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Abstract

An e�ective di�usivity model is developed for mass transport by molecular di�usion and unsteady solute buoyancy-

driven convection in a horizontal capillary by a method similar to that used for Taylor dispersion in forced ¯ow. A 1D

non-linear di�usion equation is obtained and an analytical asymptotic solution is found for dominant convective mass

transport, the solution for dominant molecular di�usion is already well known. Both the e�ective di�usivity model and

the asymptotic solutions are validated numerically. A scaling analysis clari®es the boundary between dominant mo-

lecular di�usion and dominant convective mass transport. The use of a steady vertical magnetic ®eld for liquid metals

and semi-conductors is found to damp the convective mass transport by a factor of Haÿ4, where Ha is the Hartmann

number, characterising the MHD problem. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The accurate measurement of molecular di�usivities

is important for various applications [1], it is however

often di�cult to achieve in practice as di�usive mass

¯uxes are generally so low that even very small levels of

convection can signi®cantly a�ect experimental results.

One possible solution is to quantify and hence account

for the convective mass transport.

Taylor devised a method of achieving this [2] for a

¯uid moving slowly under forced convection through a

capillary to which a solvent is introduced at some

position in the ¯ow causing an initial one-dimensional

step-di�erence in composition. He investigated the sub-

sequent dispersion of the solvent arising from the com-

bined e�ects of molecular di�usion and the lateral

variation in the Poiseuille velocity ®eld. It was then

possible, subject to certain conditions, 1 to describe the

lateral average concentration of the solvent by a one-

dimensional pure di�usion equation in time and a

spatial-axis which moves with the mean velocity of the

¯ow. The virtual coe�cient of di�usion, as he called it, is
1
4
H 2u2=�192D�, where H ; u and D are the diameter of the

capillary, mean ¯ow velocity and molecular di�usivity

respectively.

The shear-cell technique is another method which has

been used [3±6] to determine di�usion coe�cients in

liquid metals. As shown schematically in Fig. 1, the

experiment starts by joining together two capillaries with

liquids of di�erent compositions in order to achieve a

single capillary closed at both ends and with a step-

composition at its central cross-section. As the exper-

iment progresses, mass transport occurs by di�usion

and, if there are density variations, by buoyancy driven

convection. The experiment is terminated after a speci-

®ed time by transversely shearing the capillary at several

positions along its length. The resulting sheared cells are

frozen and each is globally analysed to give a 1D vari-

ation of composition with length. In the absence of

convection this composition pro®le may be ®t to an er-

ror function solution of Fick's law from whence the

di�usion coe�cient is determined. To account for

the e�ects of thermal buoyancy-driven convection on the

composition pro®le, Garandet et al. [3] developed the so

called e�ective di�usivity model by using analysis similar
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to that of Taylor for simple Poiseuille ¯ow. They found

that for a steady and axially uniform velocity ®eld driven

by a lateral temperature gradient in a vertical capillary

subject to an initial axial concentration step, the prob-

lem could again be reduced to a one-dimensional di�u-

sion equation in lateral average concentration. The

e�ective di�usivity is D�1� ��Hu=D�2� where u is now

the mean absolute velocity (convection being parallel

counter-¯ow) and � is some constant which they esti-

mated by orders of magnitude as 1/4 for a 2D capillary.

Similar results are found by Alboussi�ere et al. [7] for a

horizontal cavity subject to an axial temperature gradi-

ent, they also consider an electrically conducting liquid

and a steady vertical magnetic ®eld to damp convection.

In each case the additional convective contribution to

mass transport scales with H 2u2=D and the constant �, of

order unity, depends on the general form of the velocity

pro®le assumed (e.g. cubic Birikh, linear high Hartmann

etc).

In practice however, density di�erences arising from

variations in composition are likely to have a signi®cant

contributory e�ect on convection. Barat and Garendet

[4] considered a vertical capillary with a lateral tem-

perature gradient and an initial step concentration with

a heavier liquid on the bottom so that solute buoyancy

forces tend to damp thermally driven convection. They

found through scaling analysis and numerical simula-

tions that even when composition density di�erences

were quite small, there is a noticeable time-dependant

damping e�ect on convection and for larger composition

density di�erences the velocity ®eld is no longer axially

uniform. The general form of the expression for e�ective

di�usivity remains unchanged where there is solutal

buoyancy-driven convection, but the average-velocity

term within the expression becomes a function of time

and axial space because it depends on the unsteady and

non-uniform concentration gradient. The resulting one-

dimensional di�usion equation in lateral average con-

centration is therefore no longer linear.

