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In the limit of large magnetic Reynolds numbers, it is shown that a smooth differential
rotation can lead to fast dynamo action, provided that the electrical conductivity or
magnetic permeability is anisotropic. If the shear is infinite, for example between two
rotating solid bodies, the anisotropic dynamo becomes furious, meaning that the magnetic
growth rate increases toward infinity with an increasing magnetic Reynolds number.
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1. Introduction

Dynamo action is a magnetic instability that converts part of the kinetic energy of
a moving material into magnetic energy, without the aid of a magnet, but provided of
course that the material is electrically conducting (Rincon 2019; Tobias 2021). One of the
simplest kinematic dynamos is the anisotropic dynamo, which relies on the anisotropy of
electromagnetic properties, and for which an exponentially growing magnetic field can be
generated by a velocity field as simple as a shear (Ruderman & Ruzmaikin 1984; Lortz
1989). Anisotropic electrical conductivity means that the electric current density J is no
longer parallel to the electric field E, even in the absence of a velocity field U. Similarly,
an anisotropic magnetic permeability means that the magnetic field H and the induction
field B are no longer parallel. In natural objects, anisotropy in electric conductivity may
result, in the Earth’s core from the anisotropic crystallisation of the inner core (Deuss
2014; Ohta et al. 2018), in plasmas from the presence of an external magnetic field
(Braginskii 1965), and in spiral galaxies (Brandenburg & Subramanian 2005) from their
spiral geometries. In contrast, anisotropy of magnetic permeability seems unlikely, at
least at large scale. However, at the laboratory scale, among the few experiments that
succeeded in reproducing a dynamo effect, one involved soft iron (Lowes & Wilkinson
1963, 1968), while another worked only in the presence of soft iron propellers (Miralles
et al. 2013; Kreuzahler et al. 2017; Nore et al. 2018), highlighting the crucial role that
magnetic permeability can play. In this paper, the medium is taken as homogeneous,
which excludes any source of dynamo action based on spatial variations of electrical
conductivity or magnetic permeability (Pétrélis et al. 2016; Marcotte et al. 2021; Gallet
et al. 2012, 2013).
The anisotropic dynamo has several features making it unique.
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(i) Defeating Cowling’s antidynamo theorem (Cowling 1934), it was shown that
fully axisymmetric dynamo action is possible in cylindrical geometry (Plunian &
Alboussière 2020). The counterpart in Cartesian geometry makes dynamo possible for
two-dimensional plane motion (Ruderman & Ruzmaikin 1984; Alboussière et al. 2020),
defeating Zel’dovich’s antidynamo theorem (Zel’dovich 1957). This reduces the validity
of these two antidynamo theorems to the case of isotropic magnetic diffusivity, which
was in fact implicitely assumed by Cowling and Zel’dovich.
(ii) For a sliding motion corresponding to infinite shear, in Cartesian geometry the

opposite motions of two superimposed plates (Alboussière et al. 2020), in cylindrical
geometry the opposite rotations of two coaxial cylinders (Plunian & Alboussière 2020),
an exact dynamo threshold can be explicitely derived. Furthermore, it was found that
the dynamo threshold is small enough to be experimentally tested.
(iii) The effect on dynamo action of the anisotropy of the magnetic permeability is

opposite to that of the electrical conductivity, which even makes the dynamo impossible
if the two anisotropies are identical (Plunian & Alboussière 2021).
(iv) In Cartesian geometry the anisotropic dynamo is found to be fast if the shear is

smooth (Ruderman & Ruzmaikin 1984), and furious if the shear is infinite (Alboussière
et al. 2020), the meaning of these two types of dynamo action, fast and furious, being
explained below. In cylindrical geometry, there is a priori no reason why it should be
different. However this remains to be proven, which is the subject of this paper, for the
two cases, a smooth differential rotation and an infinite shear.
A kinematic dynamo is said to be fast if, in the limit of large magnetic Reynolds

numbers, the magnetic growth rate tends towards, or oscillates around, a positive limit.
In this case, the magnetic energy grows on a time-scale smaller than that of magnetic
diffusion, typically the advective time scale. In contrast, a kinematic dynamo is said to be
slow if, in the limit of large magnetic Reynolds numbers, the magnetic growth rate tends
towards zero, meaning that the dynamo occurs on the magnetic diffusion time scale, or on
a time scale between that of advection and magnetic diffusion. This distinction between
slow and fast dynamo was first made by Vainshtein & Zel’dovich (1972) for astrophysical
objects like the Sun where the magnetic Reynolds number in the convection zone is large.
Subsequently it was shown that a necessary condition for a velocity field to produce a fast
dynamo action is to exhibit Lagrangian chaos or singularities (Soward 1994; Childress &
Gilbert 1995), as can be expected for example in a turbulent flow. Extending the previous
definitions, a dynamo is said to be furious (”very fast” in Alboussière et al. (2020)) if
the magnetic growth rate increases without upper bound with the magnetic Reynolds
number, corresponding to magnetic growth on an even smaller time scale than advection.
The three types of dynamo, slow, fast and furious are illustrated in Figure 1.
Besides the anisotropic dynamo, among the simplest dynamos are the multicellular flow

studied by Roberts (1972) and the monocellular flow studied by Ponomarenko (1973),
both being helical. In the Roberts dynamo, the fluid motion is smooth and not chaotic,
leading to slow dynamo action. However, by adding singularities at the stagnation points
of the flow it is possible to introduce an additional time scale which, if taken sufficiently
small, can lead to fast dynamo action (Soward 1987). In the Ponomarenko dynamo,
depending whether the flow shear between the inner cylinder and the outer cylinder is
smooth or infinite, the dynamo is either slow (Ruzmaikin et al. 1988) or fast (Gilbert
1988). Even in the fast case, magnetic diffusion appears to be a crucial ingredient of the
Ponomarenko dynamo, as it is the only way to generate the radial component of the
magnetic field from its azimuthal component (Gilbert 1988). Similarly, in the anisotropic
dynamo, magnetic diffusion is also crucial. However, as will be shown below, anisotropy
now helps to generate both the radial and azimuthal components of the magnetic field,
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Figure 1. Illustration of possible growth rates γ versus the magnetic Reynolds number Rm,
for slow, fast and furious dynamos.

turning the dynamo into a fast or furious process depending on the type of shear that is
considered.

