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1 I n t r o d u c t i o n  

In the Bridgman growth technique, a crucible containing a polycrystalline feed is introduced 
into a gradient furnace. After the melting of the feed, growth is initiated by an imposed 
displacement of the isotherms. This can be done by moving the crucible or the thermal unit, 
and also by programming the cooling of the various parts of the furnace, everything remaining 
static. This latter technique, referred to as "Gradient Freeze", allows a suppression of the 
mechanical vibrations, but induces a coupling between the temperature field and the growth 
velocity. With respect to gravity, the apparatus (:an be either aligned (vertical configuration) 
or perpendicular (horizontal configuration). 

cold sink 

crucible I x li': 
displacement i 

thermal 
insulation 

I . . . . . .  I 0 0 0  

0 0 0 0  " o , , "  ..... 

seed 1~: : i; ' i  , 

\ 
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.......... ~ profile 

interface 
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crucible 

T 

temperature of 
solidification 

heating 
elements 

Figure 1: A sketch of the Bridgman configuration 

A single crystal seed is often inserted in the crucible to impose the crystallographic orien- 
tation of' the solidified material, but unseeded Bridgman growth is also commonly used. The 
Bridgman technique has been used on a variety of materials, e.g. I I I - V  and II-VI semicon- 
ductor compounds [1, 2, 3, 4], and oxides, including superconductors [5, 6]. Among all growth 
configurations, it allows the best control of the experimental conditions, since the thermal gra- 
dient can be to a large extent tailored to fit the user's needs. This can lead for instance to a 
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reduction of the thermomechanic stresses, and thus to a better structural quality of the grown 

crystals with respect to other solidification techniques. Nevertheless, its industrial use remains 
limited, which may be due to the fact that available products are often of sufficient quality to 

meet the user's requirements. 

Besides, one should not forget about the specific difficulties of the Bridgman technique, 
the main one being the direct contact between crucible and growing material. Such a contact 
can induce parasitic grain generation and adhesion stresses. When available, encapsulants are 
a promising way to bypass the problem [7]. The crucible is also a source of contamination 
in the grown crystals. In the horizontal Bridgman configuration, the presence of an uncov- 
ered fluid surface allows to control the composition of volatile species using a source material 
at a controlled temperature, but such a free surface can also lead to Marangoni driven flow 

instabilities. 

Magnetic fields are known to modify the heat and mass transport in the melt, due to the 
Lorentz force term in the Navier-Stokes equations that govern fluid flow. As for the other 
growth techniques, the damping action of steady fields was first investigated, dating back to 
the pioneering work of Utech and Flemings [8]. It was first realized that relatively modest 
fields were very efficient in damping undesirable convective flow oscillations and the induced 
temperature and composition fluctuations. For a detailed understanding of the physical mech- 
anisms involved in this stabilization effect, the interested reader is referred to Prof Moreau's 
contribution in the present book, but one can mention at this point that Joule dissipation in 
the melt is a key factor. 

Later on, research focused on the potential of steady magnetic fields in the tesla range to act 
on solute incorporation in the crystal at the macroscopic (i.e. sample) scale. It was hoped that 

a significant improvement in terms of both axial and radial segregation could be achieved. More 
specifically, the convection damping effect of the magnetic field was expected to provide diffusion 
controlled solute transport conditions, similar to those obtained in microgravity conditions. 
Some interesting results were thus obtained in terms of solute segregation [9, 10], but the fields 
required to reach truly diffusion controlled conditions seem to be very high. 

More recently, rotating magnetic fields appeared as a promising way to act on melt flow 
[11, 12]. As opposed to the case of steady fields, the experimental objective is now to increase the 
convection level through the driving action of the Lorentz force and to obtain an enhanced, but 
steady, fluid flow. The convection velocity is primarily directed along the azimuthal direction, 
but a secondary meridional flow is also expected to take place. Besides, even in low Prandtl 
numbers materials such as liquid metals and semiconductors, a significant effect of the flow oil 
heat transport can be expected. Such an effect can in principle obviate the need tbr sample 
and/or crucible rotation used in other solidification techniques. 

Nevertheless, most of the research carried out on the use of magnetic fields in the Bridgman 
growth configuration was directed on the problem of solute repartition in alloy crystals. We 
thus think it worthwhile to spend some time in section 2 to outline the basic mechanisms of 
segregation, with a special emphasis on the solutal boundary layer concept. Then, in section 
3, a review of the stabilizing effect of a steady field on hydrodynamic fluctuations will be 
presented. Sections 4 and 5 are respectively dedicated to the problems of magnetic damping 
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of steady flows and to rotating field mixing. Finally, in section 6, miscellaneous questions such 
as thermoelectrieity or magnetic forces will be addressed. In all cases, our review will include 

modelling and experimental results. 

Since the theoretical frame of our topic is covered in Prof Moreau's contribution in the 
present book, we shall not come back to the formulation of magnetohydrodynamics, but rather 
focus on its implications in Bridgman growth. We shall thus start with standard equations, 
and refer the interested reader to Prof Moreau for a discussion of the underlying hypotheses. 
However, one should be aware that a critical examination of modelling assumptions is always 
necessary. Fox instance, as shown by Walker and Williams [13] in their study of the Czochralski 
silicon growth, the widely used hypothesis that a solid semiconductor is electrically insulating 
with respect to its metallic melt can lead to erroneous conclusions. 

2 Background  on so lute  segregat ion  

Our purpose in this section is to briefly recall the relevant transport equations and to outline 
the mechanisms governing the physics of solute segregation in alloy crystals. We shall lay a 
special emphasis on the role of convection in the problem, and stress the need to quantify and 
act on the fluid velocity', e.g. through the application of magnetic fields, and more specially in 
the Bridgman configuration. The interested reader is referred to standard reference works for 
more general information on the topic of solute segregation [14, 15, 16, 17, 18]. 

2 .1 S t a t e m e n t  o f  t h e  p r o b l e m  

In view of the low solidification rates used for crystal growth, we shall consider that thermo- 
dynamic conditions prevail at the interface. The phase diagram of the alloy system thus yields 
a local relation between the compositions of the solid and liquid phases, and all segregation 
phenomena stem from the difference between these compositions. For the sake of simplicity, 
let us consider a binary alloy consisting of a solvant and a single solute, and assume the mass 

densities of the fluid and the solid to be equal. In mathematical terms, the condition that the 
excess (resp. missing) solute on the liquid side of the front has to diffuse away' from (resp. 
towards) the interface can be written as : 

where CLI and DL (resp. C.sl and Ds)  stand for the solute composition at the interface and 
diffusion coefficient in liquid (resp. solid) phase, VI the solidification velocity imposed by the 
fi~rnace and n the normal to the growth interface pointing in the fluid. As for solute repartition, 
a classical mass conservation equation can be written in both phases : 

OC 
p ~ -  + VJ M = 0. (2) 

In the iluid, the total mass flux jM carl be taken as the sum of a diffusive and a convective 
t e r l n  : 

jM~.. = p ( - D ~  V C  + VC), (3) 
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with V standing for the fluid flow velocity as given by the Navier-Stokes equation if the solute 
composition is given in mass fraction. Other units could in principle be used, and it can indeed 
be shown that a similar formulation can be written in terms of molar fraction in dilute al!oys 

[18], but for the sake of consistency we shall keep on using mass fractions. 

In the solid phase, only diffusive transport is to be considered, but it should be noted that 
the values of D s  are extremely low (say in the range from 10 -15 to 10-11m2.s-1), meaning that, 
once incorporated, the solute is essentially frozen in the crystal. In the following, we shall thus 

omit solid state diffusion from the formulation of the problem, and, unless otherwise specified, 
restrict ourselves to the study of liquid phase solute transport. This will allow us to drop the 
subscripts from DL and CL. 

Since we are in this section mostly interested in a presentation of relevant solute segregation 
mechanisms, we shall not consider other potential contributions in the expression of the mass 
flux. Nevertheless, the reader should be convinced that other driving forces, such as thermod- 
iffusion, may have an impact on the solidification process [19, 20]. It should also be mentioned 
that, in a polyconstituted alloy, a boundary condition and a conservation equation similar to 
eqs. (1) and (2) could be written for each solute. 

As the Navier Stokes equation is thoroughly discussed in the introducing chapter of this 
handbook, we only need to state it in the form we shall use, namely : 

(0v ) 
p ~ -  + ( v . v ) v  = - w P  + pvX72v + Fex~ (4) 

In our present problem the external force Fe~t is the sum of a gravity and a Lorentz term : 

F~t  = pg + J A B. (5) 

The dependence of the mass density on temperature and composition induces a coupling be- 
tween the hydrodynamic, thermal and solute fields. For a meaningful use of magnetic fields, 
the fluids have to be relatively good conductors of electricity, and most of them will also be 
good heat conductors. In view of the limited natural convection flow velocities, heat transport 

can often be considered to proceed mostly by diffusion, specially in the vertical Bridgman con- 
figuration, and the thermal problem can thus be decoupled from the others. In addition, in 
dilute alloys, the dependence of mass density on composition can often be neglected, meaning 
that the Navier Stokes equation can be solved independently from the composition field. 

However, these convenient approximations may prove misleading; indeed, we shall see in 
section 5 that the relatively fast fluid motions driven by rotating magnetic fields contribute 
significantly to heat transport. In practice, one should always derive a thermal P~clet number, 
PeT- = ! / H / a ,  H being a typical dimension of the cavity and a the heat diffusivity of the 
fluid, t.o check the validity of the assumption. As for the dilute alloy approximation, its range 
of validity will be discussed in section 2.5. 
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For the time being, we shall consider the fluid velocity to be a given input in the solute 
conservation equation, that,  in a reference frame moving with the interface, can be written as : 

OC 
O--t- + (V.V)C : DV2C + (V,.V)C. (6) 

The idea of using such a reference frame stems from the possibility of reaching steady state 
mass transport conditions, which is obviously not the case in the laboratory frame due to 
interface motion. As a further simplifying assumption, the partition coefficient k, defined as 
k = Csx/CLI will be taken as constant all over the composition range. W% shall also consider 
the solid liquid interface to be planar, with its normal pointing in the Z direction and aligned 
with the growth velocity. Eq. (1) can thus be re-written as : 

- D ( O C / O Z ) ,  : ~}(1 - k ) G .  (7) 

The problem formulation, as stated by eqs. (1) to (7) is now complete, and we can now turn 
to the study of segregation mechanisms, and more specially to a presentation of the solute 
boundary layer concept. 

2.2 The solute boundary layer concept 

The existence of a solute rich (resp. depleted) region ahead of the growth front when the 
partition coefficient k is smaller (resp. higher) than unity is a fact now well accepted. Numer- 
ous results, both from experimental data [21, 22: 23] and from numerical simulations (see e.g. 

[24, 25, 26, 271) support such an assumption. It is important to be aware that such a boundary 
layer should not be taken as a stagnant film where mass transport proceeds n]ainly by diffusion. 
The confusion that can be found in the literature can be traced back to the followers of the 
pioneering work of Burton, Prim and Schlichter [28], where the authors set up to solve the 
solute transport  problem in an idealized Czochralski configuration. 

In this key paper [28] the existence of a solutal boundary layer was first stressed, and a 
method proposed to estimate its thickness. The authors then proceeded to show that simi- 
lar results in terms of interface concentration could be obtained assuming a stagnant film of 
thickness @F, but, to quote their own words "the somewhat arbitrary quantity 6se may be 
characterized by defining it so that it yields the same dependence of the composition upon 
the growth parameters that is given by the exact solution." In other words, they used the 
stagnant film model for mere mathematical convenience, but their insight was lost to many of 
their followers. 

In any case, due to the existence of a boundary layer ahead of tile growth front, the compo- 
sition variations in the melt will take place over a well defined length scale. Following Wagner 
and Wilson [29, 30], and denoting C~c the concentration in the bulk fluid, i.e. far away from 
the imerface, one can define this length scale 6 in mathematical terms as : 

(8) 
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It is thus tempting to use a scaling analysis technique to better understand the influence of 

the various parameters of the problem, and specially of the convective field. We shall here 

only outline the procedure to be followed for differential equations, the interested reader being 

referred to other works for more details on the technique and its fields of applications [31, 32, 33]. 

Briefly speaking, one first identifies ranges of variations (scales) for each relevant parameter. 

