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Abstract—We propose an analytical solution to the equations of magnetohydrodynamics that can be used
to model the effect of a transverse magnetic field on buoyancy driven convection in a two-dimensional
cavity. In the high Hartmann number limit, the velocity gradient in the core is constant outside of the two
Hartmann layers at the vicinity of the walls normal to the magnetic field. We show that this core solution
is correct everywhere in the cavity except in a boundary layer of extent Ha™'? at the cold wall. The
recirculating part of the flow is studied by means of a series expansion that allows for the computation of
the stream function. We also present the variation of both components of velocity as a function of Ha,
along with a discussion of the validity of our assumptions.

1. INTRODUCTION

CONVECTION is an important parameter in crystal
growth experiments from the melt as it can account
for both heat and mass transfer in the liquid phase. It
is well known that these unavoidable hydrodynamic
movements can be damped with the help of a magnetic
field (see for instance refs. [1, 2]). This effect has been
thoroughly studied in the past few years in the Czo-
chralski configuration [3-8]. Comparatively little
attention has been paid to the Bridgman technique
which is also of interest for solidification, both on
the ground and in microgravity [9-11]. A pendent
question is to know whether diffusive solute transport
conditions can be achieved on earth with the help of
a magnetic field. In this paper, we propose a two-
dimensional solution to the equations of the magneto-
hydrodynamics that can be used to model the hori-
zontal Bridgman method. To do so, we extend the
work of Hart [12, 13] and Birikh [14] to the case where
a magnetic field is present.

2. BACKGROUND

The fluid is contained in a cavity of infinite extent
along the Y direction ; the lateral ends are maintained
at temperatures T, and T, +AT respectively and the
applied magnetic field B, is parallel to gravity (see
Fig. 1). Neglecting the effect of Joule heating and
viscous dissipation on heat transfer and also assuming
that the induced magnetic field is very small compared
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FiG. 1. Geometry of the problem and coordinates ; the cavity
is supposed infinite in the Y-direction.

to B,, the equations of the problem are, in the Bous-
sinesq approximation :

continuity
V'v=20 M
momentum transfer
Z—‘; +(V-V)V = — ;};VP—{- ;ijBo
+WIV-B(T-Tyg (2
heat transfer

%;-{—(V'V)T:ocVzT 3)

electric charge transfer
Vej=0 j=0(—V¢+VxBy). G
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B, applied magnetic field

g intensity of gravity

H cavity height

j electric current

L cavity length

P pressure

T temperature

T, minimum temperature of the liquid

U, W X.Z components of the
velocity

u, w non-dimensional values of U, W

Uy, Wy Mmaximum non-dimensional

velocities for u, w
\% velocity vector
X, Y, Z dimensional coordinates
X, v,z non-dimensional coordinates
X, ¥, Z unit vectors.

NOMENCLATURE

Greek letters
o thermal diffusivity
f coefficient of thermal expansion

AT  temperature difference between the
lateral ends of the cavity

& aspect ratio of the cavity, H/L

3 non-dimensional temperature field

v kinematic viscosity

Po density at temperature T,

a electrical conductivity

0] electric potential

Vi stream function of velocity.

Non-dimensional parameters
Gr  Grashof number, g(AT/L)H*/v?
Ha  Hartmann number, B,H(a/p,v)'"?
Pr thermal Prandtl number, v/a.

In the above equation, ¢ stands for the electric poten-
tial and —V¢ for the associated electric field. From
now on, we assume that all the variables are time
independent. Equations (4) then become

Ad— Bo(SUGY —VIEX) = 0.

In our two-dimensional frame, we are left with a har-
monic equation for the electric potential, A¢ =0,
which is valid in the melt as well as in the neighbouring
solid media. Since there is always somewhere around
the enclosure an electrically insulating boundary on
which é¢/dn =0, the unique solution is V¢ =0,
which means that the electric ficld vanishes every-
where. The Lorentz force then reduces to a sys-
tematically damping factor — B3Ux. This situation is
similar to that of pressure driven flows in a 2D per-
fectly conducting duct. Overvelocity effects as pre-
dicted by Hunt [15] can only be observed in more
complex 3D problems.