2. General formulation

We will consider two velocity fields, corresponding to differential rotation with either
smooth or infinite shear as illustrated in Figures 2a and 2b. In cylindrical coordinates
(r, θ, z), the smooth velocity field is given by

U = (0, rΩ(r), 0), (2.1)

where the angular velocity Ω(r) is a continuous and differentiable function of r. The
velocity field with infinite shear is given by

U =

{
rΩeθ, for r < R

0, for r > R
, (2.2)

where (er, eθ, ez) is the cylindrical coordinate system. The motion described by (2.2)
corresponds to a solid body rotation of an inner-cylinder of radius R with the angular
velocity Ω, surrounded by a medium at rest.
The assumption that electrical conductivity, or magnetic permeability, is anisotropic

means that it takes a different value depending on the direction considered. Following
Ruderman & Ruzmaikin (1984), the electrical conductivity and magnetic permeability
are defined by σ∥ and µ∥ in a given direction q, and by σ⊥ and µ⊥ in the directions
perpendicular to q. In the direction parallel to q, Ohm’s law and the relation between
H and B are written in the form J · q = σ∥(E · q) and B · q = µ∥(H · q), while in the
directions perpendicular to q, they are written as J − (J · q)q = σ⊥(E − (E · q)q) and
B − (B · q)q = µ⊥(H − (H · q)q). This leads to two symmetric tensors, [σij ] for the
electrical conductivity and [µij ] for the magnetic permeability, defined by

[σij ] = σ⊥δij + (σ∥ − σ⊥)qiqj , [µij ] = µ⊥δij + (µ∥ − µ⊥)qiqj . (2.3a,b)

In the magnetohydrodynamic approximation, Maxwell’s equations and Ohm’s law take
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(a)
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Figure 2. Left: Illustration of the velocity field given by differential rotation in the horizonthal
plane, with (a) a smooth shear and (b) an infinite shear. Right: Sketch of the logarithmic spirals
tangential to the vector q.

the following forms

H = [µij ]
−1B, (2.4a)

∇ ·B = 0, (2.4b)

J = ∇×H, (2.4c)

∂tB = −∇×E (2.4d)

J = [σij ](E+U×B), (2.4e)

leading to the equation for the magnetic induction B,

∂tB = ∇× (U×B)−∇×
(
[σij ]

−1∇×
(
[µij ]

−1B
))

, (2.5)

where

[σij ]
−1 = σ−1

⊥ (δij + σqiqj) , [µij ]
−1 = µ−1

⊥ (δij + µqiqj) , (2.6a,b)

with

σ =
σ⊥

σ∥
− 1, µ =

µ⊥

µ∥
− 1. (2.7a,b)

As in Plunian & Alboussière (2020, 2021), we choose q as a unit vector in the horizontal
plane defined by

q = c er + s eθ, (2.8)

where c = cosα, s = sinα, with α a prescribed angle. The vector q is tangent to
logarithmic spirals in the horizonthal plane (er,eθ), as illustrated in Figure 2c.
Since the velocity is stationary and independent of z, and as we are considering only

axisymmetric solutions, we can look for the magnetic induction in the form

B = B(r) exp(γt+ ikz), (2.9)
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where B(r) is the axisymmetric magnetic mode at vertical wave number k. In (2.9) a
positive value of the real part of the magnetic growth rate γ is the signature of dynamo
action, the dynamo threshold corresponding to ℜ{γ} = 0.
Replacing (2.1) and (2.9) in (2.5), and after some algebra (see Appendix A), one obtains

the following equations for Br(r) and Bθ(r),

γBr = −ε
[
µc2k2Br + (1 + σs2)Dk(Br)− cs(σ − µ)k2Bθ

]
, (2.10a)

γBθ = −ε
[
σc2k2Bθ + (1 + µs2)Dk(Bθ)− cs(σ − µ)Dk(Br)

]
+ rΩ′(r)Br, (2.10b)

where ε = (σ⊥µ⊥)
−1, and

Dk(X) = k2X − ∂r

(
1

r
∂r(rX)

)
. (2.11)

Normalizing the distance by some value a, and time by |Ω−1(a)|, corresponds in (2.10a,b)
to replace ε by the inverse of the magnetic Reynolds number

Rm = σ⊥µ⊥a
2|Ω(a)|, (2.12)

the fast dynamo problem refering to Rm ≫ 1, or equivalently to ε ≪ 1.
In Section 3, an asymptotic analysis of (2.10a,b) for ε ≪ 1, will allow to estimate the

leading order of the magnetic growth rate in the case of a smooth shear given by (2.1). On
the other hand, this cannot be done as easily for the case of a solid body rotation given
by (2.2). Indeed, as Ω′(r) = 0 in both regions r < R and r > R, the system (2.10a,b)
reduces to two anisotropic diffusion equations, without velocity term. Reminding that
dynamo action is a conversion of kinetic into magnetic energy, the system (2.10a,b) is
therefore not sufficient to describe the dynamo process. In fact, we will see that the
velocity is only involved in the boundary conditions accross r = R. Therefore, it will be
necessary to solve (2.10a,b) with appropriate boundary conditions, in order to derive the
magnetic growth rate γ and study its behaviour for ε ≪ 1. This will be the subject of
Section 4.

