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Ah&a&-We propose an analytical solution to the equations of magnetohydrodynamics that can be used 
to model the effect of a transverse magnetic field on buoyancy driven convection in a two-dimensional 
cavity. In the high Hartmann number limit, the velocity gradient in the core is constant outside of the two 
Hartmann layers at the vicinity of the walls normal to the magnetic field. We show that this core solution 
is correct everywhere in the cavity except in a boundary layer of extent Ha-“’ at the cold wall. The 
recircuIating part of the flow is studied by means of a series expansion that allows for the computation of 
the stream function. We also present the variation of both components of velocity as a function of Ha, 

along with a discussion of the validity of our assumptions. 

1. INTRODUCTION 

CONVECTION is an important parameter in crystal 
growth experiments from the melt as it can account 
for both heat and mass transfer in the liquid phase. It 
is well known that these unavoidable hydrodyna~c 
movements can be damped with the help of a magnetic 
field (see for instance refs. [l, 21). This effect has been 
thoroughly studied in the past few years in the Czo- 
chralski configuration [3-81. Comparatively little 
attention has been paid to the Bridgman technique 
which is also of interest for solidification, both on 
the ground and in microgravity [9-l 11. A pendent 
question is to know whether diffusive solute transport 
conditions can be achieved on earth with the help of 
a magnetic field. In this paper, we propose a two- 
dimensional solution to the equations of the magneto- 
hydrodynamics that can be used to model the hori- 
zontal Bridgman method. To do so, we extend the 

FIG. I. Geometry of the problem and coordinates ; the cavity 
is supposed infinite in the Y-direction. 

to B,, the equations of the problem are, in the Bous- 
sinesq approximation : 

continuity 

v-v=0 (1) 
work of Hart [l&13] and Birikh [ 141 to the case where 
a magnetic field is present. 

momentum transfer 

av 
z +(V*V)V = - p+VP+ :jnB, 

2. BACKGROUND +VV2V-/.qT- T,)g (2) 

The fluid is contained in a cavity of infinite extent heat transfer 
along the Y direction ; the lateral ends are maintained 
at temperatures T, and T,+ AT respectively and the aT 

applied magnetic field B, is parallel to gravity (see 
at +(V*vT= ciV2T (3) 

Fig. 1). Neglecting the effect of Joule heating and 
viscous dissipation on heat transfer and also assuming 

electric charge transfer 

that the induced magnetic field is very small compared V-j = 0 j = a(-V#+VxB,). (4) 
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NOMENCLATURE 

B0 applied magnetic fieid 

9 intensity of gravity 

H cavity height 

j electric current 
L cavity length 

P pressure 

T temperature 

T,, minimum temperature of the liquid 

U, w X. Z components of the 

velocity 

u, It non-dimensional values of U, W 

UM. !l’M maximum non-dimensional 

velocities for u, rz: 

V velocity vector 
X, Y, Z dimensional coordinates 

.Y, ?‘, z non-dimensional coordinates 

x, y, z unit vectors. 

Greek letters 
thermal diffusivity 

; coefficient of thermal expansion 
AT temperature difference between the 

lateral ends of the cavity 
i: aspect ratio of the cavity, H/L 
,Y non-dimensional temperature field 
\’ kinematic viscosity 

I’0 density at temperature T,, 
electrical conductivity 

; electric potential 

* stream function of velocity. 

Non-dimensional parameters 
Cl Grashof number, I!y(AT/L)H”/v’ 
HU Hartmann number, B. H(a/p,,v) ’ ’ 
Pr thermal Prdndtf number, v/cc. 

In the above equation, 4 stands for the electric poten- 
tial and -VC$ for the associated electric field. From 
now on, we assume that all the variables are time 
independent. Equations (4) then become 

A+B,(i;U/?Y-ciV!?X) = 0. 

In our two-dimensional frame, we are left with a har- 

monic equation for the electric potential, A+ = 0, 
which is valid in the melt as well as in the neighbouring 
solid media. Since there is always somewhere around 
the enclosure an electrically insulating boundary on 
which &$/an = 0, the unique solution is V$ = 0, 
which means that the electric field vanishes every- 
where. The Lorentz force then reduces to a sys- 
tematically damping factor - BiUx. This situation is 
similar to that of pressure driven flows in a 2D per- 

fectly conducting duct. Overvelocity effects as pre- 
dicted by Hunt [ 151 can only be observed in more 
complex 3D problems. 