3. THE CORE SOLUTION

3.1. Outline of the solution

Let us first look at the velocity field in the core of
the cavity. We will look for a solution of the form
V = U(Z)x that automatically satisfies the continuity
equation. Projection of equations (2) on the coor-
dinate axis leads to

—LoP 1 L dU 5
po 0K p, 000 TV az2 T (
—~1¢P
e 02 +Bg(T—T,) = 0. (6)

The boundary conditions of the velocity problem are :
U=0 atZ = + H/2(noslip)
and at Z = 0 (symmetry).

As for temperature, following Hart [12], we will study
two different cases:

thermally insulating walls

[¢
_____ — = + .
i;=0 atZs=+H2;

thermally conductive walls

AT
T="X atZ=<H]

As shown by Birikh {14}, the axial temperature
gradient in the cavity is constant, 87/0X = AT/L.
Elimination of pressure between equations (5) and (6)
yields
o dU

B2~ =
®po dZ

AT

d*U
Bo - ©

M

dz?
Let us now rewrite the equations using reduced vari-
ables, defined as

x=X/H, z=2Z/H, u=HUpM, §=(T—T,)/AT.

The non-dimensional groups appearing in the equa-
tions are the thermal Prandtl number Pr; = v/a, the
Grashof number Gr = Bg(AT/L)H*/v?, the Hart-
mann number Ha = B,H(a/pyv)"?, and the aspect
ratio of the cavity ¢ = H/L. Equation (7) now
becomes

d3u ,du _

F— a E~Gr (8&)

Equation (3) becomes, in non-dimensional form

@3
dz?

= Pryeu.

(8b)

Taking into account the boundary conditions, the
solution to equation (8a) is
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FiG. 2. Variation of the maximum velocity of the fluid in the
core, normalized by Gr, as a function of Ha.

u

Gr < sinh (Haz) Z) )

~ Ha?\2sinh (Ha/2) ~
Equation (8b) then yields:
thermally insulating walls

PrieGr [ 1 sinh(Haz) z°

$=e+ | Ha® snh (Ha2) 6

1 cosh (Ha/2) .
+ <§ ~ 3 Hasinh (Ha/2)) Z]’ (19)

thermally conducting walls

9= ext PrreGr| 1 sinh(Haz) z_3
=T "Ha® |2Ha’ sinh (Ha2) 6

1 1
+ (EZ‘W) ] (b
3.2. Analysis of the results

3.2.1. Check of validity. In the low Ha limit, a
power series expansion of equation (9) keeping only
the third order terms in Ha gives

G
"= F'(ZS —z/4). (12)
As for temperature, the fifth order terms have to be
taken into account, and the results are ;

thermally insulating walls

5 3

z oz z
8=ax+PrsGr|:%—ﬁ+6~Z], (13)

thermally conductive walls

9 = PreG Z—S 2—3 L 14
=¢ex+ PreGr 20_-24+96OZ . (14)

Equations (12)—(14) are identical to those obtained
by Hart [12] in the absence of a magnetic field. It is
indeed reassuring to see that equations (9)—(11) reach
correct limits when the Hartmann number tends
towards 0.

2=1/2

T/ T

a b

F1G. 3. Normalized velocity (a) and temperature (b) profiled

across the cavity for values of the Hartmann number Ha = 2,

20 and 200. Temperature distributions were calculated
assuming thermally insulating walls.

3.2.2. Maximum velocity. Figure 2 shows the vari-
ation of the maximum velocity as a function of the
Hartmann number ; it is seen that in the high Ha range
the decrease follows an Ha~? power law. Indeed, tak-
ing the derivative of equation (9) yields for the extre-
mum :

Zy = %argcosh (MH(aLa/z—)) (15)
which as Ha tends towards infinity reduces to
1 log(2/Ha)
Zy = 5 + ~ Ha
the result for maximum velocity is then
{up| = $Gr Ha™ 2. (16)

It can thus be said, as noted in ref. {1], that the group
of non-dimensional parameters uyHa?/Gr governs
convection in the fluid in the high Ha limit, whereas
up/Gr plays a similar role in the non-magnetic prob-
lem [12].