3. Fast dynamo for smooth differential rotation

Here we follow a similar line of arguments to the one developed for the smooth
Ponomarenko dynamo (Gilbert 1988, 2003), essentially based on a boundary analysis.
In the asymptotic limit ε ≪ 1 we expand γ, Br and Bθ in powers of ε1/2, such that

γ = γ0 + ε
1
2 γ1 + εγ2 + . . . , (3.1)

Br = Br0 + ε
1
2Br1 + εBr2 + . . . , (3.2)

Bθ = Bθ0 + ε
1
2Bθ1 + εBθ2 + . . . , (3.3)

and we set

k = Kε−
1
2 and r = a+ ε

1
2 ζ, (3.4)

meaning that we search for a magnetic mode at some radius r = a within a magnetic
boundary layer. The r-derivative takes the form ∂r = ε−

1
2 ∂ζ , leading to

1

r
∂r(rX) =

X

a
+ ε−

1
2
∂X

∂ζ
and Dk(X) = ε−1(K2 − ∂2

∂ζ2
)X − ε−

1
2
1

a

∂X

∂ζ
+

X

a2
, (3.5)

where X can be any variable, e.g. Br or Bθ. Rewriting (2.4b) as

Bz = ik−1 1

r
∂r(rBr), (3.6)
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and using (3.5a), we find

Bz = Bz0 + ε
1
2Bz1 + εBz2 + . . . , (3.7)

where, at leading order, Bz = Bz0 = iK−1∂Br0/∂ζ. A striking difference with the
Ponomarenko dynamo is that, at leading order, none of the three components Br0, Bθ0

and Bz0 is identically zero, whereas in the Ponomarenko dynamo Br0 = 0.
Assuming that the variations in r are of the same order of magnitude as those in z,

we can approximate Dk(X) ≈ ε−1K2X0. Replacing (3.1-3.3) in (2.10a,b) then leads, at
leading order, to the equations[

γ0 + (1 + σs2 + µc2)K2
]
Br0 − cs(σ − µ)K2Bθ0 = 0, (3.8a)[

cs(σ − µ)K2 + aΩ′(a)
]
Br0 −

[
γ0 + (1 + σc2 + µs2)K2

]
Bθ0 = 0. (3.8b)

In (3.8a,b), looking for non-zero Br0 and Bθ0 leads to the following expression for the
leading order growth rate,

γ0 =
K2

2

[
−(σ + µ+ 2)± |σ − µ|

(
1 +

4csaΩ′(a)

K2(σ − µ)

)1/2
]
. (3.9)

A necessary condition for dynamo action is γ0 > 0, which corresponds to

aΩ′(a) >
K2(σ + 1)(µ+ 1)

cs(σ − µ)
≡ K2

cs

(
µ∥

µ⊥
−

σ∥

σ⊥

)−1

. (3.10)

In (3.10), we note that, from (2.7a,b), we have σ+1 > 0 and µ+1 > 0. Then, assuming
cs(σ − µ) > 0, (3.10) implies that the derivative of Ω(r) at r = a must be positive and
sufficiently large. This can be achieved in different ways, one of them being Ω(r) < 0 and
lim
r→∞

Ω(r) = 0. Although here the differential rotation is smooth, this picture is consistent

with the one obtained for an infinite shear (Plunian & Alboussière 2021). We note that
in (3.9), swapping σ and µ, and changing Ω(r) in −Ω(r), does not change the result,
extending the duality argument put forward by Favier & Proctor (2013) and Marcotte
et al. (2021) to the cases of anisotropic electrical conductivity and anisotropic magnetic
permeability.
From (3.9) and (3.10) we conclude that, in the limit Rm ≫ 1, the magnetic growth rate

at leading order can be positive and independent of Rm, making the smooth anisotropic
dynamo a fast dynamo. This is true only if σ ̸= µ, meaning that the degree of anisotropy
of electrical conductivity must be different from the one of magnetic permeability. An
additional condition is that cs ̸= 0, which means that the two limiting cases of geometry
anisotropy, namely straight radii and circles, must be excluded.

4. Furious dynamo for infinite shear

4.1. Renormalization and boundary conditions

In the case of an inner cylinder in solid body rotation surrounded by a medium at
rest, given by the velocity (2.2), the system to solve is identical in each region r < R and
r > R, given by (2.10a,b) with Ω′(r) = 0. Again, normalizing the distance and time by
respectively R and |Ω|−1, leads to

γ̃Br = −
[
µc2k2Br + (1 + σs2)Dk(Br)− cs(σ − µ)k2Bθ

]
(4.1a)

γ̃Bθ = −
[
σc2k2Bθ + (1 + µs2)Dk(Bθ)− cs(σ − µ)Dk(Br)

]
, (4.1b)
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where

γ̃ = γRm, (4.2)

with Rm defined by (2.12), replacing a by R, and Ω(a) by Ω. The system of equations
(4.1a,b) must be completed by the appropriate boundary conditions for r = 0 and r →
∞,

Br(r = 0) = Bθ(r = 0) = lim
r→∞

Br = lim
r→∞

Bθ = 0, (4.3a−d)

and by the continuity across r = 1 of the normal component of B, and of the tangential
components of H and E,

[Br]
r=1+

r=1− = [Hθ]
r=1+

r=1− = [Hz]
r=1+

r=1− = [Eθ]
r=1+

r=1− = [Ez]
r=1+

r=1− = 0, (4.4a−e)

where [X]
r=1+

r=1− = X(r = 1+) − X(r = 1−). From (2.4a) and (3.6), (4.4a−c) can be
rewritten as

[Br]
r=1+

r=1− = [Bθ]
r=1+

r=1− = [∂rBr]
r=1+

r=1− = 0, (4.5a−c)

meaning that Br, Bθ and the derivative of Br are continuous across r = 1. From (2.4d) we
have Eθ = −ik−1γ̃Br, implying that the two conditions (4.4a) and (4.4d) are redundant.
As for the last one (4.4e), using (2.4e) it can be rewritten as

[Jz]
r=1+

r=1− = RmBr(r = 1), (4.6)

where J has been normalized by (µ⊥R)−1, and Rm is still the magnetic Reynolds number
except that it is signed, keeping track of the direction of the rotation, anticlockwise
(Rm > 0) or clockwise (Rm < 0). It is defined by Rm = sign(Ω) · Rm.