The case of solute buoyancy-driven convection along

with molecular di�usion in a horizontal isothermal long

capillary subject to an axial composition-step is con-

sidered in this paper. The liquid is electrically conduct-

ing and the capillary is placed in a vertical magnetic

®eld, though the asymptotic case of the Hartmann

number going to zero is accounted for so the results

Nomenclature

B imposed magnetic ®eld

c dimensionless alloy composition

C alloy composition

Cr reference composition

D coe�cient of molecular di�usion

De coe�cient of e�ective di�usivity

g gravity

H ; L height and length of cavity

j dimensionless electric current density

p dimensionless pressure

t dimensionless time

T time

v dimensionless velocity vector

V velocity vector

vx dimensionless axial component of velocity

Vx; Vy axial and lateral components of velocity

x; y dimensionless horizontal and vertical

coordinates

X ; Y horizontal and vertical coordinates

Greek symbols

a function of Ha, de®ned in the text

b solutal expansion coe�cient

d dimensionless di�usion length

DC initial step concentration in dopant

C di�usion length

m kinematic viscosity

/ dimensionless electric potential

q density

r electrical conductivity

Dimensionless groups

A GrsSc=Ha2

Grs solutal Grashof number (bDCgH 3=m2)

Ha Hartmann number (BH
����������
r=qm

p
)

Sc Schmidt number (m=D)

Superscript

� denotes alternative dimensionless scaling

Fig. 1. Schematic of the Shear cell technique: (1) two capillaries

are ®lled with liquids of di�erent compositions; (2) the capil-

laries are joined giving a step-composition at the interface; (3)

di�usion and/or convective mass transport occurs; (4) the cap-

illary is sheared, each shear-sample is solidi®ed and globally

analysed to give a 1D variation of composition with axial dis-

tance.
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equally apply to there being no magnetic ®eld. An

idealised two-dimensional con®guration is described in

Section 2 and the corresponding non-linear one-dimen-

sional e�ective di�usivity model is developed in Section

3. Separate asymptotic solutions corresponding to con-

vective mass transport dominating molecular di�usion

and vice-versa are then derived in Section 4 and these are

validated numerically using CFX, a commercial CFD

code in Section 5. The extension to a three-dimensional

capillary which requires the numerical determination of

one coe�cient is discussed in Section 6. An order of

magnitude analysis is presented as Appendix A to justify

some assumptions made in the analysis.

2. Con®guration

A horizontal two-dimensional cavity of length L and

height H is considered with L� H . This capillary con-

tains a carrier ¯uid and a dopant of composition C � Cr

with an initial step concentration of DC at its central

cross-section. Convection is driven by the density

di�erences arising from variations in composition. The

capillary is placed in a steady vertical magnetic ®eld of

strength B. A schematic of the set-up with typical

velocity and concentration pro®les are shown in Fig. 2.

The coe�cient of molecular di�usion D, and the ¯uid

properties kinematic viscosity m, coe�cient of solutal

expansion b and electrical conductivity r are all assumed

independent of composition. Density q, and the gov-

erning equations are subject to the Boussinesq approx-

imation.

Using the scales H ;D=H ; qD2=H 2;H 2=D;BrD=H ;BD
and DC for length x, velocity v, pressure p, time t,

electric current density j, electric potential / and con-

centration c, and assuming that the magnetic Reynolds

number is small, the dimensionless Navier±Stokes,

continuity, mass transport, Ohm's law and electric

charge conservation equations are:

1

Sc
ov

ot

�
� �v � r�v

�
� ÿ 1

Sc
rp � Ha2j� B

B
�r2v

� GrsSc
g

g
c; �1�

r � v � 0; �2�

oc
ot
� �v � r�c � r2c; �3�

j � ÿr/� v� B

B
; �4�

r � j � 0: �5�
The non-dimensional groups appearing in these equa-

tions are: Hartmann number Ha � BH
����������
r=qm

p
, Schmidt

number Sc � m=D and solutal Grashof number

Grs � bDCgH 3=m2.