3. THE CORE SOLUTION 

3.1. Outline of the solution 

Let us first look at the velocity field in the core of 
the cavity. We will look for a solution of the form 
V = U(Z)x that automatically satisfies the continuity 
equation. Projection of equations (2) on the coor- 
dinate axis leads to 

-lap 1 d2U 
- --c~B;Ufv~ = 0 

PO ax PO 

$&+Jlq(T-To) = 0. 
0 

The boundary conditions of the velocity problem are : 

U=O atZ= fH/2(noslip) 

and at Z = 0 (symmetry). 

As for temperature, following Hart [ 121, we will study 
two different cases : 

thermally insulating walls 

:g=O atZ= &H/2; 
i 

thermally conductive walls 

T=FX atZ= *H/2. 

As shown by Birikh [14], the axial temperature 

gradient in the cavity is constant, aT/dX = AT/L. 

Elimination of pressure between equations (5) and (6) 
yields 

d3U cr dU AT 
vd~+53~=/3g~. (7) 

Let us now rewrite the equations using reduced vari- 
ables, defined as 

I = X/H , z= Z/H, u = HUiv, 9 = (T-T,)/AT. 

The non-dimensional groups appearing in the equa- 
tions are the thermal Prandtl number Pr, = v/a, the 
Grashof number Gr = bg(AT/L)H4/v2, the Hart- 
mann number Ha = B,H(a/p,v) I”, and the aspect 
ratio of the cavity E = H/L. Equation (7) now 
becomes 

d3u 
--Ha2$=Gr. 
dz3 

Equation (3) becomes, in non-dimensional form 

d29 
- - PrT m. 
dz2 - 

Taking into account the boundary conditions, the 
solution to equation (8a) is 
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FIG. 

0 5 

Log IHa) 
2. Variation of the maximum velocity of the fluid in the 

core, normalized by Gr, as a function of Ha. 

Gr sinh (Ha z) 

’ =%@ 2sinh(Ha/2) -’ ’ (9) 

Equation (8b) then yields : 

thermally insulating walls 

1 sinh(Haz) z3 -- 
2Ha2 sinh(Ha/2) 6 

1 

+ 

cash (Hu/2) 

8 - 2 Ha sinh (Hu/2) 

thermally conducting walls 

1 sinh(Haz) z3 

6 

+ (&&]. (11) 

3.2. Analysis of the results 
3.2.1. Check of validity. In the low Ha limit, a 

power series expansion of equation (9) keeping only 
the third order terms in Ha gives 

u = ;(z3-z,4) (12) 

As for temperature, the fifth order terms have to be 
taken into account, and the results are : 

thermally insulating walls 

S=cx+PrEGr[$-%+$I; (13) 

thermally conductive walls 

1 . (14) 

Equations (12)-(14) are identical to those obtained 
by Hart [12] in the absence of a magnetic field. It is 
indeed reassuring to see that equations (9)-( 11) reach 
correct limits when the Hartmann number tends 
towards 0. 

a b 

FIG. 3. Normalized velocity (a) and temperature (b) profiled 
across the cavity for values of the Hartmann number Ha = 2, 
20 and 200. Temperature distributions were calculated 

assuming thermally insulating walls. 

3.2.2. Maximum velocity. Figure 2 shows the vari- 
ation of the maximum velocity as a function of the 
Hartmann number ; it is seen that in the high Ha range 
the decrease follows an Hum2 power law. Indeed, tak- 

ing the derivative of equation (9) yields for the extre- 
mum : 

z0 = kargcosh (2sm~~‘2)) (15) 

which as Ha tends towards infinity reduces to 

1 log (2/Hu) 
z,=-+ 

2 Ha 

the result for maximum velocity is then 

luH] = :GrHu-‘. (16) 

It can thus be said, as noted in ref. [ 11, that the group 
of non-dimensional parameters uM Ha’/Gr governs 
convection in the fluid in the high Ha limit, whereas 
uJGr plays a similar role in the non-magnetic prob- 
lem [12]. 