4.2. Resolution

The resolution of the system (4.1a,b) follows the same line of reasoning as that
of Plunian & Alboussière (2021) except that here, instead of the dynamo threshold
corresponding to γ̃ = 0, we solve the system for any value of γ̃.
Introducing

kσ = k

(
1 + σ + γ̃/k2

1 + σs2

)1/2

, kµ = k

(
1 + µ+ γ̃/k2

1 + µs2

)1/2

, (4.7a, b)

and with the help of the identity

Dk1
(X) = Dk2

(X) + (k21 − k22)X, (4.8)

the system (4.1a,b) takes the following form

(1 + σs2)Dkσ
(Br) = (σ − µ)ck2(cBr + sBθ) (4.9a)

(1 + µs2)Dkµ
(Bθ) = (σ − µ)c

(
sDk(Br)− ck2Bθ

)
. (4.9b)

Then we can show that (see Appendix B)

Dkµ
(cBr + sBθ) = Dkσ

(
sDk(Br)− ck2Bθ

)
= 0. (4.10a, b)

Then, using (4.10a,b) and (4.9a,b) leads to(
Dkµ

◦Dkσ

)
(Br) =

(
Dkσ

◦Dkµ

)
(Bθ) = 0. (4.11a, b)

The two operators Dkσ
and Dkµ

being commutative, Br and Bθ satisfy the same linear
differential equation of fourth order. As the solution of Dν(X) = 0 is a linear combination
of I1(νr) andK1(νr), where I1 andK1 are first and second kind modified Bessel functions
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of order 1, the solutions of (4.11a,b) are a linear combination of I1(kσr), K1(kσr), I1(kµr)
and K1(kµr). Applying the boundary conditions (4.3a−d) and (4.5a,b), Br and Bθ can
be written in the following form,

Br =


r < 1, − s

(
λσ

I1(kσr)

I1(kσ)
+ λµ

I1(kµr)

I1(kµ)

)
r > 1, − s

(
λσ

K1(kσr)

K1(kσ)
+ λµ

K1(kµr)

K1(kµ)

) (4.12)

Bθ =


r < 1, c

(
λσ

I1(kσr)

I1(kσ)
+

µs2 + (γ̃s2)/(c2k2)

1 + µs2
λµ

I1(kµr)

I1(kµ)

)
r > 1, c

(
λσ

K1(kσr)

K1(kσ)
+

µs2 + (γ̃s2)/(c2k2)

1 + µs2
λµ

K1(kµr)

K1(kµ)

) , (4.13)

where Bθ has been obtained from Br by replacing (4.12) in (4.9a). To do this, we need
to calculate Dkσ

(Br), which is derived in Appendix C.
The continuity of ∂rBr (calculated in Appendix D) across r = 1, given by (4.5c), leads

to the additional identity between λσ and λµ

λσΓ (kσ) + λµΓ (kµ) = 0, (4.14)

with

Γ (x) = x

(
I0(x)

I1(x)
+

K0(x)

K1(x)

)
≡ (I1(x)K1(x))

−1
, (4.15)

the last identity being the Wronskian relation

Im(x)Km+1(x) + Im+1(x)Km(x) = 1/x. (4.16)

Finally, to apply the last boundary condition (4.6) we need to calculate the z-
component of the current density, that is derived by replacing Br and Bθ given by (4.12)
and (4.13), in (2.4a) and (2.4c), leading to (see Appendix E)

Jz =


r < 1, c

[
kσλσ

I0(kσr)

I1(kσ)
+

s2γ̃

c2k2
λµkµ

I0(kµr)

I1(kµ)

]
r > 1, − c

[
kσλσ

K0(kσr)

K1(kσ)
+

s2γ̃

c2k2
λµkµ

K0(kµr)

K1(kµ)

] . (4.17)

Replacing (4.12) and (4.17) in (4.6), and using (4.14), leads to the following dispersion
relation

Rm =
c

s

(
1− s2γ̃

c2k2

)
(I1(kσ)K1(kσ)− I1(kµ)K1(kµ))

−1
. (4.18)

The dynamo threshold obtained for γ̃ = 0 has been the subject of a previous paper
(Plunian & Alboussière 2021).

4.3. Asymptotic behaviour of γ̃ in the limit of large magnetic Reynolds numbers

We note that in (4.18), as kσ and kµ given by (4.7a,b) also depend on γ̃, we cannot
derive an explicit expression for γ̃. Therefore to determine the asymptotic behaviour of
γ̃ for Rm ≫ 1, two approaches are possible, either by solving numerically (4.18) that we
postpone to Subsection 4.4, or to carry out an asymptotic study, assuming that kσ ≫ 1
and kµ ≫ 1. In the latter case, since (Abramowitz & Stegun 1968)

for |z| ≫ 1, I1(z)K1(z) =
1

2z
+O(

1

z3
), (4.19)



Fast and Furious anisotropic dynamo 9

0 20 40 60 80 100

10 0

10 1

10 2

10 4 10 5 10 6
15.6555

15.656

15.6565

15.657

15.6575

Figure 3. (a) Plot of x0 versus σ for several values of µ and α = 0.16π. (b) Plot of
2

cs(σ−µ)
g(x0) versus σ for µ = 0 and α = 0.16π.

the dispersion relation (4.18) can be written as

Rm ≈ 2c

s

(
1− s2γ̃

c2k2

)
kσkµ

kµ − kσ
. (4.20)

