the translation rate found by Alboussière
et al. (2010) in the case of a thermally driven translation.

The magnitude of the thermal and compositional degree 1 het-
erogeneities can be obtained from eqs (56) and (57) and are given
(in dimensional form) by

�1 = ST ric

V

r

ric
= ST r 2

ic

κT

[
6

5

Rχ

Le2
(1 + B)

]−1/2 r

ric
, (59)

χ1 = Scric

V

r

ric
= Scr 2

ic

κT

[
6

5

Rχ

Le2
(1 + B)

]−1/2 r

ric
. (60)

5.3 Large compositional Péclet number, O(1) thermal
Péclet number

We now focus on the case of double-diffusive translation, where the
potential temperature gradient is stabilizing and larger in magnitude
than the destabilizing compositional gradient. In this situation, we
can expect the rate of translation to be limited by the diffusion of the
degree 1 component of the potential temperature field. While the
compositional Péclet number may still be large, the thermal Péclet
number is necessarily of order 1 or smaller.

In this limit, we still have

χ1 = Le−1 6

V
r, (61)

but the degree 1 component of the potential temperature field now
results from a balance between production of degree 1 through
translation of the degree 0, and diffusion of the degree 1. �1 can be
obtained by considering eq. (19) with l = 1, which writes

0 = −V
2

5

(
3

r
+ ∂

∂r

)
�2 − V

∂�0

∂r
+ D1�1 (62)

in steady state. Now since the degree 2 component is produced by
the translation of the degree 1 component, which here is assumed to
remain small compared to the degree 0 component, the two terms in
�2 in eq. (62) are expected to be small compared to the term due to
translation of the degree 0. We, therefore, neglect these terms and,
recalling that �0 = 1 − r2, eq. (62) becomes

0 = 2V r + D1�1, (63)

the solution of which [using eq. (44) with α = 1 and the boundary
condition �1 = 0 at r = 1] being

�1 = V

5
(r − r 3). (64)
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Inserting this expression for �1 and the high compositional Péclet
number limit for χ 1 into eq. (15) and solving for V gives

V =
(

6

5

Rχ/Le2

1 − 2
175R�

)1/2

(65)

=
[

5

6

(
Le2

Rχ

− 2

175
B
)]−1/2

. (66)

This is plotted as black solid lines in Fig. 2. The translation rate ap-
proaches

√−105/B if −R� � 175/2. In this limit, the translation
rate is, therefore, independent of the phase change timescale. It is
instead limited by the rate of diffusion of the degree 1 thermal het-
erogeneities. Note that in the double-diffusive regime (i.e.B < −1),
the translation rate is predicted to be smaller than

√
105 = 10.25,

which is consistent with the observation from the numerical simu-
lations that V is smaller than � 10 in this regime.

In dimensional form, the translation rate writes

V = κT

ric

⎛
⎜⎜⎜⎝− αc Sc

αT ST

105

1 − 525
κ2

T 	ρ τφ

αT ρST r 4
ic

⎞
⎟⎟⎟⎠

1/2

. (67)

The translation rate approaches (κT /ric)
√

−105 αc Sc
αT ST

if −R� �
175/2. The magnitude of the degree 1 temperature and composition
heterogeneities can be obtained from eqs (61), (64) and (66), and
are given by

�1 = 1

30

ST r 3
ic

κ2
T

V

= 1

30

ST r 2
ic

κT

⎡
⎣ 105

−B
(

1 − 87.5
R�

)
⎤
⎦

1/2 [
r

ric
−

(
r

ric

)3
]

, (68)

χ1 = Scric

V

r

ric
= Scr 2

ic

κT

⎡
⎣ 105

−B
(

1 − 87.5
R�

)
⎤
⎦

1/2

r

ric
. (69)

5.4 Comparison with numerical calculations

Fig. 2 shows the translation rate obtained from solving numerically
eqs (15)–(20) given in Section 2.3 (ignoring any possible deforma-
tion of the inner core), together with the predictions of eqs (57)
(black dashed lines) and (66) (solid black lines). The agreement
is excellent as long as R�/R�,cr + Rχ/Rχ,cr � 1 . The predic-
tion in the PeC � 1, PeT = O(1) limit remains valid when both
the thermal and compositional fields are destabilizing as long as
the translation rate is smaller than about 10. Above that value, the
high PeC, high PeT prediction is in very good agreement with the
numerical solution.

Also shown in Fig. 2 is the value of B corresponding to the onset
of the instability at Le = 102 according to the marginal stability con-
dition, calculated as follow. The numerical calculations correspond
to a case with constant Sχ and S�, for which the critical modified
Rayleigh numbers are both equal to 175/2. The marginal stability
condition given by eq. (40) then writes

R� + Rχ = 175

2
, (70)

as found in Section 4. In terms of B, this writes

B =
(

175/2

Rχ

− 1

)
Le2. (71)

At Le = 102 and Rχ = 104, this gives a critical value for B equal
to −9.9 × 103. This value, shown with a grey line on Fig. 2, is
consistent with the onset of the instability obtained numerically.

6 D E F O R M AT I O N A N D C O N D I T I O N S
O F E X I S T E N C E O F T H E T R A N S L AT I O N
M O D E

The advection of heat and composition by the translation mode in-
duces l = 1 horizontal density variations (Fig. 3) which may drive a
large-scale creeping flow from the melting hemisphere to the crys-
tallizing hemisphere. This would redistribute the temperature and
concentration perturbations in a way that weakens the magnitude of
the driving force of the convection mode. In the purely thermal case,
it was shown (Deguen et al. 2013; Mizzon & Monnereau 2013) that
the relative importance of this flow and of the translation is a func-
tion of P , with the translation mode collapsing when P � 30. In
the double-diffusive regime, a similar condition on P is expected,
but the conditions of existence of the translation mode are expected
to be more severe because the thermal and compositional buoyancy
fields almost balance each other at the global scale, thus leading to
a relatively small translation rate, but do not balance at the local
scale. This implies that the magnitude of the lateral variations of
density—and hence the resulting flow—will be larger, for a given
translation rate, than in the purely thermal case.