Then if a variable C is seen to vary from C1 to 6"2 over a length scale Z2 - Zt, the derivative 

dC/dZ is approximated by (C2 -C1)/(Z2 -Z:). With such a technique, one can thus transform 

the initial differential equation into a much simpler algebraic equation, that, provided the scales 

have been selected property, captures the physics of the problem at a much lower computational 

cost. The method is simple and powerful, but its predictions should always be matched against 

existing experimental data  or numerical simulations for mutual validation. 

" ' - - . . . .  

........ an iso-concentration line 

Figure 2: Isoconcentration line near a solid-liquid interface 

Let us now' turn to our present problem, whose geometry is sketched in fig. 2, of a planar 

interface moving at a velocity 1/1 in the Z direction. To apply the scaling analysis technique, eq. 

(6) must be somewhat transformed. We shall first suppose that the composition variations are 

mainly in tile direction normal to the interface, i.e. the Z axis in our case. Such an hypothesis 

is far from obvious, as the composition field is significantly distorted around the bottom left 

corner. But to a first approximation, the isoconcentration lines can be considered parallel to 

tile growth interface, at least in the upper part of the cavity (see reference [33]). 

Having dropped all radial segregation aspects so far (OC/OX = OC/OY = 0), we 

shall in addition assume a steady state to be reached in the frame moving with the interface 

(OC/Ot = 0). Finally, to make the problem fully one dimensional, let us take ~he average of 

the Z component of the fluid velocity W,over the upper half of the melt; denoting W(Z) this 

average convection velocity, eq. (6) becomes : 

d2 C ~Z 
D l~7~ ~ + (~? - W ( Z ) )  : O. (9)  

It should be said that  other physically sound choiee (e.g. the maximum of W) would yield 
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similar results in terms of scaling law. From the definition of 6 as the relevant length scale for 
composition variations, C can be assumed to vary from the unknown value CI at the interface 
(Z = 0) to Coo in the bulk fluid over the boundary layer thickness. At the scale 6, one can 
thus write : 

dC ~_ [C, - C~] d2C ~_ [C, - Cool W ( Z )  ~ W ( 5 ) .  (1O) 
dZ  5 ' d P  5 2 ' 

After substi tution of the above relations in eq. (9) and division by [CI - C~] /6 ,  we finally get : 

D 
~- = V, - W(6). (11) 

When k < 1, CI is higher than Coo, and conversely for k > 1, but eq. (11) should be valid 
in both cases. Besides, with our choice of axis orientation, W(6) is negative. The validity of 
eq. (11) has been assessed by checking its predictions in a variety of growth configurations, 
including the semi-analytical solution obtained by Burton, Prim and Schlichter in their model 
Czochralski problem [34], where a very good agreement was observed. 

In Bridgman growth, the predictions of eq. (11) were seen to compare favourably with both 
numerical [26, 35, 36] and experimental [18] data, but the reader is referred to the original 
publications for more details on the results. Outside the field of monophased growth, eq. (11) 
proved to be well adapted to the understanding of transport phenomena in off-eutectic solidi- 
fication [36]. 

With all these successes in mind, it appears clearly that what matters is the convection ve- 

locity at. the boundary layer scale, the details of the hydrodynamic field away from the growth 
front being of little interest. Procedures allowing to estimate W(5) in Bridgman configurations 
in the presence of a steady magnetic field will be presented in section 4. 

The stage is now set for some general comments on the physics of the solute transport prob- 
lem and on segregation phenomena. At the boundary layer edge, eq. (11) shows that a typical 

diffusive velocity D / ~  balances the overall transport velocity Veff = Vr - W(5) towards 
the front. Depending on the relative magnitudes of Vr and W(6), transport will be said to be 
diffusion controlled (VI >> W ( 6 ) )  or convection controlled (Vi << W(5)). 

More precisely, one can scale the solutal boundary layer thickness with regard to the refer- 
ence diffusive transport  case first treated by Tiller et al. [37]. Indeed, if convective transport 
can be neglected, an analytical solution can easily be found to the system of eqs. (7) and (8), 
along with the far field condition : 

Z --+ oc C -+ C~. (12) 

In that solution, the composition is seen to decrease exponentially from its value Coc/k at the 
interface to its value in the bulk Coo, over a length scale D/V1.  Applying Wilson's defnition, 

eq. (8), one gets for the reference diffusive case do = DIVe.  The non dimensional number 
A = 5 / @  - ~ ) / D  carl thus be taken as a measure of the eonvecto-diffusive state of the melt. 
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Another way to look at the problem is to multiply both sides of eq. (11) by 6/D, and to 
define a boundary layer solutal P~clet number by Pe~ = -5W(6) /D ,  yielding z3 + Pej = 1. 
One thus sees that for the P6clet number to be relevant, it must be based on the boundary 
layer thickness and on the fluid velocity at this scale. Any a priori derivation using a typical 
macroscopic dimension of the cavity and the maximum or average convection velocity in the 

fluid is prone to be physically meaningless. 

The convecto diffusive parameter A also appears in the expression of the interface compo- 
sition, which is of course of key interest for the study of segregation phenomena, since it allows 
to define an effective partition coefficient (see section 2.3). Indeed, inserting eq. (7) in eq. (8), 

one easily gets : 
C~ 

c ~  - [1 - (1 - k ) a ]  ( 1 3 )  

The interface composition is thus seen to range from C~ when A --~ 0 (total mixing in the 
melt) to C~/k  when A = 1 (diffusion limited transport). Finally, it is interesting to note 
that the global features of the concentration field (in terms of interface value and characteristic 
length scale) can be obtained by solving a simple diffusion equation : 

d2C V. dC 
D~2~ + ~ 2  = 0, (14) 

provided that Veil is taken to be equal to VI - W(5) (see eq. (9) for comparison). The 
formulation of eq. (14) is physically more satisfying than the stagnant film model proposed 
by Burton, Prim and Schlichter, since it avoids the discontinuity in solute flux in Z = 5SF. 
Besides, we shall see in section 2.4 that the effective velocity model can be adapted to the study 
of transient segregation problems. 

Our purpose here was to outline the importance of the solutal boundary layer concept and 
the ability of the scaling analysis to capture the physics of transport phenomena. We so far 
considered only a steady state approach, and we now have to build a link with the applications 
in terms of segregation in solidified crystals. 

2 .3  M a c r o s e g r e g a t i o n  

2.3.1 Axial segregation 

Early models describing solute incorporation along grown crystals considered the limiting cases 
of diffusion controlled solute transport [37] or total mixing in the melt [381 . One of the key 
breakthroughs of the famous work of Burton, Prim and Schliehter [28] was to account for general 
transport conditions by defining an effective partition coefficient keff, related to the boundary 
layer thickness, as k~ff = k CI/C~. Indeed, we get from eq. (13) : 

k 

keff = il _ (1 - k)A 1 (15) 

Assuming this effective partition coefficient to be constant during solidification, and the initial 
transient necessary for the solute boundary layer buildup to be short enough to ensure that 
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Co~ can be identified with the nominal (i.e. initial) feed alloy composition Co, one can write : 

C s  = k~HCo(1 - f s )  k~H-1, (16) 

with C s  and f s  respectively standing for the crystal composition and the solidified fraction. Eq. 
16 is a modified version of the famous Scheil's equation, where the effective partit ion coefficient 
k~i f  has been used for the thermodynamic partition coefficient k. It should be noted that a 
further hypothesis is necessary in the derivation, namely that the amount of solute in the bulk 
fluid is large compared to that of the boundary layer. 

Eq. 16 can not be valid indefinitely when k~ H is smaller than unity, since it; predicts the 
crystal concentration to be infinite in f s  = 1. In practice, for the general case of limited solubil- 
ity in the solid phase, an eutectic or peritectie structure will be formed at a given composition, 
thus modifying the interface boundary condition. Besides, even for the systems exhibiting total 
miscibility, the partition coefficient k,~ H can not be assumed constant when the concentration 
becomes too high. 

Finally, if the ratio of the temperature gradient to the growth velocity is to() small, cells 
or dendrites will be formed over the Mullins-Sekerka morphological stability threshold, see e.g. 

[39, 40, 41]. Even with all these limitations in mind, one should stress the considerable en- 
gineering usefulness of eq. (16), which is still the basis for the interpretation of experimental 
composition profiles in grown crystals. 

F'or the sake of completeness, we should like to give the expression of the effective partition 
coefficient as initially proposed by Burton, Prim and Schlichter in the frame of their stagnant 
fihn model : 

/%1] = k/[k + (1 - k) exp(--As~-)]. (17) 

In steady state problems, both expressions for k~f/ can be made to coincide provided that A 
and ASF are related by A = 1 - exp(--Asp ). Nevertheless, our opinion is that the boundary 
layer model should preferably used since it precludes the problem of flux discontinuity. Besides, 
as already stated, we shall see in section 2.4 that it allows to study transient segregation phe- 
nomena in a physically sound manner. 

Back to our focus on axial segregation, a look on eqs. 15 and 16 will convince the reader 
that the composition in the grown crystal will be uniform when A(or equivalently k, / i)  is 

equal to unity, in other words when mass transport proceeds solely by diffusion. Such a result 
was the driving force for the development of Bridgman microgravity experiments, where it was 
demonstrated in pioneering works [42, 43, 44] that partitiontess solidification could indeed be 
achieved in space. 

Another way to damp bulk natural convection in electrically conducting fluids is to use a 
steady magnetic field. The numerous results thus obtained in the Bridgman configuration, both 
vertical and horizontal, will be reviewed in section 4. Briefly speaking, one generally observes 

an increase in k~/ f  due to the magnetic field. However, one should be aware that tile induced 
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modification of the convection pattern may be detrimental in terms of radial segregation, as a 
presentation of the relevant mechanisms will clearly show. 

2.3.2 Radial segregation 

Radial segregation can be defined as the composition variations observed on slices cut perpendic- 
ular to the growth direction. Typically, in melt grown semiconductor crystals, the requirements 

of the device manufacturers are that the wafers should be homogeneous within a few percents. 
This may not be easily reached in practice, and we need to identify the physical mechanisms 
leading to radial segregation to assess whether such an objective can be achieved. 

The curvature of the solid-liquid interface, hardly avoidable in practice, is an obvious cause 
of radial segregation. In Bridgman growth, the difference between the thermal conductivities 
in the solid and liquid phases induces a heat loss to the crucible in the vicinity of the interface, 
which translates in a deformation of the front. Other factors, such as convective transport or 
latent heat [45] may also play a role. Technical options to limit the radial temperature gradients 
have been proposed (see e.g. [10, 46, 47, 48]), but in most cases interface curvature is a key 
factor in radial segregation. 

The problem has been solved in some detail by Coriell et al. [49, 50] under tile assumption of 
diffusion controlled solute transport.  In the low growth velocity range and for small dimensional 
interface deflections AZ, the maximum concentration difference in the solid ACs can be simply 

expressed as : 
A C  s, V I 
Cs - D (1 - k)AZ,  (18) 

Cs being the local average crystal composition. It should be remembered that the relative 
radial segregation in the fluid is also given by the right hand side of eq. (18), since both ACs 
and Cs have to be divided by the partition coefficient k. Ill the general case of high growth 
velocities and interface curvature, the problem was solved by numerical simulations [50]. 

All analytical solution also exists for the asymptotic case of total mixing in the melt [18], 
where the normalized radial segregation ill the low interface curvature limit can be expressed 
as a function of the solidified fraction : 

= (1 - k)(1 - f s ) - l A f s ,  (19) 

where Afs ,  the maximum difference in solidified fractions on a slice perpendicular to the growth 
direction, is directly proportional to the dimensional interface deflection AZ. 

A common feature to eqs. 18 and 19 is that they both tend linearly to zero with AZ. 
However, partial mixing in the melt can lead to a significant radial segregation even if the in- 
terface is perfectly planar. This can be understood qualitatively by considering that moderate 
convection can significantly distort the isoconcentration lines (see fig. 2)~ More quantitatively, 

radial segregation can be said to be governed by variations of the boundary layer thickness 
along the solid-liquid front. Indeed, eq. (8) can in principle be written at each locath)n on the 
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interface, thus relating 6(X, Y) and CI(X, Y). 

The influence of partial mixing on radial segregation for the case of a perfectly planar 
solidification front has been considered extensively in the horizontal Bridgman configuration 
using numerical simulations [24, 26], approximate analytical solutions [51] and scaling analyses 
[52, 53]. As a function of the convection level, the results show that radial segregation starts 
fl'om zero, increases, passes through a maximum, and then decreases. 