In (4.20), replacing kσ and kµ by their expressions (4.7a,b) leads to the following
expression

Rm ≈ −2k

cs(σ − µ)
g(

γ̃

k2
), (4.21)

where g(x) is the function defined by

g(x) = (1+σs2)1/2(1+σ+x)1/2(1+µ+x)+(1+µs2)1/2(1+µ+x)1/2(1+σ+x). (4.22)

For a given value of Rm, as γ̃ depends on k, the maximum growth rate is obtained for
∂γ̃/∂k = 0. Therefore, differentiating (4.21) versus k, we find that this maximum is
characterised by

g(x0) = 2x0g
′(x0), (4.23)

where g′ is the derivative of g, and x0 the solution of the following equation(
1 + σs2

1 + σ + x0

)1/2 [
2x2

0 + (1 + σ)x0 − (1 + σ)(1 + µ)
]

+

(
1 + µs2

1 + µ+ x0

)1/2 [
2x2

0 + (1 + µ)x0 − (1 + µ)(1 + σ)
]
= 0. (4.24)

In Figure 3a, the solution x0 of (4.24) is plotted versus σ, for α = 0.16π and several
values of µ. The value α = 0.16π is chosen in reference to the dynamo threshold minimum
obtained for σ ≫ 1 when µ = 0 (Plunian & Alboussière 2020). For µ = 0 we find that
lim
σ→∞

x0 = 2.1665, that will be used for comparison with the numerical results of Section

4.4. Replacing x0 in (4.22), 2
cs(σ−µ)g(x0) is calculated and plotted in Figure 3b versus σ

for α = 0.16π and µ = 0. It takes the value 15.65715 for σ = 106 which, again, will be
used for comparison with the numerical results of Section 4.4.
As x0 is entirely determined by σ, µ and s, we conclude from (4.21) that the maximum

growth rate corresponds not only to γ̃ = x0k
2 but also to k ∝ Rm, implying that
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Figure 4. Plot of γ̃ versus k for µ = 0, σ = 106, α = 0.16π and several values of Rm. For each
curve, the maximum γ̃0 of γ̃, obtained for k = k0, is denoted by a circle.

γ̃ ∝ Rm2. From (4.2), we then conclude that

for Rm ≫ 1, γ ∝ Rm, (4.25)

making the anisotropic dynamo with infinite shear a furious dynamo.
Assuming cs(σ − µ) > 0, we note that (4.21) implies that k and Rm have opposite

signs, meaning that the dynamo action corresponds to a clockwise rotation of the inner
cylinder. For Rm ≫ 1, as k ∝ Rm and γ̃/k2 → x0, from the definition of kσ and kµ given
in (4.7a,b), the two assumptions kσ ≫ 1 and kµ ≫ 1 made at the beginning of Section
4.3, are satisfied.

4.4. Numerical solution of the dispersion relation (4.18)

In Figure 4, the growthrate γ̃ obtained from (4.18) is plotted versus k, for µ = 0,
σ = 106, α = 0.16π and several values of Rm. As mentioned above, σ is taken as
sufficiently large in order to reach asymptotically the minimum dynamo threshold which,
for µ = 0, is equal to Rm = 14.7 (Plunian & Alboussière 2020). For other values of µ, σ
or α, the curves will be different, without however changing the asymptotic behaviour of
γ̃ as Rm ≫ 1. As found in Subsection 4.3, the values of Rm are found negative.
In Figure 4, for each curve, the maximum of γ̃ is denoted by a circle. The dotted

straight curve corresponds to γ̃ = x0k
2 with x0 = 2.1665 calculated from (4.24), showing

an excellent agreement between the asymptotic approach at large Rm and the numerical
results.
From Figure 4, each maximum is denoted by its coordinates (k0, γ̃0), such that

γ̃0 = max
k

γ̃(k) = γ̃(k0). In Figure 5a, k0/Rm and γ̃0/Rm
2 are then plotted versus Rm.

In the asymptotic limit Rm ≫ 1 the scaling laws k0 ∝ Rm and γ̃0 ∝ Rm2 found in
Section 4.3 are clearly validated. In addition, the horizonthal dotted lines corresponding



Fast and Furious anisotropic dynamo 11

0 100 200 300
0

0.02

0.04

0.06

0.08

Figure 5. (a) Plots of k0/Rm and γ̃0/Rm
2 versus Rm for µ = 0, σ = 106, α = 0.16π. The

horizonthal dotted lines correspond to the asymptotic approach of Section 4.3.

to
(

2
cs(σ−µ)g(x0)

)−1

= 1/15.65715 and to x0

(
2

cs(σ−µ)g(x0)
)−2

= 2.1665/15.657152,

confirm the excellent agreement with the asymptotic approach.
It is instructive to plot the geometries of the magnetic field and the current density for

different values of Rm. For that we use the expressions derived in (4.12-4.13) and (F 2)
for the magnetic field, and (E 10-E 15) for the electrical current density. The geometries
of the horizonthal magnetic field lines and electric current lines are plotted in Figure 6.
The three components of the magnetic field normalized by BH(r = 1) where BH is the
modulus of the horizonthal component BH =

√
B2

r +B2
θ , are given in Figure 7. The three

components of the current density, normalized by RmBH(r = 1), are given in Figure 8.
In Figure 6, we note that the geometry of the electric current lines in the (x, y)-plane

do not depend on Rm. This is due to the fact that σ ≫ 1. Indeed, from the expressions of
Jr and Jθ given in Appendix E (E 10-E 14) it can be shown that, for σ ≫ 1 and provided
that γ̃/k2 is bounded, we have Jθ = − c

sJr for both r < 1 and r > 1. This corresponds to
have J · q = 0 or, equivalently, the electric current lines perpendicular to q. In contrast,
the geometry of the horizonthal magnetic fields lines vary with Rm, in such a way that
a magnetic boundary layer seems to appear at r = 1 for Rm ≫ 1. To quantify such
a boundary layer, in Figures 7 and 8 the components of B and J are plotted versus
Rm(r − 1), and it is obvious that the curves merge as Rm increases, suggesting that the
thickness of the boundary layer is of the order O(Rm−1).