To quantify the importance of deformation and its effect on the
translation mode, we solve numerically the system of equations
(introduced in Section 2.2) corresponding to a viscously deform-
ing inner core. Fig. 4 shows a regime diagram constructed from
an ensemble of axisymmetric calculations, done at a fixed value of
B = −3 and Le = 102. At fixed B and Le, the ratio of the thermal
and compositional Rayleigh numbers is fixed atBLe−2, so that there
are only two independent control parameters, P and either Raχ or
Ra�. Though the driver of the convection is the compositional field,
the translation mode happens to be limited by the value of Ra�, as
demonstrated later in this section [see the discussion surrounding
eq. (73)]. We thus show the regime diagram in terms of both Raχ

(left axis) and −Ra� (right axis). In Fig. 4, the thick black line cor-
responds to the onset of the instability obtained from the complete
linear stability analysis (Section 4.1), while the thin black line cor-
responds to the onset of the translation mode only (Section 4.2.1).
Fig. 5 shows snapshots of the potential temperature (left) and com-
position (right) fields from some of the numerical calculations used
in building the regime diagram. Also shown in Fig. 5 are stream-
lines of the velocity field (left) and of the velocity field minus its
translation component (right). The streamlines on the left and right
sides would look identical if the translation component of the flow
is small.

Figs 4 and 5 show that the translation mode is dominant at
small values of P and moderate Rayleigh numbers. The P = 0.1,
Raχ = 102, Ra� = −3 × 10−2 case in Fig. 5 is one example of this
regime. The streamlines of the flow (left panel) are very close to
straight lines, which is consistent with a translation, and the poten-
tial temperature and composition fields are similar to the numerical
solutions obtained in Section 5 in the rigid inner core limit (Fig. 3).
The flow is not a pure translation, as can be seen from the right
panels showing the streamlines of the non-translation component of
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98 Deguen, T. Alboussière and S. Labrosse

Figure 4. Regime diagram in a (P, Ra�) space, with B = −3. The colour shading shows the translation rate normalized by the prediction of eq. (66) in the
high compositional Péclet, order 1 thermal Péclet regime. �: calculations in which the translation mode is dominant; ©: calculations in which the translation
component is small compared to the deformation component of the velocity field ; : calculations in which the translation and deformation components of the
velocity field are of similar magnitude; +: no convection. The thick black line corresponds to the onset of the instability obtained from the complete linear
stability analysis (Section 4.1), while the thin black line corresponds to the onset of the translation mode only (Section 4.2.1). The red symbols correspond to
the snapshots shown in Fig. 5.

the flow, which magnitude is small but non-zero (about 1 per cent
of the translation rate).

The translation mode appears to be dominant only if Raχ �
2 × 107, −Ra� � 6 × 103 and P � 30 (Fig. 4):

(1) Keeping P � 30, increasing Raχ and −Ra� results in an
increase of the degree 1 component of the potential temperature
field, and of the relative magnitude of the non-translation component
of the flow: at P = 0.1, Raχ = 107, Ra� = −3 × 103, it is strong
enough to deform the streamlines of the flow (left panel), which
now significantly deviate from straight lines (the magnitude of the
non-translating component of the velocity field is about 20 per cent
of the translation rate). Increasing again the Rayleigh numbers, the
translation component of the flow disappears almost totally (see the
P = 0.1, Raχ = 108, Ra� = −3 × 104 case in Fig. 5, where no
translation component can be seen from the streamlines pattern).

(2) If P is increased above �30, the convection pattern just above
the onset of convection consists in a degree 1 cell (see e.g. the P =
103, Raχ = 104, Ra� = −3 case in Fig. 5). There is no melting or
freezing at the ICB, as can be seen from the fact that the streamlines
do not cross the ICB. At higher Raχ , the convection pattern consists
in small-scale plumes originating from the boundary layer below the
ICB, and becomes more chaotic (see e.g. the P = 103, Raχ = 107,
Ra� = −3 × 103 case in Fig. 5).

The collapse of the translation mode is due to a secondary flow
induced by the lateral density variations associated with the po-
tential temperature and composition fields, which redistributes the
temperature and composition fields and weakens their degree 1
components, thus decreasing the translation rate. This secondary
flow always exists, but its magnitude becomes comparable to the
translation rate only if P or Ra� are large enough.

The critical value of P is consistent with that obtained in the case
of thermal convection (Deguen et al. 2013). This transition is due

to the fact that, at fixed Rayleigh numbers, increasing P decreases
the translation rate, and therefore increases the relative importance
of the secondary flow.