The boundary conditions at the walls arising from

no-slip, zero mass transport across walls and electrically

insulating walls become:

v � 0;
oc
og
� 0;

o/
og
� 0;

where g is the normal direction to the walls. The initial

conditions are, at t � 0:

v � 0; c�x < 0� � 0; c�x > 0� � 1:

It was shown by Garandet et al. [8] that for such a 2D

cavity, the electric potential is uniform (r/ � 0) and so

the Lorentz force reduces to a damping factor ÿB2vxx

where vxx is the axial component of v.

3. E�ective di�usivity

The objective here is to reduce the coupled two-di-

mensional governing Eqs. (1)±(5) into a single one-di-

mensional di�usion equation in lateral average

concentration as a function of axial position and time.

The concentration ®eld, c�x; y; t� is broken down into

components c0�x; t� representing the average of c over a

lateral cross-section of the capillary and c1�x; y; t� rep-

resenting the perturbation from the average. This can be

Fig. 2. (a) Model of the cavity with initial concentration step;

(b) typical velocity ®eld; (c) typical lines of iso-concentration.

The plots in (b) and (c) are taken from a numerical run, the y-

axis has been stretched for clarity.
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expressed as c0 � hcis and c1 � cÿ c0 where his denotes

average over a lateral cross-section.

Averaging Eq. (3) in a similar manner and making

use of the boundary conditions for velocity and con-

centration yields:

oc0

ot
� ohvxc1is

ox
� o2c0

ox2
: �6�

It is now required to ®nd expressions for c1 and vx as

functions of c0 which can be substituted into Eq. (6) to

give an equation only in c0. Subtracting Eq. (6) from Eq.

(3) gives

oc1

ot
� v � rc0 � v � rc1 ÿ ohvxc1is

ox
ÿr2c1 � 0: �7�

It will be shown by order of magnitudes analysis in

Appendix A that when t � 1, Eq. (7) reduces to the

following leading terms 2

vx
oc0

ox
� r2

s c1; �8�

where r2
s � o2=oy2. The analysis leading to Eq. (8) is of

the same nature as Taylor's approach [2].

The velocity ®eld is obtained through analogy to

work done by Garandet et al. [8] on a similar set-up, but

where convection was driven by a uniform steady ther-

mal gradient rather than the unsteady non-uniform

composition gradient here. Following their method of

analysis, using a local concentration gradient oc0=ox,

one ®nds

vx � A
oc0

ox
sinh�Hay�

2 sinh�Ha=2�
�

ÿ y
�
; �9�

where A � GrsSc=Ha2. The validity of Eq. (9) is based on

the assumption that oc=ox is ``locally'' uniform, i.e.,

uniform over a cross-section and axially uniform over a

distance longer than H. This is found to be true when

time elapsed since the beginning of the experiment is

much greater than the di�usion time over the diameter,

which requires t� 1 and is discussed further in Ap-

pendix A.

Substituting for vx into Eq. (8), integrating twice with

respect to y and using hc1is � 0 along with the boundary

condition oc1=oy � 0 at y � ��1=2� gives an expression

for c1 depending on oc0=ox

c1 � A
oc0

ox

� �2�
ÿ y3

6
� Ha tanh�Ha=2� ÿ 4

8Ha tanh�Ha=2� y

� sinh�Hay�
2Ha2 sinh�Ha=2�

�
: �10�

The convective term in Eq. (6) can now be calculated

from Eqs. (9) and (10)

hvxc1is � ÿA2 oc0

ox

� �3

a�Ha�; �11�

where denoting Th � tanh�Ha=2� and Sh � sinh�Ha=2�,

a�Ha� � 1

120
ÿ 1

12HaTh
� 1

Ha2

1

4Th2

�
� 1

8Sh2

�
� 1

4Ha3Th
ÿ 2

Ha4
: �12�

It is found that as Ha!1; aA2 ! �GrsSc�2=120Ha4 and

as Ha! 0; aA2 ! �GrsSc�2=326880, this can be seen

from the plot of a�Ha� against Ha in Fig. 3. These limits

respectively agree with the solutions obtained for Eq.