A large body papers also focused on the vertical Bridgman configuration, from analytical 
[541, numerical (see e.9. [25, 35, 55, 56, 57]) and experimental [57, 58] standpoints. A typical 
variation of the radial segregation with the convection level, measured here by the Grashof 
number Gr, is presented in figure 3, reproduced from ref. [35]. The main difference with the 
horizontal case is the existence of curvature induced composition variations along the inter- 
face at low Gr values, but the existence of a maximum in radial segregation at intermediate 
convection levels is again observed. 

1 0 '  . . . . . . .  , . . :  . i  . . . . . .  : : l  . . . . . . . . .  : ,  : -  . . . i  • . : . . . ,  : . : 1  . . . . .  

• \ 

l o  -~ ~o -2 lO -I lO  0 l o  1 lO 2 lO  3 l o  ~ lO ~ l f j  ~ 

G r  

Figure 3: Variation of radial segregation Ac as a function of Gr. After Kaddeche et al. [35] 

If heat transport in the sample - crucible system is mostly controlled by diffusion, steady 
magnetic fields can not be expected to act significantly on curvature induced radial segregation. 
On tile other hand, they will modify the convection level solute transport, and may thus in- 
crease or decrease the composition variations along the growth front, depending on the growth 
conditions. 

Various scaling laws accounting for the effect of steady magnetic fields in Bridgman config- 
urations will be presented in section 4. It will be seen that both axial and radial segregation 
need to be considered when selecting experimental conditions. As for rotating magnetic fields, 
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they will be shown in section 5 to impact on both interface shape and radial segregation [12]. 

For the time being, we shall now turn to a presentation of the mechanisms of transient solute 
incorporation to complete this brief overview of segregation phenomena. 

2 .4  S o l u t e  s t r i a t i o n s  ( m i c r o s e g r e g a t i o n )  

Unsteady solidification conditions are known to result in transient variations of solute compo- 
sition, also known as striations or microsegregation, that can be a serious problem for crystal 
growers. Apparatus related instabilities, such as pulling inhomogeneities or vibrations, lead to 
fluctuations of the solidification velocity and thus of the interface composition. As for unsteady 
convection in the melt, it acts directly on the solute field, but also indirectly via the induced 
variations of the growth rate if the coupling with heat transport is strong enough. Kinetic ef- 
fects at the atomic level, such as step bunching on faceted interfaces [59, 60], can also result in 
transient solute incorporation, but will not be considered here since their relation to magnetic 
fields is far from obvious. 

The obtaining of a solution to the problem of solute striations is a formidable task, since it 
requires the time dependent versions of the heat, momentum and mass conservation equations 
to be solved simultaneously. In their pioneering work, Hurle et al. [611 focused on the effect of 
a thermal fluctuation oil the composition field, and used a stagnant film model to account for 
convective transport. In their one dimensional perturbation approach, only small deviations 
with respect to reference "steady state" conditions are considered, and the main variables of 
lhe problem (interface velocity, temperature and composition fields) are expanded into Fourier 
series up to the order one; in terms of concentration for instance, one gets : 

C(Z, t) = C°(Z) + Ca(Z) exp(iwt) (20) 

This approach was later refined by Th~venard et al. [62] to lift some minor flaws in the 
tbrmulation. However, in both cases, due to the physical inconsistency of the stagnant film 
model, the results may be questionable away from the asymptotic convective transport limit 
[18J. Fortunately, a similar perturbation approach can be followed in the sounder frame of the 
boundary layer model [63]; let us thus consider the time dependent version of eq. (14), namely : 

OC 02C V. OC 
o~ = D - 5 ~  + ~ H b Y  " (21) 

With the help of the above equation, it is possible to define the frequency range of "quasi- 
steady" perturbations. Indeed, if we denote w the pulsation of the composition variations, 
order of magnitude estimates of the OC/Ot and D 02C/OZ 2 terms are as follows : 

OC 
--at ~ lot - C~]~ DOzC/OZ 2 =~ D[C, - Co~]/62, (22) 

assuming again that ~ is the length scale of the spatial composition variations (see section 2.2). 
The condition defining "quasi-steady" perturbations (OC/Ot << D 02C/OZ 2) is thus given as : 

62 
~ = ~ << 1. (23) 
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Quite generally, eq. (21) can be solved using Fourier expansion series for both the composition 

eq. (20) and the effective velocity, with a forcing term V2H included : 

~'~ff = 1 ~ ]  + ~/~)] exp(jcot). (24) 

t"~l// (:an .be related either to a growth (I/e~ f = 1/) 1) or a convective (V~I/] = l"~:(Z)) velocity 
fluctuation. In the first case, the interface boundary condition eq. (7) should be written using 
the instantaneous growth rate. As for the second case, a further simplifying assumption is to 
estimate the relevant convective fluctuation at the boundary layer scale, t~}y = ~'~(6). Be- 
sides, we shall only consider low amplitude fluctuations, such that the second order term V¢~HC 1 
can be neglected. In such a linear approach, the relation between the effective velocity and 
composition fluctuations can be adequately characterized by transfer functions, as commonly 

used by electrical engineers in signal processing. 

Even with these assumptions, the algebra involved is fairly tedious, and the interested 
reader is referred to the original publications [63, 64, 65] for details on the derivation. We shall 
here only present the results in condensed form and outline the main features of the solutions. 
For the case of unsteady interface velocity variations, sufficiently far away fiom the diffusion 
transport limit, the relation between normalized composition fluctuations and interface velocity 
fluctuations can be expressed as : 

C ) / C  ° - [ C . s / ( l  + f i 'U[~c) ] ' /2 I " ) ' / I / )  °, (25) 

Os and ~c  being respectively the static gain and the cutoff pulsation of this order 1/2 linear 
filter and j the (:omplex number such that j2 = - 1. Numerically, Gs and fftc are given as : 

G s  = ( l  - k ) , ~ ( 1  - a ) / [ ( ] -  (1 - k ) ~ ]  (26) 

f~r: = [(1 - (1 - k)A)/(1 - Z.&)] 2. (27) 

The above relations demonstrate the ability of the convectodiffusive parameter A to capture 
the physics of segregation phenomena in both steady and transient conditions. When A --+ 1 
(diffusion controlled transport),  the order 1/2 linear filter representation is not appropriate, 
and it is necessary to refer the general form of tire solution [63]. Similarly, in the case of 
unsteady convective fluctuations, the relation between normalized composition fluctuations 
and convective velocity fluctuations can be, expressed as : 

c ] / c °  = [Cs/(1 + ja/a~)J~(,~)/K. °. (28) 

Os and t~c are now the static gain and the cutoff pulsation of this first, order linear filter, given 

a s  : 

a s  = (1 - k ) A 2 / [ ( ]  - (1 - k ) A ]  (29) 

% = ~ - (~. - k ) z .  ( 3o )  

Eqs. (25) to (30) were seen to compare favourably with available numerical [64, 66] and 
experimental [63, 67] data. From the structure of these equations, it is clear that over a given 
threshold fiG, the perturbations will be filtered out. Conversely, low pulsation fluctuations are 



,1. 17. Garandet and l:. ,41boussiere / Prog. Crystal Growth and Charact. 38 (1999) 73-132 

the most harmful in terms of solute segregation. 

89 

It should be noted that for both unsteady growth rate and convection mechanisms,. ~c  is 
often of order of magnitude unity; in dimensional terms, this means that the cutoff pulsation 
will not exceed 1 Hz, and may be sometimes significantly smaller [64]. Finally, it should be 
noted that convection controlled transport (A --+ 0) results in low levels of segregation, which 
can be understood in qualitative terms since the melt is then almost homogeneous. 

In connection with the results on the effect of steady fields on unsteady convection that 
will be presented in section 3, it should be again stated that what matters is the amplitude 
of the hydrodynamic fluctuation at the solute boundary layer scale. However, before turning 
to a detailed presentation of the results showing the influence of magnetic fields in the Bridg- 
man configuration, we think it worthwhile to discuss briefly the widely used "dilute alloy" 
approximation. 

2.5 The dilute alloy approximation 

In many cases of semiconductor growth from the melt, only very small amount of dopants (say 
in the range of 10 to 100 parts per million) are needed to confer the desired properties to the 
base material. As for mechanical hardening of the matrix by means of foreign atoms, such 
as widely used in the Czochralski configuration, the relevant concentrations are significantly 
higher~ but remain limited to the order of some percents at the most. On the other hand, the 

growth of mixed crystals with adjustable lattice parameters for epitaxy often requires com- 
position variations covering a large portion of the phase diagram. It may thus be interesting 
to see under what circumstances, and with respect to what kind of problems an alloy can be 
considered "dilute." 

This can first be discussed from a thermodynamic standpoint. Indeed, if the amount of 

solute becomes too high, the assumptions of constant partition coefficient and liquidus slope 
can not hold all over the composition range, and one should use the phase diagram of the 
system to obtain local relations. Other thermophysical parameters, such as diffusion coefficient 
or kinematic viscosity, may also be thought to depend on concentration; however, even for the 
most studied materials, some values may not be fully reliable. One should thus be cautious 

about the validity of the formulations that claim to account for the composition dependence of 
thermophysical properties. 

More interesting for our present purposes of growth under magnetic fields, one may wonder 
about the hydrodynamic limit of the dilute alloy approximation. Indeed, if solutal convection 
can be neglected, the transport problem becomes much simpler since the Navier-Stokes and the 

solute conservation equations can be decoupled. In the horizontal Bridgman configuration of 

ref. [10], an order of magnitude analysis was used to estimate the ratio between the solutally 
and thermally driven natural convection flow velocities. At the boundary layer scale, the result 
can be written as : 

yc(~)/vr(~) = (~c, cc/aro~)(~,/  H) 2, (31) 
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t~7', tiC, GT, Go: and H respectively representing the thermal and solutal expansion coefficients, 
the r, emperature gradient imposed by the growth furnace, the composition gradient at the in- 
terface given by eq. (7) and a typical dimension of the cavity. In many practical cases, (5/H) 
is significantly smaller than unity, which means that the dilute alloy approximation may be 
expected to hold even if the ratio ~3cGc/3TG r is fairly large. 

In vertical Bridgman configurations, other forms of coupling between the concentration and 
hydrodynamic fields can exist. For instance, if the composition gradient ahead of the growth 
front makes the boundary layer lighter than the bulk liquid, solutal type Rayleigh B~nard 
convection may take place. An instability threshold can be estimated using the concentration 
gradient at the interface and 5 as reference lengthseale (see Debray et al. [68] for a similar 
configuration). 

Conversely, if the boundary layer is heavier than the bulk, a significant damping of the flow 
may be expected [69]. Both mechanisms have been experimentally observed [58, 70, 71, 34] in 
the vertical configuration; this may be related to the fact that 5 is larger than in the horizontal 
case, since the convection levels are usually smaller. To conclude on this point, our opinion is 
that one should be aware of the limitations of the dilute alloy approximation. 

3 Magnetic stabilization of unsteady growth 

The use of a steady magnetic field has been of great beneft in the so-called "striation" or 
%otute banding" problem. Utech and Flemings [8] have demonstrated that a relatively weak 
DC magnetic field could eliminate these striations in 1966. In their paper, they remind us 
briefly about the principle of the formation of striations, put in evidence a couple of years 
earlier by Mueller and Wihelm [72]. Turbulence exists in the liquid pool due to the buoyancy 
forces and is responsible for temperature fluctuations. In particular the solid-liquid interface is 
submitted to such temperature fluctuations; this results in an unsteady growth rate and thus 
in bands of different concentration (see equation (25)). Their spacing is directly linked to the 
typical time scale of turbulent fluctuations through the mean growth rate. Let us also mention 
that., as discussed in section 2.4, unsteady convection can also interact directly with the solute 
b~mndary layer, resulting in striations (see equation (28)). 

Utech and Flcmings carried out growth experiments of tellurium doped indium antimonide 
in a horizontal Bfidgman configuration, with different values of vertical DC magnetic field (0, 
1750 and 1300 Gauss, corresponding to 0, 0.175 and 0.13 Tesla in the international unit sys- 
tem). They measured temperature fluctuations in the liquid in the absence of magnetic field, 
simultaneously with striations of the corresponding spacing in the solid. They observed no 
temperature fluctuations in the presence of vertical magnetic field (0.175 or 0.13 Tesla) nor did 
they find striations. 