The fact that the translation also collapses when Raχ and −Ra�

are large can be understood as follows: Treating the velocity v of the
secondary flow as a small perturbation of the translation, and using
the steady-state composition and potential temperature fields of the
double-diffusive regime [eqs (61) and (64)], the Stokes equation (5)
can be written as

∇2v = ∇ p −
[

Ra�

V

5
(r − r 3) + Raχ

Le2

6

V
r

]
cos θ r. (72)

We then divide eq. (72) by the translation rate V and replace V in
the buoyancy term by the double-diffusive translation rate given by
eq. (65). The term proportional to Raχ /(Le2V2) gives a term ∝ P
plus a term ∝ Ra� which combines with the term in Ra� of eq. (72)
to give

∇2 v

V
− 1

V
∇ p = −

[
Ra�

(
1

7
r − 1

5
r 3

)
+ 5Pr

]
cos θ r. (73)

It is clear from this equation that |v| would be a significant fraction
of V if either −Ra� or P is large. We thus expect that the redistri-
bution of the thermal and compositional heterogeneities will have
a significant effect on the translation rate if either −Ra� or P is
large. This is indeed consistent with the results of the numerical
calculations. Eq. (73) also suggests that the critical values of P and
Ra� should not depend on the value of B or Le. From Fig. 4, we
find that the critical values of P and −Ra� are �30 and �6 × 103,
respectively.

If both the compositional and thermal fields are destabilizing,
inserting into the Stokes equation the large PeC, large PeT potential
temperature and composition fields [eq. (56)], dividing by V and
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Double-diffusive inner core translation 99

Figure 5. Snapshots of (left) potential temperature (higher values in red, lower values in blue) and streamlines (grey lines) of the flow. Right, light element
concentration (higher values in red, lower values in blue) and streamlines (grey lines) of the non-translation component of the flow, for various P , Ra�, Raχ .
The snapshots shown here correspond to the numerical solutions denoted by red symbols in the regime diagram shown in Fig. 4. P increases from left to right,
and Raχ and −Ra� increases from bottom to top. B and Le are kept constant at B = −3 and Le = 102.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/214/1/88/4953422 by C

N
R

S user on 22 M
ay 2022



100 Deguen, T. Alboussière and S. Labrosse

taking the translation rate given by (57) yields

∇2 v

V
− 1

V
∇ p = −5P cos θ rr, (74)

which suggests that in this case, the secondary flow can become a
significant fraction of V only ifP is large enough, irrespective of the
values of the Rayleigh numbers. This is consistent with the results
obtained in the case of a thermally driven translation (Deguen et al.
2013).

7 A P P L I C AT I O N T O E A RT H ’ S I N N E R
C O R E

The theoretical and numerical investigations presented in the pre-
vious sections show that translation of the inner core in a double-
diffusive regime is possible if:

(1) the compositional and thermal fields are such that

αc	χ � −αT 	�

Le
(75)

(Section 4). In practice, the value of Le (2 × 107) and −αT	�

are such that even a slightly positive value of αc	χ is enough to
promote double-diffusive translation. However, the growth rate of
the instability and the translation rate do depend significantly on the
thermal state of the inner core.

(2) the non-dimensional parameters P and −Ra� are smaller
than �30 and �6 × 103, respectively (Section 6). These conditions
can be rewritten as a condition for the inner core viscosity, which
must be larger than

ηc = max

(
	ρ g′ r 2

ic τφ

30
, −αT ρg′ST r 6

ic

3.6 104 κ2
T

)
(76)

for the translation mode to be dominant. The critical viscosity ηc is a
strongly increasing function of ric, which means that this condition
is much easier to meet early in the inner core history.

7.1 Thermal evolution of the inner core

The thermal source term ST can be written as

ST = ρg′γ T

2KS

[(
dTs

dTad
− 1

)
dr 2

ic

dt
− 6κT

]
, (77)

where dTs/dTad � 1.65 is the ratio of the Clapeyron slope to the adia-
bat, g′ = dg/dr = 3.6 × 10−6 s−2, γ � 1.4 is the Gruneisen parameter,
KS = 1400 GPa the isentropic bulk modulus, T � 5500 K the inner
core temperature (Deguen & Cardin 2011). For simplicity, instead
of solving the core energy balance to obtain the evolution of ric(t), as
was done in Deguen et al. (2013), we simply assume an evolution of
the form ric = r p

ic(t/τic)a , where r p
ic = 1221 km is the present-day

radius of the inner core and τ ic is the age of the inner core. Labrosse
(2015) found that this expression with a around 0.43 correctly ap-
proximates the exact solution of the core energy balance. The ad-
vantage of using the simple parametrization is that an explicit form
is obtained for ST, with dr 2

ic/dt = 2a(r p
ic)2t2a−1/τ 2a

ic , which makes
its evaluation straightforward. For example, with κT = 2 × 10−5

m2 s−1 (corresponding to a thermal conductivity �200 W m−1 K−1

(Pozzo et al. 2014)) and τ ic taken in the range 0.5−1 Gy, we obtain
ST in the range −1.2 × 10−14 K s−1 to −8 × 10−15 K s−1. With
κT = 10−5 m2 s−1 (a thermal conductivity �100 W m−1 K−1),
this range becomes −4 × 10−15 K s−1 < ST < −9 × 10−16 K s−1.
With a diffusivity equal to κT = 5 × 10−6 m2 s−1 corresponding

to a thermal conductivity �50 W m−1 K−1, ST is positive (i.e. the
temperature field is destabilizing) if τ ic < 0.88 Gy.

7.2 Compositional evolution of the inner core

A convenient starting point for discussing the compositional state
of the inner core is the logarithmic derivative of the relation k = cs/cl

expressing thermodynamic equilibrium at the ICB:

dcs

cs
= dcl

cl
+ dk

k
. (78)

The development of an unstable compositional profile in the inner
core requires that dcs/cs < 0, which depends on both the evolution of
the outer core concentration and on the evolution of the partitioning
behaviour.