3.2.3. Velocity profiles. Plots of u/|uy| are given in
Fig. 3 for various values of Ha. For low values of Ha,
the profile is simply cubic [12, 14] but as Ha increases,
the velocity gradient tends to be constant almost
everywhere in the cavity. This is readily seen in equa-
tion (8a): in the high Ha range, the Ha? du/dz term
prevails except in the two thin Hartmann layers of
thickness Ha~' near the walls, where the effect of
viscosity cannot be neglected.

Furthermore, the interested reader will check that
in the high Ha limit, the velocity profiles of equation
(9) can be split into two contributions :

(a) a core velocity u, valid when 1/2—|z| » Ha '

Gr
-—z;

Ha (17a)

U, =

(b) theclassical Hartmann exponential profiles [16]
Uy, = ufl —exp {+ Ha(z+1/2)}].  (17b)

As opposed to the case of pressure driven flows in
ducts, the rotational of the Lorentz force in the core
does not vanish due to the presence of the buoyancy
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term in equation (2). Indeed, it is easy to check that
in our problem, we now have d’u/dz*=0: as
opposed to the pressure driven case (for which u, had
to be uniform), here we find an example where the
velocity gradient in the core must be constant.

3.2.4. Temperature. A glance at equations (10) and
(11) ensures that the maximum values for both thermal
boundary conditions also follow an Ha™* power law
in the high Ha range, but as Ha tends towards infinity,
the limits for equations (10) and (11) take simple
forms:

thermally insulating walls

PreGr{ 20 -
\9=6X+Taz<—6+*8‘>, 18)
thermally conducting walls
PreGr bz
9=8X+7_Ia2<—g+*22>. (19)

The polynomials of equations (18) and (19) obviously
do not lead to a boundary layer behaviour in the
vicinity of the walls. Indeed, the temperature dis-
tribution (for thermally insulating walls) normalized
with respect to their maximum values is also shown
in Fig. 3 for several values of the Hartmann number ;
there is no significant difference in the shapes of the
curves when Ha increases.

3.2.5. Electric current. Going back to dimensional
variables, equation (4) gives j = —oB,U(Z)y; j thus
flows in the positive (resp. negative) Y-direction in the
upper (resp. lower) part of the cavity, with its lines
closing at infinity. U being an odd function of Z, it is
clear that there is no net electric current across the
(X, Z) plane and that, as opposed to the classical
Hartmann flow [17], there is no current recirculation
through the Hartmann layers at the top and the bot-
tom of the cavity. However, it has to be mentioned
that the end effects in the Y-direction could have a
major impact on the local velocities.

3.2.6. Concluding remarks. The same results could
have been obtained through a different formulation
of this 1D problem [18]. We could have assumed that
the induced magnetic field b, a function of Z only, lies
in the X-direction ; a convecto-diffusive equation for
b along with Ampere’s law could then lead to the same
set of equations for velocity and temperature. It is
also interesting to notice the formal analogy between
our results and those of the fluctuating gravity prob-
lem (g-jitters) [19]. In both cases, the additional linear
term in equation (8a) tends to damp the buoyancy
driven convective flow.

4. THE RECIRCULATING FLOW

4.1. Further hypothesis

For a crystal grower interested in solute segre-
gation, the above 1D velocity field is not enough;
indeed, what is of the utmost importance is the recir-

culation of the flow in front of the solid-liquid inter-
face (the cold wall of our cavity). The reason is that,
in a typical solidification run, the local convective
movements play a key role in species transport in
the melt. We will thus attempt to find a solution to
equations (1)-(4) ; however, since the problem is now
fully two-dimensional, a few restrictive assumptions
have to be made.