This problem of striations, of great importance for materials, is thus reduced to a pure fluid 
mechanics problem: magnetic stabilization. Subsequent studies have been devoted to a more 
systematic investigation of the conditions of stable convection under DC magnetic field in a 
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liquid metal or semi-conductor. The thermal driving force for a fully enclosed cavity is mea- 
sured by a dimensionless Grashof number, Gr = ( /3gGH4) /~  2, where/3 denotes the volume 
expansion coefficient, g gravity, G the typical temperature gradient perpendicular to gravity in 
the liquid, H the typical dimension of the pool and u the kinematic viscosity. In the case where 
a free surface of liquid exists, an additional source of motion appears, the Marangoni convec- 
tion. Surface tension is a function of temperature (the lower the temperature, the stronger 
is the surface tension in general) and temperature differences exist along the free boundary; 
the surface forces create a surface stream from high to low temperatures, recirculating in the 
bulk. The Marangoni number, Ma = (7 G H2) / (pu  2) is the dimensionless number measuring 

the strength of thermo-capillary convection. The symbol 7 = dcrs/dT (where as is the surface 
tension) denotes the temperature dependency of the surface tension (surface tension thermal 
coefficient). These two dimensionless parameters, Grashof Gr and Marangoni Ma represent the 
strength of buoyancy and thermo-capillarity versus viscous forces. Similarly, solutal Grashof 
and Marangoni numbers can be defined to account for composition driven bulk and surface 
convection. In most published papers, these effects are not taken into account (see section 2.5 

for a discussion of the dilute alloy hypothesis). 

Two other dimensionless numbers have to be considered, the Prandtl number Pr  = v /a ,  

ratio of the kinematic viscosity to the thermal diffusivity and the Hartmann number Ha = 

~ B H ,  where is the electrical the and B the of the cr conductivity, density P magnitude 
magnetic field. The Hartmann number measures the relative importance of the electromagnetic 
forces to the viscous forces. In liquid metals, it is easily large compared to unity t. Liquid met- 

als and semi-conductors are characterized by a low Prandtl number, of order 10 -2, depending 
solely on the thermo-physical properties of the liquid. 

The basic problem is to find out the region of steady convection in the space of the pa- 
rameters (Gr, Pr,  Ha), with the addition of the Marangoni number Ma in the presence of a 
differentially heated free surface. In addition to these parameters, this problem depends on the 
configuration; geometry and orientation of temperature gradients, gravity and magnetic field. 
On the ba~sis of common sense, and as confirmed by the analysis, an increase of the Grashof 
number (increase of' driving force) or a reduction in the Hartmann number (reduction of the 
damping term) favour instability and therefore unsteadiness. The effect of a change in the 
Prandtl number on stability is less clear and was seen to depend on the configuration. 

The dependence of the threshold of instabilities on the Hartmann number can take vari- 
ous forms, but it was often found that the required strength of the driving force (a Grashof 
number for instance) should increase as Ha 2. A tentative explanation can be given to the Ha 2 

dependence of the threshold. An energetic argument is the following: the Joule dissipation is 

j2 
fv ~-dk: (32) 

1Typically, the electrical conductivity is of order a ~ 10s~-lm -1, the kinematic viscosity scales as u 
10~6m2.s -1, density as p ~ 104kg.m -3, which leads to Ha ~ 104BH (where B and H are expressed in Tesla 
and meter respectively). For a 10 cm crucible size and 1 T, the Hartman number is of order 103. 
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whereas the viscous dissipation is 

£ p~,(V A V)2dV. (33) 

For the type of instability considered (transverse or longitudinal), rolls with axis perpendicular 
to the magnetic field are generated, which implies that the electric current density generated 
is of order crBV (only for rolls with axis aligned with the magnetic field, is the electric current 
density negligible compared to both the electrical potential gradient and electromotive force 
J A B, see [73]). The ratio of the order of magnitude of Joule by viscous dissipation is found to 
be Ha 2. This suggests that the critical Grashof number should increase at the rate Ha. 2. This 
approximate analysis is presented here only as a guiding idea and some of the assumptions (e.g. 

electrical current density of order a B V )  may not hold in given circumstances. This stabilizing 
effect is directly linked to the microsegregation analysis developed in the previous section 2.4. 
The disturbance convective terms appear in the equations (25) and (28). Their reduction or 
cancellation has thus a direct effect on striations. 

3.1 Vert ica l  c o n f i g u r a t i o n  

The vertical configuration, solidification starting from below, is the most widely used because 
it limits the thermal buoyancy driving forces, preserves in principle the rotational symmetry of 
tile produced crystals and is generally solutally stable with the rejection of heavier material at 
the growing interface. Two sources of possibly unsteady convection exist: radial temperature 
gradients (always present, see section 4.1) and unstable vertical solute or thermal configuration 
(restricted to some alloys or to the top-seeded vertical Bridgman configuration). Some experi- 
mental studies reported the benefit of the use of a steady magnetic field to suppress striations 
associated with unsteady Rayleigh-Bgnard convection [74, 75, 76]. Experiments have been car- 
tied out to measure temperature fluctuations under different magnetic field magnitudes and for 
a controlled temperature field. For instance, Kim [77] reports of an unstable Rayleigh-B4nard 
configuration, where a transverse magnetic field can be installed. He states that for a Rayleigh 
number of 0.9 × 10 '~, a Hartmann number of 94 is enough to suppress temperature fluctuations. 
His interpretation is not very clear: the action of the magnetic field is described as an artificial 
increase of viscosity, which does not correspond to the physics of the Lorentz force. 

More generally, as developed in [74], the physical interpretation is related to the stability 
analysis developed by Chandrasehkar [78]. The main result used is that in a Rayleigh-B~nard 
configuration, heated from below, with a vertical magnetic field, the critical curve is given in 
the Ha Ra plane by the relationship: 

Rac = rr2Ha 2 (34) 

The Rayleigh number is the product of the Grashof and the Prandtl number 2. This result is 
valid for a magnetic field strong enough so that Ha >> 1. Without magnetic field, and for no-slip 
boundary conditions, the critical Rayleigh number is 1708. So, only when the product ~rHa 2 

is much larger than 1708, will the critical Rayleigh number follow this asymptotic behaviour. 

2In the configuration heated fl'om below, the dimensionless numbers Gr and Pr  appear only in the product 
Ra ::: Gr Pr. 
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In the paper [74], Danilewsky et al. calculate the Rayleigh number associated to their growth 
configuration. In the case of the growth of Ga-As, a thermal Rayleigh number is relevant 
Ra ~ 104 and the 0.44 T magnetic field is enough to suppress the striations. In the case of the 
growth of InP, the main buoyant forces are of solutal origin. The associated solutal Rayleigh 
number is much higher and the 0.44T magnetic field is not sufficient to eliminate striations. 
From the criterion, Rac = 7rHa 2, the authors estimate that a 2 T magnetic intensity should 
be required. In conclusion, when an unstable thermal or solutal gradient exists, the classical 
Chandrasekhar stability analysis seems to provide a good criterion for the stabilizing effect, of 
a vertical magnetic field. 

One difficulty appear when the field is not vertical but transverse. In Chandrasekhar's 
infinite plane configuration, the theory predicts that there should be no magnetic stabilizing 
effect, because the convection rolls after destabilization can have their axis aligned with the 
magnetic field. In this two-dimensional configuration, it is well-known that the Lorentz forces 
vanish (see Prof Moreau's contribution). Nevertheless, a magnetic stabilizing effect is observed 
[77, 79]. The reason for that is that the convection rolls must have a finite length along the 
transverse direction and this causes a breakdown of the two-dimensional state, which generates 
some electrical current and stabilizing Lorentz forces. 

Rayleigh-B~nard instability is not the only possible source of time-dependence in the vertical 
Bridgman configuration. Indeed, even if the configuration is globally vertically stable, there 
exist some radial temperature gradients that will drive convective movements, without critical 
threshold. That convection can be itself unstable and lead to striations (see section 5.2 for a 
study case under rotating magnetic field). 

3.2 Horizontal configuration 

The horizontal Bridgman method is not the most widely used, but it is sometimes necessary 
fbr the growth of particular crystal like InP, CdTe, GaAs [4]. Its main advantage resides in the 
possibility of controlling the stoichiometry by a vapor pressure near the interface. This method 
is limited to high quality' specific crystals. The horizontal Bridgman configuration received much 
academic attention, essentially on the point of view of the hydrodynamics, despite its restricted 
practical use. This is due probably to its extreme simplicity allowing for the dew~lopment of 
analytical models. 

3.2.1 S t a t e  of  t he  a r t  w i thou t  m a g n e t i c  field 

Historically, differentially heated fluids in horizontal cavities have received early attention re- 
garding the stability of the convection (see experimental works [8, 80]). Such a configuration 
has been widely used to model horizontal Bridgman growth. In this case, a horizontal tem- 
perature gradient is setup and drives convection without any threshold value (see figure 4). 
In general, thermal and convective boundary layers can develop at both ends, but in the case 
of a long cavity or when thermal diffusivity is high (low Prandtl number fluids, like liquid 
metals) a fully-established parallel flow exists in the largest part of the cavity, characterized 
by the uniform axial thermal gradient G = A T / L .  For a "theoretical" two-dimensional cavity" 
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Figure 4: Horizontal Bridgman configuration 

(O/OX = 0), the basic flow and temperature field for thermally insulating upper and lower 
boundary conditions is [81, 82]: 

AT [ 1 ( y ) 5  1 ( y ) 3  1 ( ~ ) ]  
T = To + - f -  + a z  + [avP~] a r t  ~ - T£~ + gg~ (36) 

A large number of studies have been devoted to the stabili ty of this flow, analytically [82, 
83, 84, 85], experimentally in configurations more or less equivalent to the situation described 
above [80, 86] and numerically [87, 88, 89]. In his pioneering work, Hart  [82] identifies already 
the characteristic features of the possible instabilities. Basically, two types of instabilities are 
identified: 

• Transverse instability: this instabili ty is X-independent  and corresponds to rolls with 
axis aligned along the X direction. The "linear" perturbat ion associated takes the form 

~ = e~+ e ~ ~(Y),  (37) 

o = e ~ + ~ z  b(Y), (a8) 

where ~;' is a streamfunction in the Y-Z plane and 0 is the temperature perturbation.  At 
the threshold for this disturbance 3, it is found that  the imaginary part  of a vanishes, which 
means that  the linear dis turbed state is steady: steady rolls are expected. Moreover, at 
small Prandt l  number corresponding to liquid metals, the threshold is found to correspond 
to a critical Grashof number (Grc "-~ 7 x 103 [85]). This instabil i ty is interpreted as a shear 
instabil i ty of purely convective nature. Indeed, from the point of view of convection, the 

:~It is defined by the condition that the time growth rate becomes positive, or equivalently that ~he real part 
of cy is j/lst; ze ro .  
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basic flow is solely dependent on the Grashof number: its Reynolds number is proportional 
(with a pure constant of proportionality) to the Grashof number (see equation 35). Of 
course, the convective disturbance is very little affected by the temperature field, hence 
the Prandtl number, in the limit of low Prandtl numbers, because the temperature field 
becomes almost uniform in a cross-section (equation 36). 

• Longitudinal instability: this instability is Z-independent and corresponds to rolls with 
axis aligned along the Z direction. The associated linear perturbation is of the form: 

u z  = e at e k x x  ~ ( Y ) ,  (39) 

~p = e at e k x x  ~(Y), (40) 

0 = e '~t e k x x  O ( Y ) ,  (41) 

where u z  is the disturbance of the velocity in the Z direction, ¢ the streamfunction of 
the disturbance in the X - Y  plane and 0 the temperature disturbance. At the threshold of 
linear instability, the imaginary part of a is non-zero and the unstable linear disturbance 
takes the form of oscillating rolls, with an associated oscillatory temperature disturbance. 
This instability results from the coupling between buoyancy and temperature advection. 
The threshold value is not easily expressed in terms of the governing parameters G r  and 
P r  and is discussed below. 

The neutral curves of stability are presented in figure 5 (these curves are reproduced from 
[84], figure 3 and correspond to the case of rigid thermally insulating upper and lower boundary 
conditions). The most interesting curves are labelled T r  and O s c . ;  they correspond respectively 
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G r  c 

T r  ~ 

Ose. ~ Stable 

, I , I , I 

0.001 0.01 0.1 1 

P r  

Figure 5: Neutral curves of stability in the G r - P r  plane for thermally insulating boundaries, 
after Hart [84], JFM (1982), courtesy of the author and of Cambridge University Press. 

to the transverse (steady) disturbances and to tile oscillatory longitudinal disturbances. The 
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two other curves (O and E) correspond to stationary longitudinal modes. 