(11) if the linear high Hartmann velocity of Garandet et

al. [8] or the cubic velocity in the absence of a magnetic

®eld of Birikh [9] are used in place of vx from Eq. (9).

Substituting for hvxc1is, Eq. (6) becomes after re-

arrangement

oc0

ot
� o

ox
1

"(
� aA2 oc0

ox

� �2
#

oc0

ox

)
: �13�

This expression represents a one-dimensional di�usion

equation in c0 valid for t � 1. The dimensionless coef-

®cient of e�ective di�usivity is

De�x; t�=D � �1� aA2�oc0

ox �2�:
The equation is characterised by the dimensionless

parameters of the system encompassed within the term

aA2. By rescaling the length and time with t� � �1=aA2�t
and x� � �1= ���

a
p

A�x, respectively, a universal equation

2 This proof is given in Appendix A which may be read prior

to the remainder of the current section without loss of

continuity in the text to the reader.

Fig. 3. Asymptotic limits of the function a�Ha�: analytical

solution for a 2D cavity from Eq. (12) [ ± ]; numerical 3D

solution for a cylinder, see Section 6 [� � �]; analytical as-

ymptotic limits [......].
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valid for t� � �1=aA2� but which is otherwise indepen-

dent of all system parameters is obtained

oc0

ot�
� o

ox�
1

"(
� oc0

ox�

� �2
#

oc0

ox�

)
: �14�

4. Asymptotic solutions

In Eq. (14), the term �oc0=ox��2 represents the con-

vective contribution to e�ective di�usivity, it is the mass

transport over and above the pure molecular di�usion

which would otherwise occur in the absence of convec-

tion. Contrary to the case of thermal buoyancy-driven

convection where the convective contribution to e�ective

di�usivity is steady and constant, it is here a function of

both space and time. At small t�, this term is large (and

indeed tends to in®nity at x� � 0 as t� ! 0�) and the

convective contribution will dominate molecular di�u-

sion. In the middle of the cavity, the term monotonically

decreases with time and will eventually be small com-

pared to unity, after which molecular di�usion will

dominate the convective contribution. By orders of

magnitude on Eq. (14), considering both �oc0=ox��2 � 1

and �oc0=ox��2 � 1 it is found that the transition be-

tween the two regimes must occur at t� � 1. Eq. (14) is

however only valid for t� � 1=aA2 so the transition be-

tween the two asymptotic regimes could, depending on

the parameters of the system, occur before or after this

time. Solutions are now derived for the two asymptotic

regimes.

Considering ®rst the case where �oc0=ox��2 � 1, Eq.

(14) reduces to

oc0

ot�
� o2c0

ox�2 : �15�

The solution to this equation for a step input is well

known [10], though more commonly as applied to the

analogous case of a semi-in®nite solid subject to a step-

input constant surface temperature

c0�x�; t�� � 1

2
�1� erf�j��; �16�

oc0

ox�
� 1

2
���
p
p t�

ÿ1=2

eÿj2

; �17�

where j�x�; t�� � x�=2
����
t�
p

.

The second case, when t� is ``small'' and so

�oc0=ox��2 � 1 leads to the following non-linear form

for Eq. (14):

oc0

ot�
� o

ox�
oc0

ox�

� �3
" #

: �18�

Substituting f �x�; t�� � oc0=ox� and di�erentiating (18)

with respect to x�

of
ot�
� o2f 3

ox�2 : �19�

A self-similar solution is now sought of the form

f �x�; t�� � g�t��h�g� where g � g�t��x� and
R�1
ÿ1 hdg � 1,

since c0 varies from 0 to 1 when x varies from ÿ1 to

�1. Substituting for f into (19), dividing by g5h and

rearranging gives

g0

g5
� 3hh00 � 6h0

2

1� g h0
h

h i ; �20�

the right-hand side of this expression is a function of

g�x�; t��, the left-hand side however is only a function of

t� and both sides of the equation must therefore be

constant, so

g � Kt�
ÿ1=4

: �21�
Any choice for the constant K would be valid and ac-

commodated for in h, K � 1 is chosen here. Substituting

g � t�
ÿ1=4

, Eq. (20) after some manipulation becomes

ÿ 1

4
�gh�0 � �h3�00: �22�

Integrating this again with respect to g and choosing a

zero constant of integration so that h is an even function

(h0�0� � 0) since the spatial concentration gradient must

be a maximum at x� � 0:

ÿ 1

4
gh � 3h2h0: �23�

Ignoring the trivial solution h � 0 and dividing by h then

integrating with respect to g gives

1

12
g2 � h2 � C2; �24�

where C is a constant. This is the equation for an ellipse,

centred at the origin, the constant C is obtained from the

requirement that
R�1
ÿ1 hdg � 1, implying that the area

under the half-ellipse is 1 which gives C2 � 1=
���
3
p

p. The

solution for h, which is valid until h � 0 since its deri-

vation required division by h, is then

h�g� �
��������������������

1���
3
p

p
ÿ g2

12

s
: �25�

This is one possible solution for h�g�, satisfying Eq. (22)

on the interval �ÿ2� ���3p =p�1=2
;�2� ���3p =p�1=2� which rep-

resents the extent of transport of the dopant, outside this

interval the function can be continued with h�g� � 0

without loss of continuity for h. The function h is by

de®nition oc0=og, the solution for the spatial derivative

of c0 in this asymptotic regime though now becomes

oc0

ox�
� t�

ÿ1=4

��������������������
1���
3
p

p
ÿ g2

12

s
; �26�
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and c0 is obtained by integrating h with respect to g with

the condition c0 � 1=2 at g � 0 (i.e. at x� � 0)

c0 � 1

2
� g

2

��������������������
1���
3
p

p
ÿ g2

12

s
� 1

p
arcsin

���
p
p

g

2
���
34
p

� �
: �27�

Fig. 4 shows a graphical representation of h and c0

against g. The concentration pro®le looks similar to the

error function solution of the pure di�usion case (Eq.

(16)) though now of ®nite extent jgj6 2�
���������������

3
p

=p
q

�1=2
. The

role of eÿj2
in Eq. (17) is played here by h with its semi-

ellipse replacing the classic `bell' curve of pure di�usion.

The maximum of oc0=ox� is always in the middle of the

cavity, it now decreases as tÿ1=4 as opposed to tÿ1=2 for

pure di�usion.

5. Numerical simulations

Numerical solutions were obtained independently,

for the universal one-dimensional equation in c0 (14),

and for the full set of governing Eqs. (1)±(5) using the

commercial CFD code, CFX. Checks were made that

the ®nal solutions did not depend on spatial or time

discretization and that the dopant had not reached the

ends of the cavity.

Eq. (14) was solved as a molecular-di�usion problem

but with the coe�cient of di�usion being dynamically

modi®ed on each iteration to account for the additional

e�ective di�usivity as a function of local concentration

gradient. The grid ran from x� � ÿ50 to +50, discretized

into 600 cells with geometric progressions being used to

concentrate the mesh around the position of the initial

step-concentration at x� � 0.

The full set of governing Eqs. (1)±(5) were solved in

their dimensionless form in a cavity of aspect ratio

L=H � 100 with an initial unit step-concentration at the

centre. Typical grids were 500� 50 with geometric

progressions to concentrate the grid close to the

step-concentration and where necessary close to the

horizontal walls to catch the Hartmann layers. The

parameters speci®ed for each run were Grs; Sc and Ha,

each of which could be independently varied. Results

are presented here from two di�erent con®gura-

tions: Grs � 1420; Sc � 167; Ha � 15:8 corresponding

to a�Ha�A2 � 3669 and Grs � 4; Sc � 100; Ha � 15:8
corresponding to a�Ha�A2 � 0:01.

A dimensionless length scale, d�t� � 1=�oc0=ox�jx�0,

which is a measure of the axial distance over which the

dopant has spread is de®ned as shown schematically in

Fig. 5. This is then used as one means of comparing the

results between the analytical and numerical models for

di�usion. Fig. 6 summarizes results for development of

di�usion length with time from the two asymptotic

models, the numerical simulation of the 1D universal

equation and the two particular 2D numerical runs. The

graph is in terms of the universal coordinate system,

�x�; t�� de®ned in Section 3 with d� � �1= ���
a
p

A�d.

Fig. 4. Concentration pro®le and its spatial derivative for the

case of dominant convective contribution to e�ective di�usivity.