3.2.3. VeZocityprojZes. Plots of u/luMl are given in 

Fig. 3 for various values of Ha. For low values of Ha, 
the profile is simply cubic [12, 141 but as Ha increases, 
the velocity gradient tends to be constant almost 
everywhere in the cavity. This is readily seen in equa- 
tion (8a) : in the high Ha range, the Ha2 du/dz term 
prevails except in the two thin Hartmann layers of 
thickness Ha-’ near the walls, where the effect of 
viscosity cannot be neglected. 

Furthermore, the interested reader will check that 
in the high Ha limit, the velocity profiles of equation 

(9) can be split into two contributions : 

(a) a core velocity u, valid when l/2 - lzl >> Ha- ’ 

Gr 

uc= -zz; (174 

(b) the classical Hartmann exponential profiles [ 161 

uHO = u,[l-exp{fHa(zf1/2)}]. (17b) 

As opposed to the case of pressure driven flows in 
ducts, the rotational of the Lorentz force in the core 
does not vanish due to the presence of the buoyancy 
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term in equation (2). Indeed, it is easy to check that 
in our problem, we now have d’u,ldr’ = 0; as 
opposed to the pressure driven case (for which u, had 
to be uniform), here we find an example where the 

velocity gradient in the core must be constant. 
3.2.4. Temperature. A glance at equations (IO) and 

(I 1) ensures that the maximum values for both thermal 

boundary conditions also follow an Ha- ’ power law 
in the high Ha range, but as Hu tends towards infinity, 
the limits for equations (10) and (11) take simple 
forms : 

thermally insulating walls 

(18) 

thermally conducting walls 

9=sx+;;(-;+2$. (19) 

The polynomials of equations (18) and (19) obviously 
do not lead to a boundary layer behaviour in the 
vicinity of the walls. Indeed, the temperature dis- 
tribution (for thermally insulating walls) normalized 
with respect to their maximum values is also shown 
in Fig. 3 for several values of the Hartmann number ; 
there is no significant difference in the shapes of the 
curves when Ha increases. 

3.2.5. Electric current. Going back to dimensional 
variables. equation (4) gives j = -rrB,U(Z)y ; j thus 
flows in the positive (resp. negative) Y-direction in the 
upper (resp. lower) part of the cavity, with its lines 
closing at infinity. U being an odd function of Z, it is 
clear that there is no net electric current across the 
(X, Z) plane and that, as opposed to the classical 
Hartmann flow [17], there is no current recirculation 
through the Hartmann layers at the top and the bot- 
tom of the cavity. However, it has to be mentioned 
that the end effects in the Y-direction could have a 
major impact on the local velocities. 

3.2.6. Concluding remarks. The same results could 
have been obtained through a different formulation 
of this 1D problem [ 181. We could have assumed that 
the induced magnetic field b, a function of Z only, lies 
in the X-direction ; a convecto-diffusive equation for 
b along with Ampere’s law could then lead to the same 
set of equations for velocity and temperature. It is 
also interesting to notice the forma1 analogy between 
our results and those of the fluctuating gravity prob- 
lem (g-jitters) [19]. In both cases, the additional linear 
term in equation (8a) tends to damp the buoyancy 
driven convective flow. 

4. THE RECIRCULATING FLOW 

4.1. Further hypothesis 
For a crystal grower interested in solute segre- 

gation, the above 1D velocity field is not enough ; 
indeed, what is of the utmost importance is the recir- 

culation of the Row in front of the solid-liquid inter- 
face (the cold wall of our cavity). The reason is that, 
in a typical solidification run, the local convective 
movements play a key role in species transport in 
the melt. We will thus attempt to find a solution to 
equations (l)-(4) ; however, since the problem is now 
fully two-dimensional, a few restrictive assumptions 

have to be made. 
First of all, we now consider an open, semi-infinite 

cavity submitted to a constant temperature gradient. 
In other words, we suppose that convective heat trans- 
fer is negligible. To support this hypothesis, it can be 
seen from equations (18) and (19) that in the high Ha 
range, the distortion of the thermal field is indeed very 

small, especially in the case of low Prandtl number 

fluids (e.g. metals and semiconductors). Furthermore, 
we drop the non-linear inertial term V * VV. This can 
only be justified if the interaction parameter, the ratio 

of the Lorentz force to the inertial force, is very high 
with respect to unity. Intuitively, we expect that high 
Ha again favour this condition, but we will come back 
later to check the validity of this assumption. 