Gill [83] gave a nice physical explanation for the onset of the longitudinal instability. The 
buoyancy-induced oscillatory torque in the X - Y  plane driving the oscillatory rolls is provided 

by the oscillatory axial velocity disturbance uz that brings hotness or coolness according to the 
direction of u~ relative to the axial temperature gradient. He provides also, in the same paper, 
an approximate analytical stability analysis showing that, at small Prandtl  number, a critical 
Rayleigh number /~a  = G r P r  is relevant to account for the instability threshold of these longi- 
tudinal disturbances. More precisely, he indicates a critical value Ra~ = 1030. It is important 
to discuss this approximate analysis, to clarify exactly when this instability occurs. After his 
derivation of the critical value Ra~ = 1030, Gill discusses the approximations pertbrmed and 
concludes that the result may be valid for the case of perfectly thermally conducting shear-free 
upper and lower surfaces. Gill's approximate derivation assumes a uniform shear for the basic 
flow and a uniform vertical temperature gradient (which is reasonable in the middle part of 
the cavity Y _~ 0, see equation 36). More important are the assumptions concerning the form 
of the distmbances eigenfunctions, which essentially correspond to perfectly conducting upper 
and lower walls (the disturbance vanishes at z = ±1/2).  

Gill's theory is a success in two directions. First, it seems that it provides a good explanation 
for the experimental results of Hurle et al. [80]; they had noticed that the thermal disturbances 
had phase-surfaces aligned with the Z-direction. Secondly, in the case of thermally conducting 
boundaries, the theory agrees within a factor 2 with the numerical results of Hart [82] and 
criticality is associated to a critical Rayleigh number. 

The limitations of Gill's theory are twofold. First, in the more physically relevant case of 
thermally insulating upper and lower boundary conditions, the numerical results [82, 84, 85] are 
not in agreement with the notion of a critical Rayleigh number at small Prandtl  numbers. In 
the G r - P r  plane, the neutral curve corresponding to the oscillatory longitudinal disturbances 
do not exhibit a - 1  slope, which would correspond to a constant Rayleigh. At small Prandtl  
numbers, this slope seems to be close to - 1 / 2 ,  corresponding to a constant Gr 'Pr  1/2 product 

(see figure 5). So, in the general case, it is not appropriate to refer to the h)ngitndinal in- 
stability as lo a critical Rayleigh number. The - 1 / 2  slope is an estimate fi'om the numerical 
stability results, but no simple analytical theory, in the sense of Gill's theory, is available. The 
second linfitation of the theory is that it assumes an infinite extent of the cavity in the X and 

Z directions. It has been shown that the finite extent of the cavity affects a lot the threshoht 
of instabilities, by restricting the possible wave-numbers of the disturbances: it goes in the 
direction of stabilizing the flow (see the experimental work of Hurle et al. [80] and numerical 
studies [86, 87]). 

An important  point is whether transverse or longitudinal disturbances should be more par- 

ticularly studied for liquid metals and the answer to this question depends on the Prandtl 
number. It was found that for a Prandtl  number below 0.033 (Kuo and Korpela [90]), the 
first instability to appear was the (steady) transverse instability. As such, and because most 
liquid metal have a smaller Prandtl  number: it was worth studying it. On the other hand, this 
first disturbance may just  lead to steady roils of weak amplitude, which would not explain the 
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appearance of temperature fluctuations responsible for the striations in crystal growth. For 
this reasom the longitudinal perturbations received much attention. 

3.2.2 Inf luence o f  a m a g n e t i c  field 

Let us consider the same configuration with a vertical steady magnetic field. The dimensionless 
Hartmann number considered is obtained using the height H of the cavity Ha = ~ ( p u ) B H .  

Experimental results I80, 91] and numerical results [92, 93] show an increase of the critical 
Grashof number (for a fixed Prandt l  number) when the Hartmann number increases. More 
precisely it is reported in these studies that the critical Grashof number increases as the square 

of the Hartmann number. Taking into account the results of the previous section 3.2.1, we may 
conclude [93 t that  for thermally conducting boundary conditions, the neutral conditions are of 
the form: 

G r P r  ~ H a  2, (42) 

whereas for thermally insulating boundary conditions,  the neutral stability may take the form 

GrPr½ ~ H a  2, (43) 

This results concern the case of an electrically insulating crucible. Let us mention an adaptation 
of Gill's approximate analysis by Kaddeche (private communication) in the presence of a vertical 
magnetic field. He found that criticality was expressed as 

Ra ~ Ha 2. (44) 

This analysis is believed to be appropriate for thermally conducting boundaries, in long and 
wide cavities and confirms the role of longitudinal disturbances. 

Another characteristic of the magnetic field is that is seems to affect the steady transverse 
modes more effectively than the longitudinal modes. A consequence is that the value of the 

Prandtl  number at which longitudinal disturbances become more unstable than transverse dis- 
turbances is reduced when the Hartmann number increases [93J. This gives more importance 

.to the longitudinal disturbances when a magnetic field is present. 

In a slightly different configuration (a horizontal cylinder), Davoust et al. [91, 94] found 

not only oscillatory longitudinal perturbations satisfying the Ha 2 dependence of criticality, but 
also an oscillatory transverse disturbance for which the critical temperature difference increases 
linearly with the Har tmann number. 

Finally, it must be said that these studies are restricted to relatively small Hartmann num- 
bers (of order 5), due to the numerical difficulty to increase the critical Grashof number or due 
to the impossibility to obtain a destabilization in experiments. This range (Ha < 5) is below 
the range where an asymptotic basic flow is reached under a strong magnetic field (see section 

4.2). It may be suggested that the neutral conditions might take another form at high Hart- 
mann number (Ha > 100), provided a huge Gra.shof number can be reached 4. The behaviour 

4This may be the case in the very different context of nuclear fusion, where an intense thermally driven 
convection in a liquid metal (the cooling fluid) is expected to take place under a strong magnetic field, in some 
proposed concept, s. 
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of vortices in a strong magnetic field has been studied by Davidson [95]. 
Let us also mention a numerical linear stability under magnetic field parallel to the flow 

[92]. It has no effect on the basic flow, only on the disturbances. In this case the threshold 
value for the Grashof number is seen to increase linearly with the Har tmann number: 

Gr~ = 115 Ha. (45) 

4 The use of strong steady magnetic  fields 

The application of a steady magnetic field is not restricted to its ability to suppress unsteady 
convection. It is also used to decrease the steady convection level, with the hope to reduce 
the convective transport  of species and to monitor macrosegregation at the scale of the whole 
crystal. Quite often unsteadiness is eliminated while there still exists a strong laminar flow 
that affects the solute layer thickness and segregation. An increase of the magnetic field mag- 
nitude will reduce that convection level and sometimes a purely diffusive regime can possibly 
be reached under normal gravity conditions [9]. 

Before the two typical vertical and horizontal Brigman configurations are considered, a gen- 
eral comment on the damping effect of a magnetic field on laminar convection can be made. 
It is well known that  a magnetic field will reduce the convection magnitude: the total kinetic 
energy will be significantly less. It should be kept in mind that the flow structure 5 will change 
a lot as well. This is particularly important  when the effects of convection on segregation are 
considered. As shown in section 2, only the velocity at the scale of the solute boundary layer 
thickness is relevant. Because of the change in structure of the flow under a strong magnetic 
field, it may well be that the total kinetic energy is significantly decreased while the velocity in 
the solute boundary layer remains unchanged [10]. Moreover, the question of the orientation 
of the magnetic field is crucial for the flow structure and magnitude depend critically on it. 

Some simplifications will be used throughout this section unless otherwise specified, and 
are described here. The temperature inside the liquid region is determined from the energy 

equation. Numerical approaches consider both diffusion and convection heat transfer whereas 
the analytical studies assume that  the relevant equation to be solved is simply: 

V2T = 0. (46) 

Such an assumption was found to be licit in many eases since the thermal P~clet number is 
often small. This is a simple purely diffusive thermal equation, with no heat source; the viscous 
dissipation is negligible for such low velocity movements of maximum order of magnitude of a 
centimeter per second and Joule dissipation is also negligible 6. The MHD convection problem is 
then solved with the buoyancy driving force associated to the thermal field found from equation 

~The term "flow structure" refers here to the occurrence of thin boundary layers or free shear layers and of 
an mviscid core region, when the Har tmann number Ha = VF@(pu)BH is very large compared to unity (see 
the first chapter on general MHD). 

e~Alt, hough these two dissipation modes are negligible in the thermal equation, they have been seen to play 
a key role in the kinetic energy equation in section 3. 
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(46). The non-linear inertial terms are neglected in the analytical studies, a safe assumption 
considering the small Reynolds numbers characteristic of such growth conditions. Furthermore, 
the magnetic field will reduce the convection level and will make even safer the assumption of 

negligible inertia. The set of equations to be considered is thus: 

V . V  = 0, (47) 

V . J  = 0, (48) 

J = (7 ( -Vq~+ V A  B),  (49) 

0 = - V p  + p [1 - Z (T  - To)] g + J A B + p~V~V.  (50) 

Finally, concentration is determined from the convecto-diffusive equation (6) using the above 

mentioned global velocity field (convection and pulling velocity) and the boundary conditions 
at the boundary; zero normal gradient at the crucible and the solute rejection condition at the 
interface solid-liquid (equation (7)). 

Another point is worth mentioning concerning inertia. In some references (e.g.  [96]) the 
total velocity is calculated (buoyancy driven convection and global pulling rate in the reference 
system attached to the growing interface), while other authors (e.g.  [56]) concentrate on the 
buoyancy driven flow and just add the uniform pulling rate to get the global velocity field (see 
figure 6). The difference between the a p r i o r i  more exact former method and the more practical 

boundary condition boundary condition 
U=Vx V=O 

J 
, V U ] H, 

exact convection formulation 

+ 

v~ 
,,C 

approximate formulation 

Figure 6: Exact and approximate convection problem formulation 

later pertain to the influence of the single non-linear term in the dynamical equations, inertia. 

To our knowledge, the fact that these problems are different and the condition for them to be 
close to one another have not been discussed so far and we derive hereafter such a condition. 

The exact velocity solution U is split into the uniform pulling velocity and a pure convective 
part U = V~ + V, and this expression is substituted into the Navier-Stokes equation for U. 
The only difference between the equation thus obtained for V and the Navier-Stokes equation 
for V with the no-slip condition on the cavity walls is the following non-linear terms: 

VI.VVI + V.VVI + Vx.VV. (51) 
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The two first terms are strictly zero provided V~ is uniform. The last, term can be compared 
to the viscous term uV2V using orders of magnitude. The most conservative hypothesis is to 
consider the length scale H, the diameter. The order of magnitude for V l . V V  is V I V / H ,  while 
the order of magnitude of the viscous term is u V / H  2. The ratio is the Reynolds number based 
on I/) and H. The approximate problem gives a correct solution provided: 

tgH 
- -  << 1. ( 5 2 )  

Let us notice first that with a srnaller length scale, the condition is more easy to fulfill (in that 
sense equation (52) is conservative) and secondly that this condition brings no constraint to 
the level of buoyancy-driven convection. This condition (eq. 52) is easily satisfied in crystal 

growth in general. 

4.1 Vertical Bridgman configuration 

The unavoidable radial thermal gradients near the solid-liquid interface always act as convection 
driving forces. Radial thermal gradients are most likely to develop in that region because the 
thermal eonductivities of the solid and liquid are usually different: the redistribution of the 
essentially axial heat flux between the sample and the surrounding is accompanied by the 
appearance of radial thermal gradients (see figure 7). This radial flux is also responsible for a 
curvature of the interface:. Both effects, curvature and convection, will affect macrosegregation 
in general [35]. We shall concentrate on tim segregation effect due to convection, since it will 
be directly influenced by a magnetic fieht, bearing in mind that a change in convection can 

counteract on the heat transfer and thus on the interface curvature. Quite generally, a variety 
of cases can be met depending on the position of the seed with respect to the melt, and on the 
density of the solute boundary layer with respect to the bulk fluid. However, the unavoidable 
radial thermal gradients near the solid liquid interface always act as convection driving forces. 