Fig. 5. Di�usion length, d, based on the averaged concentration

gradient at x � 0.

Fig. 6. Dimensionless di�usion length �d�� versus dimensionless

time �t�� from asymptotic and numerical models.
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The e�ective di�usivity model applied to the 2D

problem is valid when t� � 1=�aA2� as shown in Ap-

pendix A. The numerical results presented here give

examples of this occurring before and after the transi-

tion from e�ective di�usivity to molecular di�usion with

aA2 � 3669 and aA2 � 0:01, respectively. At aA2 � 3669,

the numerical results show good agreement with the

asymptotic solution for e�ective di�usivity shortly after

t� � 1=�aA2�. As expected, the solution then follows the

1D numerics as this departs from the asymptotic model.

The run was stopped when di�usion had extended the

length of the cavity.

Inspection of Eqs. (17) and (26) shows that the two

asymptotic solutions for d� intersect at t� � 3=16, the 1D

numerical solution agrees well with the asymptotic

models from about one decade in time either side of this

interception point.

The second 2D model, with aA2 � 0:01, shows good

agreement with the asymptotic solution for pure di�u-

sion a long time before the validity of the e�ective dif-

fusion model. This is because for small (enough) values

of aA2 convective mass transport will be dominated by

molecular di�usion and the global di�usive solution is

obtained irrespective of whether or not the convective

contribution follows the e�ective di�usivity model.

It can be seen from Fig. 7 that in the e�ective di�u-

sivity regime, the numerical solutions for concentration

gradient as a function of axial distance show reasonable

agreement with the asymptotic model. The di�erence

around g � 0 for the 2D numerics may be attributed to

there being some detectable molecular di�usion, the

reason for this being that the onset of the validity of the

e�ective di�usivity model occurs very close to the be-

ginning of the transition from the e�ective to pure dif-

fusion regimes. This e�ect could presumably have been

avoided by modelling with a higher value of aA2. Both

1D and 2D numerical solutions deviate from the as-

ymptotic model as h�g� ! 0. This is expected and is

because locally the assumption that �oc0=ox��2 � 1 in

Eq. (18) becomes false as h and hence oc0=ox� ap-

proaches 0, molecular di�usion then has a noticeable

e�ect in smoothing the concentration gradient. The axial

velocity pro®les in Fig. 8 were calculated analytically

using Eqs. (9) and (26). The agreement with the 2D

numerical model is good at x � 0, the small di�erence in

maximum velocity may again be attributed to there be-

ing some noticeable e�ects of molecular di�usion for the

chosen value of aA2. The agreement is reasonable at

x � 12 which corresponds approximately to the distance

di�usion has spread (d � 24). Close inspection shows

however that there is no longer symmetry of the absolute

magnitude of velocity about y � 0. This is not due to

numerical errors, it is because the assumption that

oc1=ox� oc0=ox does not hold strictly and oc1=ox is not

an even function of y when x 6� 0.

6. Extension to a 3D model

The solutions obtained for the 2D model are valid in

3D though the group aA2 must be determined for any

particular set-up. By analogy to the case of thermal

convection in a horizontal capillary [7] this group is

7�GrsSc�2/11,796,480 when there is no magnetic ®eld and

7A2=384 in the high Hartmann limit with a vertical

magnetic ®eld, assuming in both cases that there is no

convective mass transport within a cross-section (i.e., no

strati®cation of concentration). For intermediate Hart-

mann numbers the general form of the group is still

a�Ha�A2 though analytical solutions have not been ob-

tained. Numerical solutions for the function a�Ha� in the

Fig. 7. Time-independent pro®les of averaged concentration

gradient in the e�ective di�usivity regime: g � t�
ÿ1=4

x� versus

h�g� � t�
1=4 �oc0=ox��.

Fig. 8. Analytical and numerical predictions for axial velocity

pro®les at t � 3:2 �t� � 8:7� 10ÿ04� for aA2 � 3669.
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3D cylinder with no cross-sectional mass transport have

however been calculated and are presented in Fig. 3, the

method used for these numerics is brie¯y described here.