(1) In the standard model of a well-mixed outer core, light ele-
ments are preferentially partitioned to the outer core (k < 1) and the
concentration of these elements builds up in the liquid as the inner
core crystallizes. dcl/cl is therefore positive. The concentration pro-
file in the inner core can then be destabilizing only if dk/k is negative
and larger in magnitude than dcl/cl. According to ab initio calcula-
tions of the partitioning behaviour of oxygen and sulphur (Gubbins
et al. 2013), the partition coefficients of these elements happen to
decrease with decreasing temperature, implying that dk/k is indeed
negative. The relative importance of dcl/cl and dk/k then depends
on the core composition and radius of the inner core (through ICB
temperature). Labrosse (2014) showed that the concentration of a
given element at crystallization is well approximated by

cicb
s = cicb

s,0

(
1 + Ar 3

ic − Br 2
ic

)
, (79)

where A and B are parameters which depend on the element con-
sidered and its abundance, and cicb

s,0 is the concentration in the inner
core at nucleation. The r 3

ic term is associated with the compositional
evolution of the outer core, and promotes the formation of a stable
compositional profile. The r 2

ic term is due to the temperature de-
pendence of the partition coefficient, and promotes the formation
of an unstable compositional profile. Labrosse (2014) found that,
for plausible core composition models, oxygen has always a desta-
bilizing contribution while sulfur has a destabilizing contribution
only while the inner core radius is smaller than �500 km. The net
compositional profile becomes stabilizing when the radius of the
inner core reaches 600–900 km (depending on the composition of
the core). Double-diffusive translation could thus plausibly set in
early in the inner core history, but would be unlikely to last until
today.

From eq. (79), we find that the composition source term is

Sc = −dcicb
s

dt
= −cicb

s,0

(
A

dr 3
ic

dt
− B

dr 2
ic

dt

)
(80)

which we will evaluate for different scenarios in Section 7.4, and
use to obtain the translation rate when relevant.

(2) The situation would be more favourable to convection if the
light elements concentration of the liquid from which the inner core
crystallizes increases at a slower pace than what is predicted under
the assumption of perfect mixing of the outer core, or even decreases
with time. This may happen for at least three reasons:

(i) If light elements expelled from the inner core do not mix
perfectly in the outer core and accumulate in a stably stratified
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Double-diffusive inner core translation 101

Figure 6. A schematic showing qualitatively the expected effect on the inner
core composition of the formation of an iron-rich layer above the ICB. The
thin black lines correspond to concentration profiles in the core at different
times, with the thick black line corresponding to the current state of the core.
The blue and red curves show the evolution of the concentration at the ICB
in the solid and liquid phases, respectively. The concentration in the bulk
of the outer core increases in response of inner core crystallization, but the
concentration at the ICB decreases.

layer below the CMB (e.g. Fearn & Loper 1981; Braginsky 2006;
Bouffard et al. 2017), the light elements concentration just above
the ICB would increase at a slower rate than in the perfect mixing
model. The exact evolution of the composition of the bulk of the
outer core would depend on the mixing efficiency.

(ii) Core–mantle chemical interactions can buffer the core com-
position, or even induce a decrease of the concentration of some
light elements. In particular, exsolution of MgO or SiO2 (Badro et al.
2016; O’Rourke & Stevenson 2016; Hirose et al. 2017; O’Rourke
et al. 2017) would make the concentration of O and Si progressively
decrease as the core cools down.

(iii) Finally, the existence of the F-layer argues for a secular
decrease of light elements concentration close to the ICB, if its in-
terpretation as a stably stratified, iron-rich layer formed as a result
of inner core growth is correct. Unless the F-layer is of primordial
origin (Arkani-Hamed 2017; Jacobson et al. 2017), its formation
implies that the inner core has been crystallizing from an increas-
ingly iron-rich melt (Fig. 6), irrespectively of its formation mecha-
nism (Gubbins et al. 2008; Alboussière et al. 2010; Gubbins et al.
2011). In this situation, both dcl/cl and dk/k are negative and the
composition field is always destabilizing.

7.3 Growth rate of the translation instability

Though instability appears almost unavoidable when the composi-
tional profile is destabilizing, whether the translation rate eventually
becomes significant depends on the timescale of instability growth
(the inverse of the growth rate σ ) compared to the duration of the
unstable phase, and on the magnitude of the initial perturbations.
From eq. (51), the instability growth rate σ is at most 10 to 30 times
κT /r 2

ic (depending on r∗
ic), which corresponds to a timescale of in-

stability growth 1/σ between ∼80 and 240 Myr. This is smaller than
the age of the inner core, but this does not ensure by itself a signif-
icant translation rate. The time needed to reach a given translation
rate depends on the magnitude of the initial perturbation, with 1/σ
being the time needed to increase the translation rate by a factor e
� 2.72. The translation rate increases by a factor of 10 in a time
(ln 10)/σ � 2.3/σ , which is in the range 180–550 Myr. This is of
the same order of magnitude than the inner core age, which implies
that a relatively strong perturbation is needed to ensure a significant

translation rate is reached. One possible candidate is heterogeneous
growth of the inner core (Sumita & Olson 1999; Aubert et al. 2008;
Aubert 2013; Driscoll 2015). For example, if convection in the outer
core imposes a growth pattern with a persisting degree 1 anomaly
of amplitude one tenth of the mean solidification rate, it will take
about 200 Myr for the translation rate to reach a value similar to the
mean inner core growth.