Solute buoyancy forces also exist, due the rejection of solute rich material (if k < l) into the 
tluid at the solid-liquid front. Generally, this is a stable configuration with rejection of heavier 
fluid. The stable solute buoyancy forces tend to damp the thermal buoyancy driven convection 
[58]. The other case (rejection of light material) could be catastrophic from the point of view 
of segregation, with all the solute being concentrated in the top end of the crystal; the vertical 
top-seeded configuration is then used but the thermal configuration becomes unstable. 

4.1.1 E x p e r i m e n t a l  m a c r o s e g r e g a t i o n  r e su l t s  

Several teams report tile influence of a strong steady magnetic field during vertical Bridgman 
crystal growth on solute segregation [76, 75, 9, 97, 98]. Under a transverse magnetic field of 
magnitude 0.4 T [76], it was shown that tile axial segregation diminished slightly while radial 
segregation increased during the growth of I n x G a l _ z S b .  Under a vertical magnetic field of 
magnitude 3 T, radial segregation was found to be significantly reduced [75] during the growth 
of H g M n T e .  In the reference [9], the effect of a 3 T vertical magnetic field on axial segregation 
in GaGe is presented, the authors express axial segregation in terms of the effective partition 

7The orientation of tile curvature shown on figure 7 corresponds to the ease of a crystal of higher thermal 
<:onductivity than the liquid phase, a common situation for metals (opposite for semiconductors). 
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Figure 7: Vertical Bridgman configuration and its associated thermal convection pattern 

ratio ke].f = Cs/Coc. The length of the crystal is less than the initial build-up length of the 
diffusive boundary layer. A fit of the experimental data with Tiller's expression [37] for the 

initial transient was accurate for an even lower diffusivity value than the accepted value in 
the literature, which proves that axial segregation corresponds to the pure diffusive regime. 
They report that radial segregation is negligible. Without magnetic field, the axial segregation 
was typical of a convective regime, with a steady-state effective partition ratio around 0.2 (the 
thermodynamic partition ratio is 0.087). Under the same circumstances, the application of an 
axial or transverse magnetic field up to 0.3 T had no effect on the longitudinal segregation [99]. 

In the references [97, 98], the radial segregation in HgCdTe  is measured with no magnetic 
field and under an axial magnetic field of magnitude 5 T respectively. In both cases, the axial 
composition obeys the pure diffusive distribution, whereas the radial segregation and the inter- 
face curvature are significantly less under 5 T than without magnetic field. The relative radial 
segregation is changed from 47 % to 10 %. 

All these results are compatible with a reduction in the convection level by a magnetic 
field, provided we keep in mind the behaviour of the response of axial and radial segregation 
to convection (see section 2). A schematic dependence of axial and radial segregation on the 
convection level is sketched in figure 8: the qualitative description of the experimental results 
is correct, based on the idea of a magnetic reduction of convection. In tile next section 4.1.2, 
we shall come back to the results in reference [9] for comparison with a more precise modelling 
of the effect of the magnetic fieht. 

4.1.2 Analys is  of the  fluid flow and  its influence on segregat ion 

Genera l  p rocedure  

In the vertical Bridgman configuration under the presence of a magnetic fieht, the flow was 
investigated numerically [100, 96, 101, 102, 103] and received comparatively little attention on 
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Figure 8: Axial and radial segregation in vertical Bridgman growth. The arrows show the 
reduction of convection level under the presence of a magnetic field 

the analytical side [96, 104, 105]. The steps followed are essentially described below, except 

for reference [103] where a non-dilute alloy is considered and that  we will discuss separately. 

First, an analytical temperature profile along the liquid boundary is chosen, as representative 

of the conditions of a real experiment. This temperature profile is not strictly axial and will 

induce radial temperature gradients in the liquid, which will drive the convection s . Secondly, 

the equations of motion (47,48,49,50) are solved using this temperature field. Thirdly, the effect 

of the velocity field on solute segregation is analyzed. 

The axisymmetry of the configuration brings a simplification since the electrical potential 

can be proved to be uniform, when a vertical magnetic field is applied 9. This is proved by 

taking the divergence of Ohm's  law (49): 

v% = B.(V A V). (5a) 

Since the buoyancy induced motion is purely meridional, this Poisson equation becomes a 

Laplace equation for ¢ (the term V A V is azimuthal), which solution is a constant under 

homogeneous boundary conditions. The Lorentz term J A B can be expressed directly in terms 

of the velocity: 

a A B = - a B 2 V ± ,  (54) 

SA deflection of tile growth interface will result as well. This deflection, although generally neglected when 
convection is calculated, can have a direct effect on radial segregation [35]. 

9This is no longer valid when the axial symmetry is broken (i.e. with a transverse magnetic field) and the 
electrical potential ¢ must be determined. 
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where V± is the part of the velocity field perpendicular to the vertical magnetic field 1°. 

103 

E x p e c t e d  M H D  fea tu re s  
The convective cells will be stretched along the magnetic field, to minimize the velocity 

gradient along the magnetic lines (cf. Prof. Moreau's contribution). In the case of a axial 
magnetic field, thin Hartmann layers are expected to develop along the solid-liquid front and 
along the opposite end of the liquid pool, while a thicker parallel layer will exist along the 
vertical crucible wall. Indeed, the following observations from numerical results are reported 
[101, 105]: when increasing the magnitude of the magnetic field, the convective loop initially 
located close to the solid-liquid interface where the radial temperature gradient is important 
is stretched until it reaches the whole length of the liquid region. The convective intensity 
decreases in the same time. It is also observed that the center of the convective loop moves 
towards the wall, so that the return path for the fluid becomes more and more narrow (see fig- 
ure 9). The maximum intensity of the velocity is seen to decrease accordingly to the power law 

l g 

r v 

TB 

Figure 9: Stretching of convective loops in vertical Bridgman under vertical magnetic field. 

1~2 3/2 [101, 105]. In the reference [96], the power law found numerically is ~.~a~ ~ Ha -2 for 
the streamfunction, which will be found to be in agreement with the other references provided 
there exists a boundary layer of thickness Ha -:/2. This is indeed the case along the crucible 
wall where a parallel layer develops and where all the flow recireulates (see next section). 

A n a l y t i c a l  M H D  m o d e l s  

In 1988, Kim et al. [96], inspired by an analytical modelling of a Czochralskii configuration 
by Hjellming and Walker [106}, proposed a simple MHD analysis of the flow at high Hartmann 
numbers.. .ks described previously, they derive a temperature field T(R, Z) from an almost 

l°The mag:mtic fiekt does not necessarily need to be vertical and uniform. For the condition of vanishing 
elect.rical field to hold (and hence for equation (54) to be valid), B must be axisymmetric and poloidal. 
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linear temperature profile along the crucible wall with a small disturbance. They identify a 
core region and boundary layers (see figure 10). Although their final result is believed to be 
correct, some terminology mistakes should be underlined to place this paper in the usual context 
of MHD studies. The parallel layers (see figure 10) are called Hartmann layers (the correct 
typical thickness Ha -~/2 is indicated) while the Hartmann layers are ignored and replaced by 
anonymous "end-regions". In this particular case of vanishing electrical field, it is allowed to 
ignore the Har tmann layers in the analysis because they do not carry a significant electrical 
current. Using the scale u / H  for velocity, H (diameter) for length and AT the temperature 
difference along the liquid for temperature, the curl of equation 50 takes the dimensionless 
form: 

0 e  
0 = Ha 2 ~ - Gr  .._O oTr + V2~°' (55) 

where O is the dimensionless temperature and co0 the azimuthal component of dimensionless 
vorticity. A classical MHD result is that the last viscous term can compete only in Hartmann 
layers and parallel lwers. In the core of the flow, there is an equilibrium between the thermal 
driving force and the Lorentz force. This leads to the core equation (equation (14) in reference 
[96]): 

Or,. Gr  0(9 

Oz - Ha 2 O r  (56) 

As explained by the authors in reference [96], the no-slip condition is abandoned because the 
highest derivative term was dropped. Let us recall however that this method of transferring 

boundary conditions from the wall to the edge of the core flow appears simple here because 
the electric boundary condition is triviallL This simplification is not universal in MHD and, 
in the presence of a non vanishing electrical field, the electrical boundary conditions for the 
core should be examined more carefully [107]: it is incorrect to assume an insulating condition 
J .n  = 0 at the edge of a core region separated from an insulating wall by a Hartmann layer, 
since a high electric current can flow through the Hartmann layer. In [96], the dimensionless 
temperature field considered is given by the following equation: 

2 C 
e( , . ,  z) = [ez - c ~ ( 1  - ~ ) ]  + ~ ~ ( l  - ,.~) + o ( P ) ,  ( s t )  

where e is the aspect ratio, diameter divided by the total length and C is a parameter describ- 
ing the departure of the temperature field from the ideal purely axial heat flux. Using this 

temperature field, equation (56) can be easily integrated from the condition of vanishing radial 
velocity on the axis 12. The other possibility followed in [96] is to introduce a dimensionless 
streamfunction .~;,: 

1 0'¢ 
v , -  r O z '  (58) 

1 0~) 
Vz - r Or '  (59) 

Equation (56) becomes: 
1 02~ Gr  2 
r Oz 2 - ~ C e  r. (60) 

1'~ The azimuthal electric current and uniform electric potential satisfies an insulating or conductiug boundary 
condition owing to the axisymmetry of the problem. 

~2Continuity is used to determine t, he vertical velocity. 
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The core solution, obtained from the condition of impermeable boundaries, is the following (to 
the leading order in e): 

G r  C 
-- Ha 2 2 r2¢z(1 - ez) ,  (61) 

G r  
~-'re(1 - 2ez) ,  (62) ,Ur - -  H a  2 

G r  
Vz - ~ C ~ z ( 1  - ~z) .  (63) 

Typical isovalue curves of the streamfunction are shown on the left of the figure 10 and some 
velocity vectors on the right (note that vertical velocity is independent of the radius position 
in the core). Of course, the core flow recirculates through the parallel layer. The thickness of 
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Figure 10: Asymptotic structure of the flow in vertical Bridgman under vertical magnetic field 
at high Hartmann number. 

the parallel boundary layer has been assumed to be of order Ha - l /2 ,  without any reference to 
the aspect ratio. In fact, that magnitude order would be correct if the length reference was the 

length L. If we still keep the diameter H as the length reference, it is not difficult to derive 
that. the parallel layer typical thickness all should scale as: 

~,r ~ H .  ½( ~. (64) 
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From the solution (62) and (63), it can be seen that the velocity varies as Ha -2 in the core [96], 
and to be more precise, as Ha-2e for Vr and Ha -2 for v~. Prom continuity, the upwards vertical 
velocity must vary as Ha. -3/2 in the parallel layer, and more precisely as Ha-3/2e 1/2. 

The previous asymptotic analysis was based on [96] (with differences in the non dimensional 
presentation). In [105], another similar analysis can be found for a different temperature field: 
the radial temperature gradients are supposed to be essentially located near the interface and 
decrease exponentially upwards. This temperature field is more realistic than the previous one 
and the analytical results are compared quantitatively with numerical simulations. Essentially, 
the same qualitative results are found, even if the temperature distribution is completely differ- 
ent: elongation of the convective cell, damping as Ha -2 in the core and Ha -a/2 for the maximum 
of the velocity (in the parallel layer). It should be noted that the interface deflection has not 
been taken into account and the growing interface has been considered as flat in both studies. 

A n  a n a l y t i c a l  s e g r e g a t i o n  m o d e l  

The originality of the analysis in [105] resides in that it does not stop after the determination 

of' the asymptotic velocity field, but  carries on with the segregation aspect. Starting from the 
expression of the velocity, an order of magnitude analysis of segregation is undertaken (based 
on equation (11) for axial segregation). The limit of convective regimes will be considered 
(('onvective velocity at the solute layer thickness scale being much larger than the pulling 
rate). Although tile Hartmann layer has been seen to play no role in the determination of the 
asymptotic velocity field, two distinct cases have to be examined separately , the case when the 
solute layer is much thicker than the Har tmann layer and the opposite case when the solute 
layer is nmch thinner than the Har tmann layer. 