First of all, we now consider an open, semi-infinite
cavity submitted to a constant temperature gradient.
In other words, we suppose that convective heat trans-
fer is negligible. To support this hypothesis, it can be
seen from equations (18) and (19) that in the high Ha
range, the distortion of the thermal field is indeed very
small, especially in the case of low Prandtl number
fluids (e.g. metals and semiconductors). Furthermore,
we drop the non-linear inertial term V- VV. This can
only be justified if the interaction parameter, the ratio
of the Lorentz force to the inertial force, is very high
with respect to unity. Intuitively, we expect that high
Ha again favour this condition, but we will come back
later to check the validity of this assumption.

In order to satisfy the continuity equation, we look
for a solution in terms of a non-dimensional stream
function ¥ such that

w= —0y/ox 20)

where w is now the velocity component on the z-axis.
Taking the rotational of equation (2) and inserting
the above definition, we get for the variations of i :

A — Ha? 0*y)oz* = Gr. @

Let us look for a solution in the form of a series
expansion :

¥ =Y v (x)cosa,z, (22)

0

the o, being given by a; = (2j+ 1)= in order to ensure
Y = 0atz = +1/2. Clearly, with this choice u = dy//0z
does not vanish on the lateral walls of the cavity.
However, as was done in the core problem, the classi-
cal correction of the velocity distribution within the
Hartmann layers [16] can again be used to satisfy the
no-slip conditions at z = +1/2, at least when Ha >»
1. We thus expect our assumption to be physically
sound in the high Ha range. For v,(x), the boundary
conditions are ;

v(x)=0v(x)=0 at x=0 (23)

to ensure that both ¥ and w vanish on the cold wall.

4.2. Qutline of the solution
To start with, let us write the series expansion of
Gr:
_1 J
( )A Gr.
o,

7

Gr=1Ygcosuaz, g, =4 (24)
o

Using equations (22) and (24), equation (21) becomes

WY —2020P + (a} + Ha’ a))v, = g,. (25)
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To get the general solution in terms of v;, we need to
solve the algebraic equation

m* —2a’m*+(a} + Ha*a}) = 0.

Tedious but simple calculations lead to m = ta,+ib;

(i* = —1), a;and b, being given as
1
@ = iz [0 +oy(Ha’ +a)71"? (26a)
1 2 2 N2
by = sil=o) +a(Ha’ +o7) ]2 (26b)

The general solution of equation (25) can then be
written as

v,(x) = ;e cosbx+pu,e” Y sinb,x
+v,e“" cosh,x+m, " sinbx
+g,/i(o0f +Ha*o?). (27)
To ensure that v, remains bounded as x tends towards

infinity, we have to set v; = m; = 0. The boundary
conditions of equation (23) are then:

A+g e} +Ha*a?y =0,
—Aia;+ub; = 0.
To sum up the results, we finally get
v,(x) = AJe" " cos byx — 1]+ ;e % sinb;x
(28a)
A= —g;/(a} +Ha a}),

W= —agbei+Ha'a}).  (28b)
4.3. Analysis of the results

4.3.1. Check of validity. As opposed to the core
problem, we do not have an analytical solution with-
out a magnetic field to check the validity of our cal-
culations, Worse, it would not serve out purpose to
solve the simpler equation A%y = Gr; the math-
ematical result would not be physically relevant since
in that inertialess, non-magnetic formulation, vis-
cosity would govern momentum transfer throughout
the cavity. In that case, dropping the no-slip con-
ditions for u on z = £ 1/2 would be very dangerous.
However, we can check the consistency of our 2D
approach with respect to the core solution in the high
Ha range. Taking the limit of equation (28a) as x
tends towards infinity, we get

v(x) > v° =g /{of + Ha’ o))

and consequently
Y(x,2) = = (2) = Y g;cosa;z/ (o) + Ha’ o).
0

Since both 4, and p; have o + Ha> o} terms at their
denominator (see equations (28b)), we can expect that
when j gets high, the corresponding contribution will
be quite small. If we now suppose that each «, playing
a significant role in the series is much smaller than Ha

{we will come back later to the domain of validity of
this “high Ha’ approximation), we get

y* = H?Zojg, cos oz/o}
with
(=
g, =4—>-Gr.
i %
After simple algebraic manipulations, the above series
finally reduces to

(@) = — -1/4).