7.4 Possible scenarios

Fig. 7 shows the results of calculations corresponding to two dif-
ferent scenarios for the compositional evolution of the core, as well
as two different thermal histories (parametrized by inner core age).
The thermal diffusivity is fixed at κT = 2 × 10−5 m2 s−1 and the
radius of the inner core is assumed to grow as ric = r p

ic(t/τic)0.43 ,
with τ ic = 0.5 or 1 Gy. The core is assumed to contain 2.42 per cent
O and 6.3 per cent S, following Gubbins et al. (2013) and Labrosse
(2014). The buoyancy source terms αcSc and αTST are calculated
from eqs (80) and (77) (Figs 7a and d). This is then used to cal-
culate the non-dimensional numbers B, Rχ and R�, from which
we obtain the theoretical steady-state translation rate from eqs (57)
and (66) (Figs 7b and e). In addition, we compute the translation
rate by solving numerically the ’rigid inner core’ set of equations
(Section 2.3), taking into account the growth of the inner core and
its thermal and compositional evolution. The instability is initiated
numerically by imposing a small initial degree 1 growth heterogene-
ity Vin of either 10−12 or 10−11 m s−1. Finally, we show in Figs 7(c)
and (f) the critical viscosity ηc above which the translation mode is
dominant. According to eq. (76), ηc does not depend on the compo-
sition field; its evolution is therefore the same in the two scenarios
of compositional evolution.

7.4.1 Crystallization from a well-mixed outer core

Fig. 7 (left panel) shows the results of calculations made under the
assumption that the outer core is well-mixed.

For the two thermal histories considered here, αTST is negative,
except in the very beginning of inner core crystallization. αcSc

starts positive, but becomes negative when the inner core radius
exceeds �600 km. As a result, translation is only possible while
ric < 600 km.

The translation rate obtained from the steady-state expressions
is typically similar to the inner core growth rate. However, this is
misleading because the duration of the unstable phase is rather short
compared with the timescale of instability growth. Depending on
the thermal history considered, it takes between 100 and 200 Myr
for the inner core to reach a radius of 600 km. Since the timescale
of instability growth is larger than 200 Myr, this implies that the
steady state regime is unlikely to be reached. This is confirmed
by the results of the numerical solution of the ’rigid inner core’
set of equations, which shows that in effect the inner core does
not reach an appreciable translation rate before becoming stable
against the double-diffusive instability. For example, starting with
a forced translation with a translation rate of 10−11 m s−1 with
an inner core nucleating 0.5 Gy ago, the translation rate increases
by a factor of merely 1.5 before decreasing quickly. If the inner
core started crystallizing 1Gy ago, the translation rate reaches a
maximum only 10 per cent higher than the initial perturbation. We
therefore conclude that a significant translation is unlikely in this
scenario.
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(a) (d)

(e)

(f)

(b)

(c)

Figure 7. Left column: results of calculations corresponding to a scenario in which the inner core is assumed to crystallize from a well-mixed outer core, the
composition of the crystallizing inner core being given by eq. (79). Two thermal histories are considered, with the inner core starting to crystallize either 1
Gy ago (dark blue lines) or 0.5 Gy ago (light blue lines). (a) Solid lines: compositional buoyancy source αcSc obtained from eq. (80); dashed lines: thermal
buoyancy source αTST obtained from eq. (77). (b) Dashed lines: inner core growth rate ṙic; thin solid lines: translation rate obtained from the steady-state
solutions [eqs (57) and (66)]; heavy solid lines: translation rate obtained by solving numerically the ‘rigid inner core’ set of equations (Section 2.3), with an
imposed degree 1 growth heterogeneity Vin of either 10−11 m s−1 or 10−12 m s−1. (c) Critical viscosity above which the translation regime dominates [eq. (76)].
Right column: same as panels (a)–(c) if the inner core is assumed to crystallize from a melt of constant composition. The composition of the crystallizing inner
core is given by eq. (79) with A = 0.

7.4.2 Crystallization from a constant composition melt

Fig. 7 (right panel) shows the results of calculations made under the
assumption that the inner core crystallizes from a melt of constant
composition, which amounts to taking A = 0 in eq. (80).

The thermal histories are the same as in the previous section, αTST

being negative for most of the inner core history. However, αcSc is
now always positive and the inner core is always unstable against the
double-diffusive translation instability. The translation rate obtained
from the steady-state expressions is typically about two times higher
than the inner core growth rate. The translation rate obtained from
solving the ’rigid inner core’ set of equations approaches the steady-
state theory after a phase of instability growth, whose duration
depends on the magnitude of the initial perturbation. The slight
difference between the steady-state theory and the numerical results
can be ascribed to the time variation of the inner core radius and
source terms.

The critical viscosity ηc above which translation is possible is a
strong function of inner core radius. For example, at ric = 200 km,
the translation mode is preferred if the inner core viscosity is larger
than �1017 Pa s. The critical viscosity strongly increases with radius,
and reaches about 2–3 × 1021 Pa s at the current inner-core radius of
1221 km. This does not depend on the composition evolution, and
only slightly on the thermal evolution. The final critical viscosity is
clearly on the high end part of the range of published estimates, and

marginally within the 1020–1022 Pa s range predicted by Reaman
et al. (2011, 2012). If the viscosity is in the range of 1016 to 3 × 1021

Pa s, the inner core may have been in the translation regime during a
possibly significant part of its history, before leaving the translation
field when the critical viscosity becomes higher than the inner core
viscosity.

8 C O N C LU S I O N

We have demonstrated that double-diffusive translation of Earth’s
inner core is possible if two conditions are met: (i) the compositional
profile within the inner core is destabilizing (almost irrespectively
of the thermal state); and (ii) the inner core viscosity is sufficiently
large, the required value being a strongly increasing function of the
inner core size. The first condition was likely met when the inner
core was smaller than about half its present size, and possibly still
is if the outer core is imperfectly mixed and has developed stratified
regions either below the CMB or above the ICB (Gubbins et al.
2013; Labrosse 2014). The second condition is possibly met for a
large part of inner core’s history according to the viscosity estimate
of Reaman et al. (2011, 2012), but would require the inner core
viscosity to be larger than 3 × 1021 Pa s to be satisfied today (see
Fig. 7).