In order to satisfy the continuity equation, we look 

for a solution in terms of a non-dimensional stream 
function $ such that 

u = a*+ w = -a*/aX (20) 

where w is now the velocity component on the z-axis. 
Taking the rotational of equation (2) and inserting 
the above definition, we get for the variations of + : 

A’$ - Ha2 a2t,b/az2 = Gr. (21) 

Let us look for a solution in the form of a series 
expansion : 

II, = i: L’&Y) cos c(,z, (22) 
0 

the CI/ being given by aj = (2j+ 1)rc in order to ensure 
$ = 0 at z = f l/2. Clearly, with this choice u = @/az 
does not vanish on the lateral walls of the cavity. 
However, as was done in the core problem, the classi- 
cal correction of the velocity distribution within the 

Hartmann layers [16] can again be used to satisfy the 
no-slip conditions at z = f l/2, at least when Ha >> 
1. We thus expect our assumption to be physically 
sound in the high Ha range. For u,(x), the boundary 
conditions are : 

v,(x) = u:(x) = 0 at .X = 0 (23) 

to ensure that both u and w vanish on the cold wall. 

4.2. Outline of the solution 
To start with, let us write the series expansion of 

Gr: 

Gr = f g, cos aiz, g, = 4(-1)-’ G,., (24) 
0 “J 

Using equations (22) and (24), equation (21) becomes 

u;~) -201;~;~ + (a; + Hrr’ c$)u, = g,. (25) 
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To get the general solution in terms of vi, we need to 
solve the algebraic equation 

m4-2ajm2+(~,,f+Ha2~~) = 0. 

Tedious but simple calculations lead to m = f a,f ibj 
(i’ =: - I), a, and b, being given as 

aj = 2~(n?+aj(HR2+a:)1/21’:2 
(264 

b, = ~[-~~+~j(~az+~~)i~2]1~2. (2fjb) 

The general solution of equation (25) can then be 
written as 

U&Y) = LjeC’~“cosb,x+~ie-“~Ysinb,x 

+ v e”!‘ cos b .Y $ n e”?’ sin b x I I I I 

+gj/‘(RT +Ha2 R,‘). (27) 

To ensure that v, remains bounded as x tends towards 
infinity, we have to set vj = n, = 0. The boundary 
conditions of equation (23) are then : 

5 +g,i(u,” -t- Ha2 a,“) = 0, 

- Qzj + pjjb, = 0. 

To sum up the results, we finally get 

v,(x) = 12/[e-“p cos b,x - l] +pj e-=/x sin bjx 

(2W 

Izj = -gj/(g,! + Ha2 c$), 

pj = -ujgj/bj(&,” f Ha2 CC,‘). (28b) 

4.3. Analysis of the results 
4.3.1. Check of ~ulj~ity. As opposed to the core 

problem, we do not have an analytical solution with- 
out a magnetic field to check the validity of our cal- 
culations. Worse, it would not serve out purpose to 
solve the simpler equation A’$ = Gr; the math- 
ematical result would not be physically relevant since 
in that inertialess, non-magnetic formulation, vis- 
cosity would govern momentum transfer throughout 
the cavity. In that case, dropping the no-slip con- 
ditions for u on z = + l/2 would be very dangerous. 
However, we can check the consistency of our 2D 
approach with respect to the core solution in the high 
Ha range. Taking the limit of equation (28a) as x 
tends towards infinity, we get 

o&K) -+ u,O = s.,/(a,” -t Ha2 a,‘) 

and consequently 

Since both 1, and pj have CY,” + Ha2 c$ terms at their 
denominator (see equations (28b)), we can expect that 
when j gets high, the corresponding contribution will 
be quite small. If we now suppose that each t4, playing 
a significant role in the series is much smaller than Ha 