5. Conclusions

We have shown that the anisotropic dynamo in cylindrical geometry is fast if the
differential rotation is smooth, and furious if the shear is infinite. In both cases the
underlying mechanism is based on the stretching by differential rotation and anisotropic
diffusion. For a smooth velocity profile, the dynamo occurs on a time scale equal to
the turnover time tFast = |Ω(a)|−1, where a is some characteristic radius, indicating for
example the one at which the shear is maximum. If the shear is infinite at r = a, the



12 F. Plunian, T. Alboussière
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Figure 6. Plots of the magnetic field lines (full) and the electric current lines (dashed) in the
horizontal plane (x, y), for µ = 0, σ = 106, α = 0.16π, and different values of Rm.
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Figure 7. From left to right, plots of Br, Bθ and −iBz, normalized by BH(r = 1), versus
Rm(r − 1), for µ = 0, σ = 106, α = 0.16π and Rm ∈ {14.7, 20, 30, 60, 100, 200, 300}.
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Figure 8. From left to right, plots of −iJr, −iJθ and Jz, normalized by Rm BH(r = 1), versus
Rm(r − 1), for µ = 0, σ = 106, α = 0.16π and Rm ∈ {14.7, 20, 30, 60, 100, 200, 300}.

dynamo occurs on a time scale tFurious even shorter that |Ω(a)|−1. In dimensional units,
it is equal to

tFurious = (Rm Ω(a))−1 = (σ⊥µ⊥a
2Ω(a)2)−1. (5.1)

For Rm ≫ 1 we then have tFurious ≪ tFast. This new characteristic time tFurious arises
because, in the anisotropic dynamo, the mechanism of magnetic generation due to the
anisotropic diffusion is particularly efficient, at least more efficient than the mechanism
due to the isotropic diffusion on which, for example, the Ponomarenko dynamo is
partially working on. As a result, the magnetic boundary layer in which the generation
of the magnetic field occurs is thinner, leading to a magnetic growth faster than the
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fast Ponomarenko dynamo. To illustrate this, it is instructive to rewrite the system of
equations (2.10a,b) in the following schematical way

γBr ∼ −k2Rm−1Br + k2Rm−1Bθ, (5.2a)

γBθ ∼ −k2Rm−1Bθ + k2Rm−1Br + rΩ′(r)Br, (5.2b)

in which each term is a simplified expression of the original terms of (2.10a,b). On the
right-hand side of (5.2a,b), the first term of each equation corresponds to the magnetic
dissipation, acting against the dynamo action, the second tems are source terms for the
dynamo due to the anisotropic diffusion, while the third term of (5.2a) is also a source
term, due to the velocity shear. Apart the velocity term rΩ′(r)Br, all other terms of
(5.2a,b) are of the same order of magnitude provided that

Br ∼ Bθ, and γ ∼ k2Rm−1. (5.3)

The velocity term can be estimated as rΩ′(r) ∼ 1 if the shear is smooth and rΩ′(r) ∼ k
if the shear is infinite. Assuming that in (5.2a,b) the velocity term is also of the same

order of magnitude as the other terms, leads to γ ∼ 1 and k ∼ Rm
1
2 for the smooth

shear, and to γ ∼ k ∼ Rm for the infinite shear. The thickness of the magnetic boundary
layer that can be estimated as δ ∼ k−1, then scales as δ ∼ Rm− 1

2 in the smooth case,
and δ ∼ Rm−1 in the infinite shear case. These order of magnitude confirmed by our
previous findings, clearly establish the crucial role of the boundary layers.
In order to capture the difference with the Ponomarenko dynamo we can rewrite, again

schematically, the system of equations given in Gilbert (1988, 2003) as

γBr ∼ −k2Rm−1Br + kRm−1Bθ, (5.4a)

γBθ ∼ −k2Rm−1Bθ + kRm−1Br + rΩ′(r)Br. (5.4b)

In (5.4a), kRm−1Bθ is again a source term corresponding to the generation of Br from
Bθ, coming from the isotropic diffusion of Bθ in the r-direction. This term is to contrast
with the anisotropic diffusion term k2Rm−1Bθ in (5.2a). In both cases the diffusion is
involved, but they have different orders of magnitude for k ≫ 1. Assuming that the terms
on the right-hand side of (5.4a) are of the same order of magnitude leads to

Bθ ∼ kBr, and γ ∼ k2Rm−1. (5.5)

Taking the same estimation of the velocity term rΩ′(r) as above, rΩ′(r) ∼ 1 if the shear
is smooth and Ω′(r) ∼ k if the shear is infinite, and assuming that it is of the same order
of magnitude as the other terms of (5.4b), except the term kRm−1Br which is smaller

for k ≫ 1, leads to γ ∼ k−1 ∼ Rm− 1
3 for the smooth shear, and to γ ∼ 1 and k ∼ Rm

1
2

for the infinite shear. The thickness of the magnetic boundary layer, δ ∼ k−1, then scales
as δ ∼ Rm− 1

3 in the smooth case, and δ ∼ Rm− 1
2 in the infinite shear case.