¥
oy el
2 Ha’
Thus, far from the cold wall, the velocity component
on the x-axis is
Gr

u® = — Hat (29

Having dropped the no-slip conditions on the upper
and lower walls, we cannot expect to fall back exactly
on equation (9); it is, however, reassuring to see that
both results are indeed equal everywhere except in the
vicinity of z = +1/2.

4.3.2. Velocity profiles. From a crystal grower point
of view, velocity profiles are easier to handle than
current functions. We will begin with the study of w,
the component running down the cold wall. Using
our series expansion, we can write:

o
= — Y vi{x)cosa,z.
0

The first and second derivatives of v, are, respectively,
according to equations (28)

vi(xy = —(4,h,+pa)e sinb,x (30a)
v (x) = — (b, +p,a)
xe “"[—a,sinbx+b,coshx]. (30b)

v reaches its maximum at x,, such that
tanb;x,, = b /a,.

To gain more insight into the physics of the problem,
let us now focus on the high Ha limit. Assuming again
that each «, playing a significant role in the series is
much smaller than Ha, we get the asymptotic for-

mulae:
H 12
a,>b ~ ((}' a) (31a)
2
Gr (1)
by = g (31b)

Thus the asymptotic values for x,; and the maximum
of v} (in the following referred to as vjy) are given

by:
_r( 2 )"
Y00 = g\, Ha

(32a)
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FI1G. 4. Variation of the maximum of the w component of
velocity, normalized by Gr, as a function of Ha.

Gr (—1Y

Ha*? o)t

v = —4exp(—n/4) (32b)
Thus, we expect the range of variation of w and the
associated length scale will follow asymptotic power
laws in Gr Ha ¥* and Ha "' respectively in the
high Ha range. The above result can also be used to
estimate the contribution of each term in the expan-
sion: the ratio between v, and v,y varies as «}’?,
falling rapidly with j. For instance, at j = 10, v; m/vom
is already smaller than 3 x 10, We thus checked that
truncation of the series at j = 10, 20 or 50 did not
significantly change the final result in terms of w.

The curve giving the maximum value of w, wy, as
a function of Ha is shown in Fig. 4. At high Ha,
ww/Gr follows, as expected, an Ha™ *? power law
(see Fig. 4); (wy Ha*?)/Gr is then the relevant non-
dimensional group for the study of the recirculating
problem, Its variation with Ha, presented in Fig. 5,
can be used to determine the range of validity of the
high Ha approximation. When this condition holds,
say for Ha > 100, we also found that for each z, the
w{x) velocity profiles admitted a representation of the
form w Ha'?/Gr = f(x Ha''?; the corresponding
result is shown in Fig. 6 for the case z = 0 (middle of
the cavity).

Again, using our series expansion, we can compute
the u component of velocity, given by

T T T T T T
— -2.5}
~ 1
w
~
o
3
(123
T Ll *
=
=
(=)
o
-
-3.5} 4
i

N — 1 1
1 2 3
Log

FI1G. 5. Variation of the (wy Ha*?)/Gr group that governs
the recirculation as a function of Ha.

4
(Ha)

L
S

Ha 3/2/ Gr

F1G. 6. Normalized w velocity profile showing the variation
of (w Ha*?)/Gr as a function of x Ha"? in the middle of the
cavity.