Assuming no convective mass transport over a cross-

section and ignoring inertia, the governing equations for

a cross-section of the capillary can, once the e�ective

di�usivity model is valid, be reduced to

r2
s vx � Ha2 o/

oz

�
� vx

�
ÿ GrsSc

oc0

ox
y; �28�

r2
s / � ÿ

ovx

oz
; �29�

r2
s c1 � vx

oc0

ox
; �30�

where r2
s � �o2=oy2� � �o2=oz2�. The CFX package was

used to solve Eqs. (28)±(30) numerically on a 2D circular

domain with the original boundary conditions described

in Section 2, a was then determined from Eq. (11) using

the calculated values of vx and c1. This process was re-

peated for a range of values of Grs;Ha and Sc. The value

of oc0=ox is just a uniform source term for Eqs. (28)±(30)

and will not a�ect the calculated value of a. Davoust

et al. [11] ®nd that when there is strati®cation and hence

convective mass transport within a cross-section, the

result for a 3D cylinder in the high Hartmann limit

changes by about 5% to 5A2=288, implying that the as-

sumption of no strati®cation is reasonable.

7. Discussion and conclusions

A non-linear one-dimensional e�ective di�usivity

model has been developed to describe the combined ef-

fects of molecular di�usion and solute buoyancy-driven

convection in a horizontal isothermal capillary subject to

an initial axial step-concentration. Analytical asymptotic

solutions were found for this model relating to the two

extremes of dominant convective mass transport and

dominant di�usive mass transport. A numerical solution

of the one-dimensional model agreed well with the as-

ymptotic solutions. Numerical simulations were also

performed for the full set of two-dimensional governing

equations and there was again good agreement between

these and the one-dimensional model. The extension to a

three-dimentional model requires numerical determina-

tion of the coe�cient a�Ha�, this was performed for a

capillary of circular cross-section. The analysis has been

used in experimental work to determine molecular dif-

fusion coe�cients by our collaborators in MADYLAM,

whose work will appear as Part II to this paper.

Through scaling analysis it can be shown (see Ap-

pendix A) that the e�ective di�usivity model becomes

valid once T � H 2=D in agreement with Taylor [2]. It

was further shown that the convective contribution to

mass transport will be negligible in comparison to dif-

fusion when the dimensionless group aA2 � 1. In the

converse case of aA2 � 1, convective mass transport will

dominate di�usion until t� � 3=16, after this time solute

buoyancy forces will have decayed su�ciently for dif-

fusion to again dominate. All of these ®ndings agree

with the numerical results.

The convective contribution to mass transport scales

with Haÿ4 implying that the use of magnetic ®elds where

the ¯uid is an electrical conductor could be a useful

means of suppressing unwanted convective e�ects, which

was also shown to be the case where convection is

thermally driven [7].

The work could be extended to consider the combi-

nation of thermal and solutal driven buoyancy. The

governing equations are again highly non-linear and the

solutions are likely to depend on whether the two driv-

ing forces complement or oppose each other as

suggested by previous experimental results [7]. Further

extensions to the work could be to look at other forces

driving convection such as Marangoni, vibrations and g-

jitters in space.

The analytical work presented here assumes that in-

ertia will be low and does not account for the possibility

of shear-¯ow instabilities when the solute buoyancy

driving force is very high. This situation was observed in

the initial stages of some numerical runs (though not the

ones presented here) when the group aA2 is very large,

causing recirculation of the ¯ow. It may be expected to

cause mixing and hence increase the perceived e�ective

di�usivity. In the numerical runs where it was observed,

the e�ects were eventually smoothed out and undetect-

able by the start of the e�ective di�usivity regime though

the situation was not investigated in any detail.
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Appendix A. Order of magnitude analysis

The main objective of this section is to show that Eq.

(8) and hence the e�ective di�usivity model become valid

once t � 1. It is more instructive to work in dimensional
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terms here, whereby the equivalent criteria is that di-

mensional time, T � H 2=D.