When the Hartmann layer is much thinner than the solute layer, it is ignored and the scaling 
of the core region (cf equation (63)) is used: - W ( ~ )  ~ ~ -2 yGrHa g.  In the convective regime, 
this leads to a solute layer thickness of magnitude order 5 ~ H(GrSc)-l/2Ha from equation 

(11). When the Har tmann layer is much thicker, the tangential velocity profile is linearized in 
the Hartmann layer and the normal velocity towards the interface is quadratic by continuity 

-W(6)  ~ HGrHa --~ (~)2.  The corresponding solute layer thickness is ~ ~ H(GrSc)-I/aHal/a. 
The limit between the two cases is found a posteriori from the result of the scaling: Ha 
(GrSe) 1/4. If Ha is smaller than (GrSc) 1/4 the solute layer is included into the Hartmann layer, 

if it is larger than (GrSc) 1/4 the Hartmann layer is only a small part of the solute layer. This 
results are summarized in the following table 1. 

A major conclusion of this segregation analysis under magnetic field is that  the efficiency 
of the magnetic field in reducing segregation is not as impressive as its ability to reduce the 
velocity magnitude. This is particularly true when the solute layer lies within the Hartmann 
layer. In this region, the velocity gradient is not much smaller than in the absence of magnetic 
fieht and it is a key factor in the influence of convection on segregation. 

The radial segregation can be addressed in the same asymptotic way. In reference [105], the 
radial segregation in the quasi-diffusive regime has been determined. The solute layer thickness 
is closed to the pure diffusive case D/VI and the two cases to distinguish are Ha-IH < D/V~ 
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-w(6) 

A 

Validity 

5/H > Ha -1 

~C~Ha-~ 
H(GrSc)-I/2Ha 

P e( Gr Sc)- l  /2 Ha 

Ha > (GrSc) 1/4 

5 /H < Ha -1 

 a Mo-1 (- F 
H(GrSe)-I/3Ha 1/3 

Pe( Gr Sc)-t/a Ha 1/3 

Ha < (GrSc) 1/4 

Table 1: Asymptotic axial segregation in the convective regime. 

and Ha- i l l  > D/V~. The results are given here without proof: 

1 - k  p - 1  
"if Ha < Pe, Ac/c  1 + kf ie  2 e (GrSc)Ha a, (65) 

1 - k  
if Ha > Pe, Ae/c  ~ 1 + kPe 2 (GrSc)Ha-2' (66) 

Non-d i lu te  alloys 

Let us come back to the important case of non-dilute alloys (experiments [97, 98], numerics 
[103]), for which there exists a coupling between hydrodynamics and solute transport, invali- 
dating the above decoupled analysis. The numerical analysis shows that there exists a strong 
stable solute stratification near the growing interface. It prevents any fluid particle from leaving 
that region. The thermal radial gradients can create a localized convection loop, but no global 
mixing can exist. The localized convective loop does generate some radial segregation. Since 
no global mixing of the fluid can exist, the axial solute segregation can vanish, provided the 

sample aspect ratio is small enough. The application of a very strong magnetic field can have 
an influence on the thermally driven convection, reducing its intensity and thus the radial seg- 
regation. The magnetic field has to be very intense, such that its effect is noticeable compared 
to the stratification damping [97, 98]. 

The reduction of the localized convective loop has another consequence: the solute gradient 

becomes steeper near the interface and this favours constitutional undercooling and polycrys- 
talline growth. In addition, grains are generated ahead of the growth front. The grains formed 
are lighter than the melt in the reported experiments and move upwards by buoyancy, inducing 

a strong axial segregation [97]. In that case where the velocity field is strongly coupled with 
the solute field, no analytical solution has been proposed and only full numerical simulations 
are available. 

4.2 Horizontal Bridgman configuration 

The same approach is followed here as in the previous section 4.1. The flow is analyzed and 
the result used as an input for the order of magnitude analysis of segregation. The simplified 
two dimensional (2D) model is considered first, but we shall insist in section 4.2.2 that, in the 
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presence of a magnetic field, the 3D results can be totally different from the predictions of a 
2D model depending on its symmetry. Section 4.2.3 is devoted to solute segregation results. 

4.2.1 2D conf igurat ion  

In a 2D model (in the vertical plane containing the growth direction), the geometry of the liquid 
zone is simply a rectangle and the buoyant driving force arises from the interaction of gravity 
and a horizontal (uniform) thermal gradient (see figure 11). The simplicity of the configuration 
prompted fundamental studies, because it was the configuration were analytical modelling from 
the flow to the species segregation seemed most promising. 

growth 
interface 

H 

V[ Ha_l~2 H 

Y , ~ Ha-ill l B 

_ . . . . . . . .  

...:: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

g 

Figure 11: Ideal 2D horizontal Bridgman configuration 

Although the experimental study on magnetic stabilization by Utech and Flemmings [8] 
dates back to 1966, the first attempt of modelling the damping of the steady flow is very recent 
[108]. The first step was to derive a fully-established analytical solution for the convection far 
from the ends of the liquids region in the 2D approach under a vertical magnetic field (figure 
1l). This 2D configuration is characterized by a vanishing electrical field (uniform potential 
field), like the axisymmetric vertical Bridgman with an axial magnetic field (see reference [108] 
for a proof). The parallel velocity profile found is the following: 

w - H Ha 2 L 2 ~  ' (67) 

the Grashof number being based on the axial uniform temperature gradient. G, Gr = (/JgGH4)/v 2. 
This profile tends towards the linear profile: 

t, Gr Y 
VV - H Ha 2 H '  (68) 

asymptotically when the Hartmann number is large. Hartmann layers on the upper and lower 
wall develop to satisfy the no-slip condition. This solution is identical for electrically insulating 
or conducting walls, due to the absence of electric field. The linear asymptotic profile can be 
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obtained directly from the curl of the Navier-Stokes equation (its single non zero X-component), 
when viscous action is neglected: 

_ / 3 g p ~  Z 20U - a B  ~-~ = 0.  ( 6 9 )  

The term ~zz is the axial temperature gradient G. 'The integrating of equation (69), with the 
global condition of no mass flux along the Z direction, leads to the linear profile (equation 
(68)). It must be insisted on the fact that this core solution was found without reference to 
the Hartmann layers, that play here a negligible role. Such a solution had been already found 
(Gershuni and Zhukovitskii [109]) in a different context and for a flow in the vertical direction 
under a transverse temperature gradient: this configuration has been seen to lead to the same 
fully-established solution. 

The second result in reference [108] concerns the recirculation near the solid front. The 
solution is found in terms of a Fourier series. The result show that the recireulation takes place 
in a Ha-1/2H thin region (MHD parallel layer). This parallel layer, lies just in contact with 
the solid-liquid interface. 

This results are confirmed numerically [110, 111, 93]. The work in reference [110], published 
before the analytical work [108], clearly displays the characteristics mentioned, linear core 
velocity profile and parallel recirculating boundary layers. In [111, 93], Alchaar et al. and Ben 
Hadid et al. compare explicitly their numerical solution to the analytic one, which they find 
accurate for high Hartmann numbers. Ben Hadid et al. also extend the study to the case of an 
upper free surface, an important practical case. It has to be noted that when inertial effects 
become important (high Gra~shof numbers), the computed solutions depart from the inertialess 
analytic solution. 

4.2.2 3D conf igura t ions :  ana lys is  and  e x p e r i m e n t s  

After the discovery that buoyancy driven flows could follow a Ha -2 asymptotic law in terms 
of magnitude in a 2D cavity with insulating walls 13, the case of 3D cavities was investigated 
analytically [112, 107]. It was found that the asymptotic dependence of the flow magnitude is 
closely related to the global symmetry of the configuration for electrically insulating boundaries. 
A singular and a regular symmetry are defined (see figure 12). They are symmetries with respect 
to a plane 7 ~, perpendicular to the magnetic field. These symmetries and their consequences are 
detailed mathematically [107], but they can be simply understood in terms of electrical current 
path. If the electrical current lines close themselves within the core of the flow (singular 
symmetry), the Lorentz damping is efficient and the flow magnitude scales as Ha -2. If the 
eurrent lines need to close in the Hartmann layers (regular symmetry), the resistance to the 
electric current is high, the Lorentz JAB force weak~ and the flow magnitude scales as Ha -1. The 
best result in terms of magnetic damping is associated to singular configurations. Unfortunately 
it is shown in [107] that a configuration without symmetry possesses the same characteristics 
as a regular configuration. More precisely, a configuration can be considered as singular only if 

laThe classical MHD result for pressure-driven flows in pipes is that the flow intensity decrea.~es as Ha 
when the wall are electrically insulating and Ha -~ when the walls are perfectly conducting [73]. 
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the relative departure to the perfect symmetry is less than Ha -1. In practice, great care must 
be taken to ensure a good symmetry of the geometry, temperature field and magnetic field. 

B 

V i P'  P '  . V 

t 

symmetry ";; : 

regular 

Figure 12: Singular and regular MHD symmetries 

Some experimental results are available concerning the MHD damping of the flow [113, 
114, 91]. The experiments reported in reference [114] show the importance of the symmetries 
mentioned previously. Convection in a cube is considered, the imposed temperature gradient 
is along the Z direction. The magnetic field has been applied along the three directions Z, X 
and Y in turn. When the field is applied along Z or Y (singular configuration), the measured 
heat transfer is reduced significantly when the magnetic field magnitude is increased. When 
the field is applied along X (regular symmetry), the effect of the magnetic field is much weaker. 
The figure 13 shows how the electric current flow depends on the nature of the symmetry. 
An alternative description of the effect of the magnetic field orientation is obtained from the 
electric potential equation, divergence of Ohm's law: 

V2~ = B.fl ,  (70) 

where ~ = V A V is the vorticity field. The curl of the buoyant driving force, ~pg A VT is 
identical in the three configurations in the figure 13 and parallel to X. In the case of singular 
symmetry, no significant electric potential is generated in the core, because B is essentially 
orthogonal to ~ .  Close to the lateral walls, an electrical potential gradient is indeed necessary 
for the closure of the current lines, but such a gradient has no effect on the core flow. In the 
regular symmetry, B is parallel to ~ and large electric potential difference are created: the 
electrical field almost compensates the electromotive force V A B in Ohm's law and a weak 
electrical current is generated. 

The experiment described in [91] concerns buoyancy driven convection in a horizontal cylin- 
der, modelling a Horizontal Bridgman configuration, under a vertical magnetic field. The 
temperature and electric potential have been measured. At high Hartmann number, the results 
are correctly predicted by the asymptotic theory [112]. This configuration is singularly symmet- 
ric and the velocity field decreases as Ha -~. This configuration has been examined numerically 
[115, 116, 117). The asymptotic results are confirmed and parallel layers are observed. The 
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Figure 13: Convection in a cube (dashed line) under the three orientations for the magnetic 
field: the electromotive force (V A B) through an arbitrary test plane (in grey) is indicated. 
it is zero on average for the Z and Y directions, and non-zero for the X direction. In this 
last case, an electric potential field is necessary to close the current lines; the electric current 
density and hence the Lorentz force are reduced. 

most interesting to us lies along the solid-liquid front for future use in segregation models (see 
section 4.2.3). The vertical downwards velocity scales as Ha -a/2 in this layer, by continuity. 

4.2.3 Solute segregat ion 

Solute segregation was studied numerically in this 2D horizontal Bridgman configuration under 
a vertical magnetic field [118, 119, 120]. Axial segregation is shown to decrease with increasing 
magnetic strength and radial segregation shows a maximum value for a moderate magnetic 
field. In the reference [120], Ma and Walker present an original idea: they consider that the 
flow is given by a Fourier series expansion and solve the solute segregation problem using the 
Lagrangian technique. The particles are tracked and diffusion is taken into account only within 

diffusion layers. In the core, the particles keep their concentration along their path. This 
method gives accurate results compared to a full numerical solution of the convecto-diffusion 
problem and the cost is significantly reduced in terms of computer resources. 