€L
u= Y v,(x)osinaz.
o

u is seen to increase from 0 at x =0 to a value u,
given by equation (29) far away from the cold wall.
We also checked that for each z, the u(x) velocity
profiles were self-similar in the high Ha range. Since
a, and b; are both of order of magnitude Ha'?, we
expect that Ha~'? will again be the relevant length
scale in the recirculating area. This result is confirmed
in Fig. 7, where we plotted the variation of (u Ha?)/Gr
as a function of x Ha'? at z = 0.25.

In all cases, we found numerically that Ha greater
than 100 ensured that the high Ha approximation was
valid. This is not unreasonable, since truncation of
the expansion at j = 10 did not change the final result.
We could have expected that the condition «,, « Ha
was sufficient to guarantee this result.

4.3.3. Self-consistency. We can now come back on
our assumption of high interaction parameter, i.e. the
neglect of V- VV in equation (2). Let us try to estimate
the order of magnitude of the various non-dimen-
sional inertial terms wudu/Cx, wou/dz, udw/dx and
wow/0z. The maximum values of u and w are in
Gr Ha™? and Gr Ha™*? and the associated length
scales on x and z are Ha™ "* and 1, respectively. The
leading contributions udw/6x and wdw/dz then vary
like Gr? Ha™*; this is to be compared with an estimate

T T T T T T
0 -
o
w
~ ~-ir ]
~
[t}
I
s -2} 4
-.3F J
I 1 " - 1 1 1
0 1 2 3 4 5 5 7
x Ha?

FiG. 7. Normalized u velocity profile showing the variation
of (u Ha*)/Gr as a function of x Ha''? at z = 0.25.
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for the Lorentz force, Ha’ u, of order of magnitude
Gr. A condition for inertia to be negligible is thus

Ha®/Gr > 1. (33)

This condition can hold in usual horizontal Bridgman
growth conditions where typical values of Ha and Gr
are of order of magnitude 100 and 10°. Furthermore,
if we refer to the non-magnetic problem [12], inertia
is seen to play a minor role, even when the cor-
responding order of magnitude condition (Gr « 1) is
not verified. Thus we do not expect our neglect of the
V- VV term to jeopardize the validity of our results.

Finally, due to the limited super-velocity observed
in the recirculating area, convection can be expected
to play a minor role in overall heat transfer in the high
Ha range. We thus think that our assumption of
constant temperature gradient, that holds stricto sensu
only for Pr =0, is valid in most cases, at least for
metals and semiconductors.

5. CONCLUSION

The purpose of this work was to propose a solution
to the equations of magneto-hydrodynamics in order
to study the effect of a transverse magnetic field on
buoyancy driven convection in a two-dimensional
cavity. One of the main features of the problem is that
the electric field vanishes everywhere. Since the x-
velocity profiles are odd functions of z, the current lines
can be considered to be close at infinity, with no
impact in our solution. However, one should bear in
mind that 3D end effects in the y-direction could have
a drastic influence on the local velocity field.

In the core problem, when the Hartmann number
gets high, both velocity and temperature follow an
Ha=? power law. Moreover, the velocity gradient
du/dz is seen to be constant everywhere in the cavity
except in the two Hartmann layers of extent Ha™'
near z = +1/2 where the effect of viscosity becomes
important. However, as opposed to what can be seen
in the case of pressure driven flows in ducts, these
boundary layers do not play a role in the recirculation
of the current; their purpose is only to ensure that
velocity vanishes at the wall.

To study the recirculating part of the flow, we were
led to further simplifications. The effect of both con-
vective heat transfer and inertia were supposed a
priori negligible, but we came back later to check the
validity of these assumptions. A boundary layer of
extent Ha~ "2 parallel to the cold wall is observed in
the high Ha limit. Both components of velocity # and
w are seen to vary as Gr Ha~2 and Gr Ha=3? over
this length scale.

We hope that this solution can be used to study
solute repartition in a typical horizontal Bridgman
growth experiment. It should be possible to derive
a criterion giving, at a given Gr, the Ha necessary
to reach the diffusion controlled solidification con-
ditions. Further extensions of this work could in-

747

clude the effect of confinement in the y-direction,
thus yielding a full three-dimensional solution of the
problem; a study of the stability of this solution in
order to find the first threshold of non-stationarity
would also be of interest.