Eventually, a unique characteristic time can be define, as

t = σ⊥µ⊥δ
2, (5.6)

with, for the Ponomarenko dynamo, σ⊥ = σ∥ and µ⊥ = µ∥. In (5.6), t corresponds to the
magnetic diffusion time through a magnetic boundary layer of thickness δ. Replacing δ/a

by either Rm− 1
3 , Rm− 1

2 or Rm−1 leads to a characteristic time equal to Rm− 1
3Ω(a)−1,

Ω(a)−1 or Rm−1Ω(a)−1, as summarized in Table 5. Therefore, as mentioned above, it
is mainly the thickness of the boundary layer that governs the characteristic time of the
dynamo action, and thus the ability to have a slow, fast or furious dynamo for increasingly
thin boundary layers.
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Slow Fast Furious
(Ponomarenko) (Ponomarenko, Anisotropic) (Anisotropic)

δ/a Rm− 1
3 Rm− 1

2 Rm−1

tΩ(a) Rm
1
3 1 Rm−1

Table 1. Rm-power scalings of the thickness δ of the magnetic boundary layer, and of the
characteristic time t of the dynamo. These two quantities satisfy the unique formula (5.6).

Such an anisotropic dynamo could be designed at the laboratory scale, using ap-
propriate conducting layers or coils, or high-permeability materials, in order to mimic
the homogeneous anisotropy considered here. According to figure 5, to successfully
demonstrate the furious aspect of such a dynamo, a minimum magnetic Reynolds number
of about 30 would be necessary, which is about twice more than the value 14.6 of the
dynamo threshold. From the estimate given in Plunian & Alboussière (2020), assuming
an electrical conductivity equal to the one of copper would require an inner cylinder
with a radius of 0.05 m and a rotation frequency of about 25 Hz, which is feasible in the
laboratory. In natural objects where the magnetic Reynolds number is much larger, fast or
furious dynamo action should be favoured, provided that the anisotropy of the electrical
conductivity does play a role, as can be expected for example in spiral arms galaxies
where Rm ≫ 1 and for which our anisotropic model might be a good approximation.
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Appendix A. Derivation of (2.10a,b)

The induction equation (2.5) is derived from (2.4d) and (2.4e), such that

∂tB = ∇× (U×B)−∇× [σij ]
−1J, (A 1)

with, from (2.4a) and (2.4c),

J = ∇× [µij ]
−1B, (A 2)
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Assuming axisymmetry (∂θ = 0) and considering the solenoidality of B given by (2.4b),
the curl of the cross product of U = rΩ(r)eθ by B = (Br, Bθ, Bz) exp(γt + ikz) takes
the form

∇× (U×B) = rΩ′Breθ, (A 3)

where, from now, the exponential term is dropped for convenience. From the definition
(2.6a) of [σij ]

−1, we have

[σij ]
−1J = σ−1

⊥

(1 + σc2)Jr + σcsJθ
σcsJr + (1 + σs2)Jθ

Jz

 . (A 4)

Taking the curl leads to

∇× [σij ]
−1J = σ−1

⊥

 −ik
[
σcsJr + (1 + σs2)Jθ

]
ik−1

[
Dk(Jr) + σc2k2Jr + σcsk2Jθ

]
1
r∂r

(
r
[
σcsJr + (1 + σs2)Jθ

])
 , (A 5)

where, again, Dν(X) = ν2X − ∂r
(
1
r∂r(rX)

)
, and with Jz = ik−1 1

r∂r(rJr) coming from
the solenoidality of the current density.
Similarily, we find that

J = ∇× [µij ]
−1B = µ−1

⊥

 −ik
[
µcsBr + (1 + µs2)Bθ

]
ik−1

[
Dk(Br) + µc2k2Br + µcsk2Bθ

]
1
r∂r

(
r
[
µcsBr + (1 + µs2)Bθ

])
 . (A 6)

Combining (A 5) and (A 6) leads to

∇× [σij ]
−1

[
∇× [µij ]

−1B
]
= (σ⊥µ⊥)

−1

 F
G

ik−1
(
1
r∂r(rF )

)
 , (A 7)

with

F = µc2k2Br + (1 + σs2)Dk(Br)− k2cs(σ − µ)Bθ, (A 8)

G = −cs(σ − µ)Dk(Br) + σk2c2Bθ + (1 + µs2)Dk(Bθ). (A 9)

Combining (A 1), (A 2), (A 3) and (A 7), leads to (2.10a,b).

Appendix B. Derivation of (4.10a,b)

Rewriting (4.1a,b) in the form

Dk(Br) = −
[
γ̃Br + µc2k2Br + σs2Dk(Br)− cs(σ − µ)k2Bθ

]
(B 1a)

Dk(Bθ) = −
[
γ̃Bθ + σc2k2Bθ + µs2Dk(Bθ)− cs(σ − µ)Dk(Br)

]
, (B 1b)

and considering the linear combination c(B 1a)+s(B 1b), leads to

(1 + µs2)Dk(cBr + sBθ) = −(γ̃ + µc2k2)(cBr + sBθ). (B 2)

Then, using the identity

(1 + µs2)Dk(X) = (1 + µs2)Dkµ(X)− (γ̃ + µc2k2)X, (B 3)

we find that

Dkµ(cBr + sBθ) = 0. (B 4)
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In a similar way, considering the linear combination sDk((B 1a))-ck2(B 1b), leads to

(1 + σs2)Dk(sDk(Br)− ck2Bθ) = −(γ̃ + σc2k2)(sDk(Br)− ck2Bθ). (B 5)

Then, using the identity

(1 + σs2)Dk(X) = (1 + σs2)Dkσ
(X)− (γ̃ + σc2k2)X, (B 6)

we find that

Dkσ
(sDk(Br)− ck2Bθ) = 0. (B 7)

Appendix C. Derivation of (4.13)

To obtain Bθ from Br by replacing (4.12) in (4.9a), we need to calculate Dkσ
(Br),

given by

Dkσ
(Br) =


r < 1, − sλµ

Dkσ
(I1(kµr))

I1(kµ)

r > 1, − sλµ
Dkσ

(K1(kµr))

K1(kµ)

. (C 1)

With the help of the identity (4.8) we have

Dkσ (Br) =


r < 1, − sλµ(k

2
σ − k2µ)

I1(kµr)

I1(kµ)

r > 1, − sλµ(k
2
σ − k2µ)

K1(kµr)

K1(kµ)

. (C 2)

Then replacing kσ and kµ by their expressions given in (4.7a,b) and after some additional
algebra leads to (4.13).