(we will come back later to the domain of validity of 
this ‘high Ha’ approximation), we get 

1 m 
$” = s 1 g, cos czjz/u: 

0 

with 

After simple algebraic manipulations, the above series 
finally reduces to 

G”(z) = -& (9 - l/4) 

Thus, far from the cold wall, the velocity component 
on the x-axis is 

Gr p---v 
Ha2-’ 

Having dropped the no-slip conditions on the upper 
and lower walls, we cannot expect to fall back exactly 
on equation (9) ; it is, however, reassuring to see that 
both results are indeed equal everywhere except in the 
vicinity of z = + l/2. 

4.3.2. Veloc~ty~ro~~es. From a crystal grower point 
of view, velacity profiles are easier to handle than 
current functions. We will begin with the study of w, 
the component running down the cold wall. Using 
our series expansion, we can write : 

m 

w = - c v;(x) cos E,‘. 

0 

The first and second derivatives of v, are, respectively, 
according to equations (28) 

u;(x) = - Qjbj + pjuj) e-0jx sin b,x (3Oa) 

uf 2’ (x) = - (Ajbj + pp,) 

x e-“i’[ -a, sin b,x+b, cos b,x]. (30b) 

21; reaches its maximum at x,,, such that 

tan bjxo,, = b//a,. 

To gain more insight into the physics of the problem, 
let us now focus on the high Ha limit. Assuming again 
that each CI, playing a significant role in the series is 
much smaller than Ha, we get the asymptotic for- 
mulae : 

u, z h, 2 

/$ N p N -4Gr (--I)” 
I Htl2 7’ (31b) 

Thus the asymptotic values for xoJ and the maximum 
of v3 (in the following referred to as D$,~) are given 
by: 

(32a) 
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FIG. 4. Variation of the maximum of the w component of 
velocity, normalized by Gr, as a function of Ha. 

FIG. 6. Normalized w velocity profile showing the variation 
of (w Hc?)/Gr as a function of x Hu”~ in the middle of the 

cavity. 

v;,M = -4e~p(--rr,/l)$~ $$. (32b) 

Thus, we expect the range of variation of w and the 
associated length scale will follow asymptotic power 
laws in Gr Hue3’* and Ha-“* respectively in the 
high Ha range. The above result can also be used to 
estimate the contribution of each term in the expan- 
sion: the ratio between v,,., and vO,,, varies as $I*, 
falling rapidly with j. For instance, atj = 10, v~,~/u~,~ 
is already smaller than 3 x lo-‘. We thus checked that 
truncation of the series at j = 10, 20 or 50 did not 
significantly change the final result in terms of w. 

The curve giving the maximum value of w, wM, as 
a function of Ha is shown in Fig. 4. At high Ha, 
w,/Gr follows, as expected, an Had3’* power law 
(see Fig. 4); (wM Ha3’*)/Gr is then the relevant non- 
dimensional group for the study of the recirculating 
problem. Its variation with Ha, presented in Fig. 5, 
can be used to determine the range of validity of the 
high Ha approximation. When this condition holds, 
say for Ha > 100, we also found that for each z, the 
w(x) velocity profiles admitted a representation of the 
form M’ Ha’*‘/Gr =,f’(x Ha’ ‘) : the corresponding 
result is shown in Fig. 6 for the case z = 0 (middle of 
the cavity). 

u = - 1 v,(x) aj sin DC,Z. 
0 

u is seen to increase from 0 at x = 0 to a value U, 
given by equation (29) far away from the cold wall. 
We also checked that for each z, the u(x) velocity 
profiles were self-similar in the high Ha range. Since 
a, and b, are both of order of magnitude Hu’j2, we 
expect that Ha-“* will again be the relevant length 
scale in the recirculating area. This result is confirmed 
in Fig. 7, where we plotted the variation of (u Ha*)/Gr 
as a function of x Hali2 at z = 0.25. 

In all cases, we found numerically that Ha greater 
than 100 ensured that the high Ha approximation was 
valid. This is not unreasonable, since truncation of 
the expansion atj = 10 did not change the final result. 
We could have expected that the condition CL, o cc Ha 
was sufficient to guarantee this result. 