If these conditions are satisfied, the effective development of the
translation instability further requires that: (i) the duration of the
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unstable phase is long enough compared to the timescale of insta-
bility growth, which can be in the range 200–500 Myr depending on
the shape of the compositional profile (see Sections 4.2.2 and 7.3);
and (ii) that a perturbation of sufficient magnitude is imposed on
the inner core and persists on a timescale similar to the instabil-
ity growth timescale. The first condition makes the development
of double-diffusive translation unlikely in the classical model of
compositional evolution of the outer core assuming perfect mixing.
However, imperfect mixing of the outer core lengthens the duration
of the compositionally unstable phase, potentially enough to allow
the development of the translation instability. If the inner core crys-
tallizes from a constant composition melt (Section 7.4.2 and Fig. 7),
the compositional profile remains destabilizing up to its current ra-
dius. The formation of a stably stratified iron-rich layer above the
inner core, as the seismologically observed F-layer could be inter-
preted, would even increase the destabilizing effect of composition.

In scenarios where the inner core is indeed translating, one inter-
esting feature of the double-diffusive regime is that the translation
rate depends predominantly on the thermal diffusivity and buoy-
ancy ratio, and only weakly on the melting/solidification timescale,
whose value is more uncertain (Buffett & Matsui 2015). With the
thermal and compositional evolution scenarios considered here, the
translation rate is found to be typically similar or slightly higher than
the inner core growth rate. This is about an order magnitude smaller
than what was predicted for a purely thermally driven translation
(Alboussière et al. 2010; Deguen et al. 2013; Mizzon & Monnereau
2013). This happens to be in better agreement with the geodynamo
calculations of Aubert et al. (2013) and Aubert (2013), which best
reproduce the morphology of the Earth’s magnetic field with a de-
gree 1 buoyancy flux heterogeneity at the ICB corresponding to a
translation rate slightly smaller than the inner core growth rate.
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A P P E N D I X : G OV E R N I N G E Q UAT I O N S
F O R T H E T R A N S L AT I O N M O D E ( P → 0
L I M I T )

A1 Translation rate

The force balance on the inner core writes

0 =
∫

V
(ρ + ρ ′)g dV +

∫
S

(τ · n − Pn) dS, (A1)

where ρ is the reference inner core density, ρ ′ is density perturba-
tions about ρ, and where surface stresses have been decomposed
into pressure P and deviatoric stresses τ · n. Neglecting the small
radial variations of ρ, and writing g = −∇�, we can transform the
volume integral of ρg into a surface integral, which gives

0 =
∫

V
ρ ′g dV −

∫
S
(P + ρ�)dS +

∫
S
τ · dS. (A2)

Assuming the last integral vanishes (i.e. no net viscous force im-
posed by the outer core on the inner core and vanishing electromag-
netic coupling), the force balance on the inner core comes down
to an equilibrium between buoyancy forces associated with density
anomalies within the inner core and pressure forces applied by the
outer core on the inner core surface. Projecting eq. (A2) on the
translation direction, we obtain

0 = ρgicb

ric

∫
V

(αT � + αcχ )r cos θdV −
∫

S
(P + ρ�) cos θdS (A3)

with the assumption that the gravity acceleration in the inner core is
g = −gicb(r/ricb)er . Here θ is the angle between r and the translation
direction.

Let us denote by h(θ ) the topography of the ICB, defined with
respect to a reference isopotential surface that has a mean radius
which coincides with the mean inner core radius. In the outer core,
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isopressure surfaces coincide with isopotentials, when averaged on
timescales long compared to the timescales of outer core dynamics.
The pressure applied by the liquid outer core on the ICB is, therefore,
given by P(h) = P0 − ρ lgicbh, where P0 is the value of the pressure
on the reference isopotential. The gravity potential at the ICB is
estimated by expanding �(h, θ ) at first order in h, which gives
�(h, θ ) = �0 + gicbh + O(h2), where �0 is the value of � on the
reference isopotential. Using the above expressions to write P and
� at the ICB as functions of h at first order in h, eq. (A3) can be
written as

0 = ρ

ric

∫
V

(αT � + αcχ )r cos θdV − 	ρ

∫
S

h cos θdS,

= 2π
ρ

ric

∫ ric

0

∫ π

0
(αT � + αcχ )r 3 cos θ sin θdθdr

− 2π	ρ r 2
ic

∫ π

0
h cos θ sin θdθ. (A4)

We now expand h, � and χ as series of Legendre polynomials of
cos θ (which correspond to zonal spherical harmonics):

h =
∞∑

l=0

hl Pl (cos θ ), (A5)

� =
∞∑

l=0

�l (r )Pl (cos θ ), (A6)

χ =
∞∑

l=0

χl (r )Pl (cos θ ). (A7)

The Legendre polynomials satisfy the orthogonality condition∫ π

0
Pl (cos θ )Pm(cos θ ) sin θdθ = 2δlm

2l + 1
, ∀(l, m) ∈ N

+2
, (A8)

and since P1(cos θ ) = cos θ , the θ − integrals in eq. (A4) are pro-
portionals to the degree 1 coefficient of their integrand. eq. (A4)
reduces to an equation giving the degree 1 component of the to-
pography (which is also equal to the displacement of the inner core
along the translation direction) as a functions of integrals of the
degree 1 temperature and composition heterogeneities:

h1 = ρ

	ρ r 3
ic

∫ ricb

0
[αT �1(r ) + αcχ1(r )] r 3dr. (A9)