Acknowledgement—The present work was conducted within
the framework of the GRAMME agreement between the
CNES and the CEA.

REFERENCES

1. C. Vives and C. Perry, Effects of magnetically damped
convection during the controlled solidification of metals
and alloys, Int. J. Heat Mass Transfer 30, 479-496
(1987).

2. H.P. Utech and M. C. Flemmings, Elimination of solute
banding in indium antimonide crystals by growth in a
magnetic field, J. Appl. Phys. 37, 2021-2024 (1966).

3. L. N. Hjellming, A thermal model for Czochralski silicon
crystal growth with an axial magnetic field, J. Crystal
Growth 104, 327-344 (1990).

4. T. Munakata and 1. Tanasawa, Onset of oscillatory flow
in a Czochralski growth melt and its suppression by
magnetic field, J. Crystal Growth 106, 566-576 (1990).

5. P. Sabhapathy and M. E. Salcuedan, Numerical study
of flow and heat transfer in LEC growth of GaAs with
an axial magnetic field, J. Crystal Growth 104, 371-388
(1990).

6. R. Cartwright, O. J. Ilegbusi and J. Szekely, A com-
parison of order of magnitude and numerical analyses
of flow phenomena in Czochralski and magnetic
Czochralski systems, J. Crystal Growth 94, 321-333
(1989).

7. W.E. Langlois, L. N. Hjellming and J. S. Walker, Effects
of the finite electrical conductivity of the crystal on
hydromagnetic Czochralski flow, J. Crystal Growth 83,
51-61 (1987).

8. W.E. Langlois and K. J. Lee, Czochralski crystal growth
in an axial magnetic field: effects of Joule heating, J.
Crystal Growth 62, 481-486 (1983).

9. S. Motakef, Magnetic field elimination of convective
interference with segregation during vertical Bridgman
growth of doped semiconductors, J. Crystal Growth 104,
833-850 (1990).

10. H. Ozoe and K. Okada, The effect of the direction of the
external magnetic field on the three dimensional con-
vection in a cubical enclosure, Int. J. Heat Mass Transfer
32, 1939-1954 (1989).

11. G. M. Oreper and J. Szekely, The effect of an external
imposed magnetic field on buoyancy driven flow in a
rectangular cavity, J. Crystal Growth 64, 505-515 (1983).

12. J. E. Hart, Stability of thin non-rotating Hadley cir-
culations, J. Atmos. Sci. 29, 687-697 (1972).

13. J. E. Hart, Low Prandtl convection between differ-
entially heated end walls, Int. J. Heat Mass Transfer 26,
1069-1074 (1983).

14. R. V. Birikh, Thermocapillary convection in a horizontal
layer of liquid, J. Appl. Mech. Tech. Phys. 3, 69-72
(1966).

15. J. C. R. Hunt, Magnetohydrodynamic flow in rec-
tangular ducts, J. Fluid Mech. 21, 577-590 (1965).

16. R. Moreau, Magnetohydrodynamics, Chap. 4. Kluwer,
Dordrecht (1990).

17. J. A. Shercliff, Steady motion of conducting fluids in
pipes under transverse magnetic fields, Proc. Camb. Phil.
Soc. 49, 136-144 (1953).

18. J. P. Garandet, CEA Internal Report, DEM 90/01
(1990).

19. D. Thevenard and H. Ben Hadid, Low Prandt] number
convection in a rectangular cavity with longitudinal ther-
mal gradient and transverse g-jitters, Int. J. Heat Mass
Transfer 34, 2167-2173 (1991).