Again, using our series expansion, we can compute 
the u component of velocity, given by 

4.3.3. Self-consistency. We can now come back on 
our assumption of high interaction parameter, i.e. the 
neglect of V * VV in equation (2). Let us try to estimate 
the order of magnitude of the various non-dimen- 
sional inertial terms z&/ax, w&/az, &w/ax and 
w&~/&z. The maximum values of u and M, are in 
Gr Hc’ and Gr Ha63’2 and the associated length 
scales on x and z are Ha-~ I” and 1, respectively. The 
leading contributions u&/&x and ~c?w/~z then vary 
like Gr* Ha-- ’ ; this is to be compared with an estimate 

I 1 

z 

-2.5 

0 I 2 3 4 5 6 7 

Log (Ha) x Ha’” 

FIG. 5. Variation of the (wM HaY2)/Gr group that governs 
the recirculation as a function of Ha. 

FIG. 7. Normalized u velocity profile showing the variation 
of (u Ha’)/Gr as a function of x Ha”* at z = 0.25. 
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for the Lorentz force, Ha* u, of order of magnitude 
Cr. A condition for inertia to be negligible is thus 

Ha3/Gr >> 1. (33) 

This condition can hold in usual horizontal Bridgman 
growth conditions where typical values of Ha and Gr 
are of order of magnitude 100 and 10’. Furthermore, 
if we refer to the non-magnetic problem [12], inertia 
is seen to play a minor role, even when the cor- 
responding order of magnitude condition (Gr << 1) is 
not verified. Thus we do not expect our neglect of the 

V - VV term to jeopardize the validity of our results. 

Finally, due to the limited super-velocity observed 
in the recirculating area, convection can be expected 
to play a minor role in overall heat transfer in the high 

Ha range. We thus think that our assumption of 
constant temperature gradient, that holds strict0 sensu 

only for Pr = 0, is valid in most cases, at least for 
metals and semiconductors. 

5. CONCLUSION 

The purpose of this work was to propose a solution 
to the equations of magneto-hydrodynamics in order 

to study the effect of a transverse magnetic field on 
buoyancy driven convection in a two-dimensional 
cavity. One of the main features of the problem is that 

the electric field vanishes everywhere. Since the x- 
velocity profiles are odd functions of Z, the current lines 
can be considered to be close at infinity, with no 
impact in our solution. However, one should bear in 
mind that 3D end effects in the y-direction could have 
a drastic influence on the local velocity field. 

In the core problem, when the Hartmann number 
gets high, both velocity and temperature follow an 
Ha-* power law. Moreover, the velocity gradient 
du/dz is seen to be constant everywhere in the cavity 
except in the two Hartmann layers of extent Ha-’ 

near z = + l/2 where the effect of viscosity becomes 
important. However, as opposed to what can be seen 
in the case of pressure driven flows in ducts, these 

boundary layers do not play a role in the recirculation 
of the current; their purpose is only to ensure that 
velocity vanishes at the wall. 

To study the recirculating part of the flow, we were 
led to further simplifications. The effect of both con- 

vective heat transfer and inertia were supposed a 
priori negligible, but we came back later to check the 
validity of these assumptions. A boundary layer of 
extent Ha- ‘I* parallel to the cold wall is observed in 
the high Ha limit. Both components of velocity u and 
w are seen to vary as Gr Ham2 and Gr Ha-‘/* over 
this length scale. 

We hope that this solution can be used to study 
solute repartition in a typical horizontal Bridgman 
growth experiment. It should be possible to derive 
a criterion giving, at a given Gr, the Ha necessary 
to reach the diffusion controlled solidification con- 
ditions. Further extensions of this work could in- 

elude the effect of confinement in the y-direction, 
thus yielding a full three-dimensional solution of the 
problem; a study of the stability of this solution in 

order to find the first threshold of non-stationarity 
would also be of interest. 
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CONVECTION NATURELLE DANS UNE CAVITE RECTANGULAIRE AVEC CHAMP 
MAGNETIQUE TRANSVERSE 