We can then couple this equation with the phase change law
(eq. (10)), giving V = h1/τϕ , to obtain an expression for the trans-
lation rate as a function of the density heterogeneities within the
inner core:

V = ρ

	ρ r 3
icτφ

∫ ricb

0
[αT �1(r ) + αcχ1(r )] r 3dr. (A10)

A2 Legendre polynomials decomposition of the heat and
composition conservation equations

We only allow here for the translation mode, for which the potential
temperature and composition fields are symmetric about the trans-
lation direction. The equation of transport of heat is then given by
eq. (1) in which advective transport is restricted to the translation
direction,

∂�

∂t
+ V ex · ∇� = κT ∇2� + ST , (A11)

which can be recast as

∂�

∂t
= −V cos θ

∂�

∂r
+ V

sin θ

r

∂�

∂θ
+ κT ∇2� + ST . (A12)

Defining a new variable x = cos θ and substituting in the above
equation gives

∂�

∂t
= −V x

∂�

∂r
+ V

r
(x2 − 1)

∂�

∂x
+ κT ∇2� + ST . (A13)

We now decompose � as a sum of Legendre polynomials [eq. (A6)],
and take the inner product of eq. (A13) with Pl(x), using the orthog-
onality relation

∫ 1
−1 P2

l (x)dx = 2
2l+1 to obtain:

2

2l + 1

∂�l

∂t
= − V

∫ 1

−1
x

∂�

∂r
Pl (x)dx

+ V

r

∫ 1

−1
(x2 − 1)

∂�

∂x
Pl (x)dx

+ 2

2l + 1
κTDl�l + 2

2l + 1
ST δ0l ,

(A14)

where the operator Dl is defined as

Dl = d2

dr 2
+ 2

r

d

dr
− l(l + 1)

r 2
. (A15)

Using the recurrence relation

x Pn = n + 1

2n + 1
Pn+1 + n

2n + 1
Pn−1 (A16)

(Abramovich & Stegun 1965, p. 782), we write the first integral in
eq. (A14) as

∫ 1

−1
x
∂�

∂r
Pl (x)dx =

∫ 1

−1

∂�

∂r

(
l + 1

2l + 1
Pl+1 + l

2l + 1
Pl−1

)
dx

= l + 1

2l + 1

2

2l + 3

∂�l+1

∂r

+ l

2l + 1

2

2l − 1

∂�l−1

∂r
, (A17)

using again the orthogonality relation.
Using the differential relation

(1 − x2)P ′
n(x) = −nx Pn + n Pn−1 (A18)

= −n(n + 1)

2n + 1
Pn+1 + n(n + 1)

2n + 1
Pn−1 (A19)

(Abramovich & Stegun 1965, p. 783), we write the second integral
as

∫ 1

−1
(x2 − 1)

∂�

∂x
Pl (x)dx

=
∞∑

n=0

�n

∫ 1

−1
(x2 − 1)

∂ Pn

∂x
Pl (x)dx,

=
∞∑

n=0

�n

∫ 1

−1

(
n(n + 1)

2n + 1
Pn+1 − n(n + 1)

2n + 1
Pn−1

)
Pl (x)dx,

= 2l(l − 1)

(2l − 1)(2l + 1)
�l−1 − 2(l + 2)(l + 1)

(2l + 1)(2l + 3)
�l+1.

(A20)
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Combining eqs (A17) and (A20), we finally obtain the following
expression for the potential temperature transport equation:

∂�l

∂t
= − V

l + 1

2l + 3

(
l + 2

r
+ ∂

∂r

)
�l+1

+ V
l

2l − 1

(
l − 1

r
− ∂

∂r

)
�l−1

+ κTDl�l + ST δ0l ,

(A21)

A similar equation holds for the evolution of composition.

A3 Growth rate of the translation instability

A3.1 Dispersion equation

We now estimate the growth rate of the instability, by linearizing
the heat and composition transport equations, which, similarly as
done in Section 4.2.1, we write as

∂�1

∂t
= −V

∂�0

∂r
+ D1�1, (A22)

∂χ1

∂t
= −V

∂χ0

∂r
+ 1

Le
D1χ1. (A23)

The translation rate is given by

V =
∫ 1

0

(
R��1 + Rχ

Le
χ1

)
r 3dr. (A24)

The degree 1 components �1 and χ 1 of the potential temperature
and composition fields are expanded as series of spherical Bessel
functions of the first kind and order 1, j1,

�1 =
∞∑

i=1

A�
i j1(α1i r )eσ t , (A25)

χ1 =
∞∑

i=1

Aχ

i j1(α1i r )eσ t , (A26)

where σ is the growth rate and α1i is the ith zero of j1. The functions
r → j1(α1ir) for i = 1, 2, ..., ∞ form a complete set of orthogonal
functions on [0,1], and satisfy the orthogonality relation∫ 1

0
r 2 j1(α1i r ) j1(α1 j r )dr = δi, j

sin2 α1 j

2 α2
1 j

(A27)

(Chandrasekhar 1961, Chapter 6, section 59). The functions r →
j1(α1ir) are eigenfunctions of the operator D1 [eq. (21)], such that

D1 j1(α1i r ) = −α2
1i j1(α1i r ). (A28)

Inserting eqs (A25) and (A26) into eq. (A24) gives

V =
∞∑

i=1

(
R� A�

i + Rχ

Le
Aχ

i

)
eσ t

∫ 1

0
j1(α1i r )r 3dr, (A29)

= −
∞∑

i=1

sin α1i

α2
1i

(
R� A�

i + Rχ

Le
Aχ

i

)
eσ t , (A30)

where eq. (A33) of Deguen et al. (2013) has been used to calculate
the integral on RHS of eq. (A29).