748

J. P. GARANDET ¢/ al.

CONVECTION NATURELLE DANS UNE CAVITE RECTANGULAIRE AVEC CHAMP
MAGNETIQUE TRANSVERSE

Résumé-—Nous proposons une solution analytique aux équations de la magnétohydrodynamique per-
mettant de modéliser I'effet d’un champ magnétique transverse sur la convection thermique dans une cavité
bidimensionnelle. Dans la limite des nombres de Hartmann élevés, le gradient de vitesse dans le coeur de
I’écoulement est constant sauf dans les deux couches de Hartmann au voisinage des parois normales au
champ magnétique. Nous montrons que cette solution de coeur est applicable partout a I'exception dune
couche limite d’étendue Ha™'"*? a proximité du mur froid. La partie recirculante de I’écoulement est étudiée
a l'aide d’un développement en série qui permet de calculer la fonction de courant. Nous présentons
également la variation des deux composantes de la vitesse en fonction de Ha ainsi qu'une discussion de la
validité de nos hypothéses.

NATURLICHE KONVEKTION IN EINEM RECHTECKIGEN HOHLRAUM UNTER DEM
EINFLUSS EINES QUERLIEGENDEN MAGNETFELDES

Zusammenfassung—Es wird eine analytische Losung der magneto-hydrodynamischen Gleichungen vor-
gestellt, mit deren Hilfe man den EinfluB eines querliegenden Magnetfeldes auf die natiirliche Konvektion
in einem zweidimensionalen Hohlraum beschreiben kann. An der oberen Grenze der Hartmann-Zahl ist
der Geschwindigkeitsgradient im Kern konstant-dies gilt auBerhalb der beiden Hartmann-Schichten in der
Nihe der senkrecht vom Magnetfeld durchquerten Winde. Es wird gezeigt, daB3 diese Kern-Lsung an
jeder Stelle des Hohlraums gilt, mit Ausnahme einer Grenzschicht der Dicke Ha~'? an der kalten Wand.
Der rezirkulierende Teil der Strdmung wird mit Hilfe einer Reihenentwicklung untersucht, mit deren Hilfe
die Berechnung der Stromfunktion moglich ist. AbschlieBend wird der EinfluB der Kennzahl Ha auf
die beiden Geschwindigkeitskomponenten gezeigt, und die Giiltigkeit der getroffenen Annahmen wird
diskutiert.

KOHBEKLIUA, BbI3BAHHAS TOABLEMHOM CUJIOA, B IIPAMOYTOJILHOM IMOJIOCTH
C NOITEPEYHBIM MATHHUTHBIM ITOJIEM

AsnoTaunus—IIpeytoXeHO aHAJIMTHYECKOE PELUCHUE YPABHEHWH MAarHHTOIMAPOJIMHAMHKH, KOTOpPOE
MOXET HCIONB30BATLCA NPH MOJEIHPOBAHHH BIIMSHHSA MONEPEYHOrO MarHHTHOTO NOJIA Ha BBI3BAHHYIO
NOABEMHO# CHIION KOHBEKIHIO B IBYMEPHOH noyiocTH. B npenene Bolcokux aucen XapTMaHHa rpagHeHT
CKOPOCTH B fi/ipe SIBJIAETCA NOCTOAHHBIM BHE 06oux cnoeB XapTMaHHA BO3J€ CTEHOK, NEPHEHIMKYJISAP-
HBEIX MarHUTHOMY nono. ITokasaHo, 4To pellieHue [Uis Apa CIPaBEAIMBO BO BCelt NONOCTH 32 HCKJIIOYe-
HHEM [IOrPaHMYHOTO CIOA TOJIUMHOM Ha™ "'’ y HeHArpeTol cTeHKH. PelMpKY/MpYIOas 4acTh TEYEHHS
HCCIIEAYETC METOAOM PA3JIOKEHHA B DA, YTO MO3BOJIAET BBHIYMCIHMTL (PYHKIMIO TOKA. OnHChHBaeTca
TakXke H3MeHeHHe 00eHX KOMIOHEHT CKOPOCTH Kak (yHkmmit Hu u o6cyXaaeTcs mpaBOMEPHOCTh HCIO-
JIb3YEMBIX JOMYLICHHA.