RisumP-Nous proposons une solution analytique aux tquations de la magn&tohydrodynamique per- 
mettant de modkliser I’effet d’un champ magnetique transverse sur la convection thermique dans une cavitt: 
bidimensionnelle. Dans la limite des nombres de Hartmann &lev&, le gradient de vitesse dans le coeur de 
I’Ccoulement est constant sauf dans les deux couches de Hartmann au voisinage des parois normales au 
champ magnbtique. Nous montrons que cette solution de coeur est applicable partout g l’exception d’une 
couche limite d’ktendue Ha- ‘I2 i proximitk du mur froid. La partie recirculante de I’&coulement est &dike 
& l’aide d’un dtveloppement en s&rie qui permet de calculer la fonction de courant. Nous prtsentons 
igalement la variation des deux composantes de la vitesse en fonction de Ha ainsi qu’une discussion de la 

validit& de nos hypothtses. 

NATijRLICHE KONVEKTION IN EINEM RECHTECKIGEN HOHLRAUM UNTER DEM 
EINFLUSS EINES QUERLIEGENDEN MAGNETFELDES 

Zusammenfassung-Es wird eine analytische Liisung der magneto-hydrodynamischen Gleichungen vor- 
gestellt, mit deren Hilfe man den EinfluR eines querliegenden Magnetfeldes auf die natiirliche Konvektion 
in einem zweidimensionalen Hohlraum beschreiben kann. An der oberen Grenze der Hartmann-Zahl ist 
der Geschwindigkeitsgradient im Kern konstant-dies gilt auBerhalb der beiden Hartmann-Schichten in der 
NBhe der senkrecht vom Magnetfeld durchquerten WBnde. Es wird gezeigt, daR diese Kern-L6sung an 
jeder Stelle des Hohlraums gilt, mit Ausnahme einer Grenzschicht der Dicke Hu “’ an der kalten Wand. 
Der rezirkulierende Teil der Striimung wird mit Hilfe einer Reihenentwicklung untersucht, mit deren Hilfe 
die Berechnung der Stromfunktion miiglich ist. AbschlieDend wird der EinfluD der Kennzahl Ha auf 
die beiden Geschwindigkeitskomponenten gezeigt, und die Giiltigkeit der getroffenen Annahmen wird 

diskutiert. 

KOHBEKukiR, BbI3BAHHAX IIOA%EMHOti CHJIOR, B I-IP5lMOYl-OJIbHOti I’IOJIOCTM 
C I-IOI-IEPEYHbIM MAI-HRTHbIM I-IOJIEM 

hlllOT2lUW--&V2~OXWiO NiUIHTHWCKOe ~IlIi%iHe ypaB&ieHHii Ma~HHTOWJlI)OJ@iHaMHKH, KOTOpOe 
MOXCeT HClTOnb30BaTbCR tIpH MOAenHpOBruIHIi BJIRIIHHX IlOlIepeYHOrO M&II-HHTHOrO lIOnSI Ha BbI3BaHHyIO 

~O~MHO~CcHnOiiKOHBer~BAByMepHOii~OnOCTH.B~~AeneBblCOKHX~HCenXapTMaHHa rpt3AHeHT 

CKOpOCT%i B KApe RBnReTCR IWCTOIIHHbIM BHe 060~~ CnOeB %pTMaHHa B03ne CTeHOIC,IIepIleHAHKynKp- 

HblX MarIi~THoMynomO. nOKZUaHO,9TO pelrreHae Ann nnpacnpaseAmia0 BOB‘dIIonOCTH 3aHCKnwte- 

HBeM nOrpaHENHOr0 CnOK TOnIIUiHOfi Ha-‘:’ y HexiarpeTok cTeHKH.PewipKymipyIOman Yacrb TeqeHuK 

tV.XJleAyeTCK MeTOAOM &Xl3AOXeHHK B PKA, 'IT0 ll03BOnKeT BbI'lHCnliTb &IiICm TOKa. thiCblE%WTCK 
TaKxce H3MeneHue o6eax KOM~OH~~~TCKO~OCTU K~K +yfinmiii Hu u o6CyxcAaeTcn npaBobtepHocrb kicno- 

nb3yeMarxAonyweHafi. 