Appendix D. Derivation of the boundary condition (4.14)

To write the continuity of ∂rBr at r = 1 we first need to calculate the expression of
∂rBr at any r. From the following identities satisfied for any ν,

∂r (I1(νr)) = νI0(νr)−
1

r
I1(νr), (D 1)

∂r (K1(νr)) = −νK0(νr)−
1

r
K1(νr), (D 2)

the expression of ∂rBr is obtained by deriving (4.12),

∂rBr =



r ⩽ 1, − s
λσ

I1(kσ)

[
kσI0(kσr)−

1

r
I1(kσr)

]
− s

λµ

I1(kµ)

[
kµI0(kµr)−

1

r
I1(kµr)

]
r ⩾ 1, s

λσ

K1(kσ)

[
kσK0(kσr) +

1

r
K1(kσr)

]
s

λµ

K1(kµ)

[
kµK0(kµr) +

1

r
K1(kµr)

]
. (D 3)

Then, from (D3) writing the continuity of ∂rBr at r = 1 leads to (4.14).
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Appendix E. Derivation of the current density J

The current density J given in (A 6) can be written, in its renormalized form, as

J =

 −ikϕ
ik−1

[
Dk(Br) + µc2k2Br + µcsk2Bθ

]
1
r∂r (rϕ)

 . (E 1)

with ϕ = µcsBr + (1 + µs2)Bθ.

Replacing Br and Bθ by their expressions (4.12) and (4.13), leads to

ϕ =


r < 1, c

[
λσ

I1(kσr)

I1(kσ)
+

s2γ̃

c2k2
λµ

I1(kµr)

I1(kµ)

]
r > 1, c

[
λσ

K1(kσr)

K1(kσ)
+

s2γ̃

c2k2
λµ

K1(kµr)

K1(kµ)

] , (E 2)

and therefore to Jr.

Using the relations (D 1) and (D2) written in the form

1

r
∂r (rI1(νr)) = νI0(νr), (E 3)

1

r
∂r (rK1(νr)) = −νK0(νr), (E 4)

leads to

1

r
∂r (rϕ) =


r < 1, c

[
λσkσ

I0(kσr)

I1(kσ)
+

s2γ̃

c2k2
λµkµ

I0(kµr)

I1(kµ)

]
r > 1, − c

[
λσkσ

K0(kσr)

K1(kσ)
+

s2γ̃

c2k2
λµkµ

K0(kµr)

K1(kµ)

] , (E 5)

and therefore to Jz.

Using (B 3), we find that

Dk(Br) + µc2k2Br + µcsk2Bθ = Dkµ(Br) +
µcsk2ϕ− γ̃Br

1 + µs2
. (E 6)

From the expression of Br given by (4.12), we have

Dkµ
(Br) =


r < 1, − sλσ

I1(kσ)
Dkµ(I1(kσr))

r > 1, − sλσ

K1(kσ)
Dkµ(K1(kσr))

. (E 7)

Using (4.8) leads to

Dkµ(Br) =


r < 1, − sλσ

I1(kσ)
(k2µ − k2σ)I1(kσr)

r > 1, − sλσ

K1(kσ)
(k2µ − k2σ)K1(kσr)

, (E 8)

where we used the identity Dν(I1(kνr)) = Dν(K1(kνr)) = 0. After some algebra we find
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that

Dkµ(Br) +
µcsk2ϕ− γ̃Br

1 + µs2
=


r < 1, λσsk

2

(
σc2 + γ̃/k2

1 + σs2

)
I1(kσr)

I1(kσ)
+ sγ̃λµ

I1(kµr)

I1(kµ)

r > 1, λσsk
2

(
σc2 + γ̃/k2

1 + σs2

)
K1(kσr)

K1(kσ)
+ sγ̃λµ

K1(kµr)

K1(kµ)

,(E 9)

leading to Jθ.
Then the current density takes the following form
for r < 1,

Jr = −ikc

[
λσ

I1(kσr)

I1(kσ)
+

s2γ̃

c2k2
λµ

I1(kµr)

I1(kµ)

]
, (E 10)

Jθ = ik−1

[
λσsk

2

(
σc2 + γ̃/k2

1 + σs2

)
I1(kσr)

I1(kσ)
+ sγ̃λµ

I1(kµr)

I1(kµ)

]
, (E 11)

Jz = c

[
λσkσ

I0(kσr)

I1(kσ)
+

s2γ̃

c2k2
λµkµ

I0(kµr)

I1(kµ)

]
, (E 12)

for r > 1,

Jr = −ikc

[
λσ

K1(kσr)

K1(kσ)
+

s2γ̃

c2k2
λµ

K1(kµr)

K1(kµ)

]
, (E 13)

Jθ = ik−1

[
λσsk

2

(
σc2 + γ̃/k2

1 + σs2

)
K1(kσr)

K1(kσ)
+ sγ̃λµ

K1(kµr)

K1(kµ)

]
, (E 14)

Jz = −c

[
λσkσ

K0(kσr)

K1(kσ)
+

s2γ̃

c2k2
λµkµ

K0(kµr)

K1(kµ)

]
. (E 15)

Appendix F. Derivation of Bz

From (3.6) we have

Bz = ik−1(
Br

r
+ r∂rBr). (F 1)

Then replacing (4.12) and (D 3) in (F 1), leads to

Bz = ik−1s


r < 1, −

[
λσkσ

I0(kσr)

I1(kσ)
+ λµkµ

I0(kµr)

I1(kµ)

]
r > 1, λσkσ

K0(kσr)

K1(kσ)
+ λµkµ

K0(kµr)

K1(kµ)

. (F 2)