For all time, denoting the dimensional di�usion

length as C�T � � dH where d is the corresponding di-

mensionless di�usion length de®ned in Fig. 5, the di-

mensional axial velocity, Vx can be estimated from

Garandet et al. [8] as:

Vx � a1=2A
D
C
: �31�

Where a1=2A � GrsSc for Ha � 0 and a1=2A � GrsSc=Ha2

for Ha� 1, the parameters a and A are de®ned rigor-

ously in Section 3. The magnitudes of di�usion length

and velocity are ®rst considered for T � H 2=D. It is

possible during this phase, depending on the parameters

of the system, that mass transport will be dominated by

either di�usion or by convection. In the case of con-

vective mass transport being dominant, the concentra-

tion discontinuity will be a thin line distorted by the

velocity ®eld and the growth of C with time is

oC
oT
� Vx: �32�

Solving Eqs. (31) and (32) and integrating C over time

gives approximations for Vx and C during this initial

convective phase

C �
�����������������
a1=2ADT
p

; �33�

Vx �
��������������
a1=2AD

T

r
: �34�

It can be seen from the numerical results in Fig. 6 that

for aA2 � 1 and T � H 2=D (corresponding to t� � 1
aA2

in the ®gure), the slope of the logarithmic plot of di�u-

sion length against time is approximately 1
2

in agreement

with Eq. (33). If however molecular di�usion dominates

convection during the initial phase, then both during

and after this phase,

C �
�������
DT
p

�35�
and from Eq. (31),

Vx � a1=2A

����
D
T

r
: �36�

Comparing Eqs. (33) and (35) shows that convection will

dominate during the initial phase if
�����������
a1=2A
p

� 1 and

di�usion will dominate if
�����������
a1=2A
p

� 1. Of particular in-

terest and use in the subsequent analysis though is that

whichever scenario is dominant, and even if there is a

transition from the dominance of convective to di�usive

mass transport, be this before or after the initial phase,

when T � H 2=D

C� H ; �37�
and either dividing equations (34) by (33) or dividing

equations (36) by (35), noting that both Vx and 1=C
decrease with time

Vx

C
� D

H 2
: �38�

Taking C and H as representative length scales for the

transport of the dopant in the axial and lateral directions

respectively, the validity of the e�ective di�usivity model

can now be shown. The dimensional forms of Eqs. (7)

and (8) are

oC1

oT
� Vx

oC0

oX
� V � rC1 ÿ ohVxC1is

oX
ÿ Dr2C1 � 0; �39�

Vx
oC0

oX
� Dr2

s C1: �40�

The requirement is that Eq. (39) reduces to its leading

terms in Eq. (40) when T � H 2=D. Considering ®rst the

order of magnitude of the laplacian of C1 in Eq. (39)

Dr2C1 � D
o2C1

oX 2

�
�r2

s C1

�
� D

C1

C2

�
� C1

H 2

�
� D

C1

H 2
: �41�

It can be seen as follows that each of the remaining

terms of Eq. (39) in C1 is, for T � H 2=D, much smaller

than DC1=H 2 and can therefore be ignored

oC1

oT
� C1

T
� C1

D
H 2

; �42�

and by continuity Vy � Vx
H
C, so by Eq. (38)

V � rC1;
ohVxC1is

oX
� C1

D
H 2

: �43�

Hence taking only the remaining dominant terms, Eq.

(39) reduces to Eq. (40) as required.

The derivation of Eq. (9) is based on oc=ox being

``locally'' uniform, this can now be shown to be true for

T � H 2=D. Eq. (40) implies that C1 � �VxC0H 2�=�DC�,
which by Eq. (38) means that C1 � C0 and so

oC=oX � oC0=oX and oC=oX is therefore uniform over

a cross section. Axial variations of C occur over a typical

length-scale of C, and since C� H ; oC=oX is also axially

uniform over a distance longer than H.

It is interesting to return to the estimates of the dif-

fusion length during the initial stage (for T � H 2=D)

and in particular its continuity through the transition to

the e�ective di�usivity model. The case of
�����������
a1=2A
p

� 1 is

trivial as C is predicted by Eq. (35) for all time. When�����������
a1=2A
p

� 1, the transport length during the initial

convective stage is predicted by Eq. (33), the di�usion

length can also be estimated for the e�ective di�usion

phase from Eq. (26)

C �
���������������
a1=2AH
p

�DT �1=4
: �44�

At the time of the transition from convective to e�ective

di�usive mass transport (i.e. T � H 2=D), both of these

approximations become C �
�����������
a1=2A
p

H . This implies that
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after a few H 2=D the initial convective phase will be

smoothed out by e�ective di�usion and its in¯uence on

di�usion length negligible.
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