The coefficients A�
i and Aχ

i are obtained by inserting eqs (A25)
and (A26) into eqs (A22) and (A23)∑

i

A�
i

(
σ + α2

1i

)
j1(α1i r ) = −V

∂�0

∂r
, (A31)

∑
i

Aχ

i

(
σ + α2

1i

Le

)
j1(α1i r ) = −V

∂χ0

∂r
. (A32)

before multiplying with j1(α1ir) and applying the orthogonality re-
lation eq. (A27) to obtain

A�
i = − 2 α2

1i V(
σ + α2

1i

)
sin2 α1i

∫ 1

0

∂�0

∂r
j1(α1i r )r 2dr, (A33)

Aχ

i = − 2 α2
1i V(

σ + α2
1i/Le

)
sin2 α1i

∫ 1

0

∂χ0

∂r
j1(α1i r )r 2dr, (A34)

Inserting the above expressions for A�
i and Aχ

i into eq. (A30) gives
the following equation for σ :

R�

∞∑
i=1

2

(σ + α2
1i ) sin α1i

∫ 1

0

∂�0

∂r
j1(α1i r )r 2dr

+Rχ

∞∑
i=1

2

(Leσ + α2
1i ) sin α1i

∫ 1

0

∂χ0

∂r
j1(α1i r )r 2dr = 1.

(A35)

With the base state profiles

�0 = 1 − r 2, (A36)

χ0 =
3
2 r∗

ic(1 − r 2) − (1 − r 3)
3
2 r∗

ic − 1
, (A37)

we obtain∫ 1

0

∂�0

∂r
j1(α1i r )r 2dr = 2

sin α1i

α2
1i

(A38)

∫ 1

0

∂χ0

∂r
j1(α1i r )r 2dr = 2

sin α1i

α2
1i

F(r∗
ic, α1i ) (A39)

where

F(r∗
ic, α1i ) =

1 − 4
α2

1i

(
1 + 2

α2
1i

− 2
α1i sin α1i

)
− r∗

ic

2/3 − r∗
ic

. (A40)

When deriving eqs (A38) and (A39), we have made use of the
relations∫ 1

0
j1(α1i r )r 3dr = − sin α1i

α2
1i

, (A41)

∫ 1

0
j1(α1i r )r 4dr = −

(
α4

1i − 4α2
1i − 8

)
sin α1i + 8α1i

α6
1i

, (A42)

[eq. (A41) is demonstrated in Deguen et al. (2013); eq. (A42) can
be verified by direct integration].

Finally, inserting eqs (A38) and (A39) into eq. (A35) gives the
following dispersion equation

R�

∞∑
i=1

4

α2
1i (σ + α2

1i )
+ Rχ

∞∑
i=1

4F(r∗
ic, α1i )

α2
1i (Leσ + α2

1i )
= 1. (A43)
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A3.2 Marginal stability

The critical values of R� and Rχ can be obtained by setting σ = 0
into eq. (A43), which then writes

R�

R�,cr
+ Rχ

Rχ,cr
= 1, (A44)

where

R�,cr = 1

4

[ ∞∑
i=1

1

α4
1i

]−1

, (A45)

Rχ,cr = 1

4

[ ∞∑
i=1

F(r∗
ic, α1i )

α4
1i

]−1

, (A46)

which can be used to verify the consistency of the dispersion
eq. (A43) with the results obtained in Section 4.2.1 for the marginal
state. Using the results of Sneddon (1960) that

∑∞
i=1 α−4

1i = 1/350,
we obtain

R�,cr = 1

4

( ∞∑
i=1

1

α4
1i

)−1

= 175

2
(A47)

as was found in Section 4.2.1. It can be verified by computing the
sum in eq. (A46) that is consistent with the expression

Rχ,cr = 80
3
2 r∗

ic − 1
48
35 r∗

ic − 1
(A48)

found in Section 4.2.1.

A3.3 Growth rate

To estimate the growth rate of the translation instability, the disper-
sion eq. (A43) can be solved numerically (with truncated sums) for
given values of R� and Rχ . The results are shown as thick contin-
uous lines of Fig. 1. An analytical approximation of the growth rate
can be obtained as follows.

In the limit of Le � 1, diffusion of the compositional field can be
neglected. In this limit the composition equation (A23) then reduces
to

∂χ1

∂t
= −V

∂χ0

∂r
, (A49)

from which we obtain

χ1 = − V

σ

∂χ0

∂r
(A50)

by noting that by construction V ∝ eσ t.
We further assume that the temperature field is in a quasi-steady

state in which the production of degree 1 through translation of the
degree 0 is almost exactly balanced by diffusion of the degree 1.
This amounts to assumption that the timescale of instability growth
1/σ is large compared to the timescale of diffusion of a degree one
heterogeneity. Under this assumption, eq. (A23) reduces to

0 = −V
∂�0

∂r
+ D1�1. (A51)

With �0 = 1 − r2, the solution is

�1 = V

5
(r − r 3). (A52)

Inserting eqs (A50) and (A52) into eq. (A24) and evaluating the
integrals gives

V = R�

175/2
V + 1/3 − 2/5r∗

ic

2/3 − r∗
ic

Rχ

Le

V

σ
, (A53)

from which we obtain

σ = 1/3 − 2/5r∗
ic

2/3 − r∗
ic

Rχ/Le

1 − R�

175/2

. (A54)

Fig. 1 shows both the numerical solution of (A43) and the approx-
imate solution given by eq. (A54). The agreement is excellent at
small values of σ , and fair though not perfect at large values of σ , a
consequence of the thermal quasi-steady state assumption becom-
ing less justified.
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