The case of an axial magnetic field was studied experimentally and analytically in [10]. In 

this configuration, it is clear that the magnetic field has no effect on the parallel core flow. 
Nevertheless, the flow must recirculate near the solid-liquid interface (see figure 14). It was 
proved that the recirculating length must be of order H a l l  and that a Hartmann layer must 
exist between the recirculating region and the solid crystal. As a consequence, the flow was 
f()und to scale according to the following estimate outside the Hartmann layer: 

u G r Z  
W H Ha H '  (71) 
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Such a velocity field was used to determine the segregation laws following the OMA analysis 
presented in section 2. It is valid only when the solute layer is much thicker than the Hartmann 
layer. The following results were found in the convective regime for axial and radial segregation: 

A ,,~ Pe (GrSc)-l/2Ha 1/2, (72) 
AC 

(1 - k)(GrSc)-l/3Ha 1/3. (73) 
C 

A weak dependence of axial segregation on the Hartmann number is found, with an exponent 
1/2 only. Regarding radial segregation, its increase with the intensity of the magnetic field 
was to be expected, since the homogenization capacity of the flow is reduced (see figure 8). 
When the solute layer is contained in the Hartmann layer, an expression for the flow within 
the Hartmann layer must be used in the solute segregation analysis. Because the flow outside 
the Hartmann layer scales as Ha and the Hartmann layer thickness as Ha -1, the flow in the 

Hartmann layer does not asymptotically depend on the Hartmann number. Consequently, 
the magnetic field is found to have no effect on segregation in this regime. The threshold 
between these cases is given by the relation (GrSc)-l/ZHa ,,~ 1. For Ha less than (GrSc) 1/3 
no effect of the magnetic field is expected and for larger Hartmann numbers, the laws (72, 73) 
apply. These analytical predictions were also confirmed numerically and experimentally in [10]. 
The experiments consisted in measuring the axial segregation along ff 6 mm samples of the 
SnBi alloy grown under axial magnetic fields between 0 and 1.3 T, corresponding to Hartmann 
numbers between 0 and 270. The magnetic field had no effect for weak magnetic fields and a 
small effect of reduction of axial segregation for larger magnitudes. 

r e c i r c u l a t i n g  z o n e  ~ H a  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  "=> f u l l y - e s t a b l i s h e d  

. . . . . . . . . . . . .  r e g i m e  

,y . . . .  ,-~, 

2 I " i "  
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Figure 14: Horizontal Bridgman configuration under axial magnetic field 

Segregation in a horizontal Bridgman configuration under a vertical magnetic field is now 
examined. An analytical solute segregation model has been developed in this case [12l, 105]. 
In the convective limit, two regimes are found depending on the relative value of Ha and the 
product GrSc: 

i f  Ha(GrSc) -2/5 < 1, A ~ Re (GrSc)-l/3Ha 1/3, (74) 
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i f  H a ( G r S c )  -2/~ > 1~ A ~ P e  ( G r S c ) - l H a  2, (75) 

The regimes depend again on the relative thickness of the dynamical (parallel) and solute layer. 
When the field is vertical, its effect on segregation is much stronger than that found under an 
axial field. 

4 .2 .4  S o m e  r e m a r k s  

A point was made clear during the experiments described in [91]: even if the Hartmann num- 
ber is significantly larger than unity (around 100), the temperature field is not necessarily close 
to the pure diffusive profile. There is a need to examine buoyancy-driven convection at high 
Hartmann number and very high Grashof number. The magnetic field is strong enough to 
modify the flow structure and intensity, but interacts with the temperature field non linearly. 
This point has received attention on a theoretical point of view [122]. New MHD boundary 
layers can form and have an influence on the global flow. This area should be examined more 
carefully because of its potential relevance to the study of non-dilute alloys. 

In the micro-gravity environment, the Bridgman technique has received comparatively more 
attention than on earth, because of the inapplicability of the Czochralskii method. Even under 
10 .4 - 10-s9, the solute diffusive regime is very difficult to obtain and it has been suggested 
that only the combination of #g and Lorentz damping could provide the conditions of pure 

diffusion during crystal growth. This has prompted a number of studies concerning the damp- 
ing of the flow [123, 124, 119]. More generally, this configuration is close to the earth-based 
horizontal technique: the random g - j i t t e r s  have axial and transverse components relative to 
the crystal. The transverse components interact with the imposed axial gradient and are more 
likely to generate most of the buoyant convection. 

To conclude this part 4, let us emphasize two aspects of the use of strong magnetic fields 
during crystal growth: 

• A magnetic field reduces strongly the intensity of the buoyancy-driven convection. The 
efficiency of the magnetic damping depends highly on the symmetry of the configuration. 
In vertical Bridgman growth, the field should be axial to obtain an efficient damping 
(the Ha -2 regime), whereas in horizontal Bridgman growth, the magnetic field should be 
vertical. The whole symmetry (geometry, magnetic field, thermal field) must be precisely 
controlled at high Hartmann number for the Ha -2 damping law to hold. 

• The efficiency of the magnetic field in reducing the convective effects on solute mass 

transfer is not as high as expected from the reduction in velocity. This is due essentially 
to the formation of thin boundary layers under a strong magnetic field: the velocity 
gradients near the solid-liquid interface do not decrease so rapidly when increasing the 
magnitude of the magnetic field and when the solute boundary layer is totally included 
into the MHD layer, the only important convective parameter is the velocity gradient at 
the solid-liquid interface. 
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5 Rotating magnetic fields 

5 . 1  I n t r o d u c t i o n  

The topic being addressed in detail in other contributions to the present handbook, we shall 

here only recall briefly the characteristic features of the flow driven by a rotating magnetic 

field. In a typical Bridgman configuration, the furnace can be inserted within the stator of a 

standard motor fed by an A C  electric current of typical frequency 50 Hz. In most cases, the 

hydrodynamic velocity is very small compared to the field rotation rate. As a consequence, the 

magnetic problem can be solved first, assuming the fluid to be at rest (rigid rotor approxima- 

tion), and the field thus derived used as an input in the Navier-Stokes equation. 

The magnetic field lies principally in the radial direction and the Lorentz force J A B as well 

as the primary flow are thus mainly azimuthal. However, due to no slip conditions at the solid- 

liquid interface, a secondary flow is driven by the axial variation of the core pressure gradient 

(Ekman pumping), resulting in a meridional motion. The Ekman circulation was found to 

govern the scaling of the whole flow, including the azimuthal component, by providing energetic 

and angular momentum equilibrium relationships (see Davidson and co-workers [125,126]). As 

shown in a recent study [127, 128], the non dimensional numbers governing the hydrodynamic 

field in an isothermal fluid are : 

• the aspect ratio of the fluid column, ¢ = H / L  

• the screening parameter,  R~z = # o : v H 2 / p  

• the magnetic Taylor number, T m  = a ' , zB 2H4 /2ppu  2 

In the above expressions, ~v = 2 r f  is the pulsation of the A C  current, p the number of pair of 

poles, the other symbols being defined previously. The screening parameter RLv is a measure 

of the penetration of the magnetic field within the fluid, whereas the magnetic Taylor number 

measures the relative efficiency of inertia and/or  viscosity in balancing the driving action of the 

rotating field. As such, it is similar to the Grashof number met in natural convection problems, 

with the Lorentz force replacing buoyancy. 

Using typical values for the magnetic permeability # = 4~r 10 . 7  H/m,  the electrical con- 

ductivity cr = 2 106 f F l m  - t ,  the pulsation ~v = 100 ~r,a number of poles p = 1 and 

a cavity radius H = 2.5 cm,  we get R w  ~- 0.5. If we take in addition a mass density 
p - l04 kg.m -3, a kinematic viscosity ~, = 3 10 -7 m 2 s  -1 and a magnetic field B = 10 -3 T, 

we f i n d T m  _~ 1.4 10 ~. 

In most laboratory scale experiments, the magnetic field can thus be assumed to penetrate 

fully in the liquid sample. Nevertheless, a significant skin effect can not be excluded at higher 

frequencies and/or  cavity dimensions. As for the high value of the Taylor number, the conclusion 

is that the hydrodynamic problem is characterized by a balance between inertia and the Lorentz 

force. In dimensional terms, the typical fluid velocities will thus scale as : 

1/o = B H ( a v J / 2 p p )  1/2 (76) 
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One should be aware that the above expression is only valid as a first approximation. As a 
matter of fact, in steady flows, the characteristic velocity of the primary azimuthal motion is 
a factor T m  1/6 higher than V0, whereas the secondary meridional flow has a typical velocity 
T m  1/6 lower than V0 [125, 127, 128]. In the turbulent regime, the correcting factors are in 
T m  ~/~s instead of T r o Y  6 [125, 127, 128], or can take the form of a dimensionless friction factor 
[11, 129]. In any case,from a crystal grower point of view, equation (76) can be considered to 
capture the essential physics of the hydrodynamic problem. In crystal growth configuration, 
the estimate of equation (76) should be compared to a typical natural convection velocity to 
identify the leading heat and mass transport mechanism. 

It should also be mentioned that the flow driven by a rotating field can become unstationary 
when the driving force, measured by the magnetic Taylor number exceeds a given threshold. 
A Taylor-Couette mechanism can be invoked to account for the development of the instability, 
which is of course very much dependent of the aspect ratio of the cavity [130]. From the 
stability analysis carried out by Richardson [131], the T m  threshold was found equal to 2917 
for an infinite fluid, but the critical T m  number is higher than 3 l0 s for a cavity of aspect ratio 

= 1/2 [130]. More precisely, the effect of containment was studied in detail in the numerical 
study of Kaiser and Benz [132]. 

5.2 Steady / unsteady flow 

In a cylindrical cavity heated from below, the motion driven by rotating magnetic fields can 
easily overwhelm Rayleigh-Bdnard type convection. Such a result was clearly observed in the 
experiments of Dold and Benz [11, 133] on liquid gallium, where the rotating field had a fre- 
(tuency of 5 0 H z  and an intensity ranging from 0.2 to 30 mT. The temperature fluctuations 
associated with the initially unsteady" flow were of the order of AT = 1 K, with a character- 
istic frequency in the 0.01 to 0 . 1 H z  range when no magnetic field was applied. 

On the other hand, as soon as B exceeded 0.6 roT, A T  was reduced by approximately one 
order of magnitude [11]. Using the experimental parameters and the thermophysical properties 
listed in ref. [133], the Taylor number associated with B = 0.6 mT is T m  = 1.7 105; for 

a cavity of' aspect ratio e = 1/2, this result is thus a fair agreement with existing numerical 
[127, 128] and experimental [130, 134] data. Besides, the remaining temperature fluctuations 
were of much higher frequency, typically in the H z  range, and could be associated with the 
convection velocity driven by the rotating field. 

Indeed, the frequencies measured at Bj = 5.6 m T  (fl = 1.1 H z )  and at /32 = 10 m T  

(f2 = 2 Hz)  [133] are exactly in the ratio of the magnetic inductions, k / k  = B2/B1, 
which can be understood by the fact that the convective velocity is directly proportional to 
the intensity of the rotation field. (see eq. (76)). Another interesting observation was that the 

lemperature fluctuations observed in an initially stable thermal configuration (i. e. heated from 
above) are similar at a magnetic induction B = 10 roT, demonstrating that the temperature 
field only depends on the rotating field driven convection [11]. 
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These findings were confirmed by Bridgman growth experiments of gallium doped ger- 

manium [11] crystals. In the top seeded configuration, equivalent to the heated from below 

Rayleigh-Benard problem, both the intensity of the dopant striations and their spacings were 

reduced upon application of the rotating field. On the other hand, in the classical bottom 

seeded configuration, a rotational sriation pattern is generated when the magnetic induction 

exceeds the threshold value. 

Similar results were obtained by Friedrich et al. [12], for both a model liquid gallium cell 

heated from above and gradient freeze growth experiments, again on gallium doped germanium. 

In addition, numerical simulations were performed, that  showed a good agreement with the ex- 

perimental data. The gallium cell had an aspect ratio e = 1/2, and temperature fluctuations 

were seen to appear when the magnetic field exceeded B = 1.1 roT ,  independently of the 

imposed stabilizing temperature difference. 

Using once more the thermophysical properties listed in ref. [133], B = 1.1 m T  corresponds 

to a Taylor number T m  = 3.8 106. Such a value is somewhat higher than those previously 

reported, but one should not forget that the interpretation of the experimental results is quite 

sensitive to the choice of thermophysical properties. In any case, the problem of flow destabi- 

lization under the action of a rotating field should still be considered open for research. 

The mechanism of flow stabilization in an initially unsteady vertical Bridgman configuration 

was studied in some detail in the numerical simulations of Marty et al. [135]. In a cavity of 

aspect ratio e = 1/2, an instability was seen to occur when the Grashof number based on the 

radial temperature difference at the interface exceeded 3.2 106 . Such an instability was clearly 

associated with the inflexional nature of the velocity profile in the convective loop. 

Upon application of a rotating magnetic field, for the case where the secondary meridional 

motion is opposite to the buoyancy driven flow in the vicinity of the interface, the temperature 

and velocity fluctuations in the melt were found to disappear at a value of the Taylor nunlber 

T m =  3400. As the .jet Reynolds number is reduced, stable conditions can be restored thanks 
to the rotating field [135 I. 

Such a conclusion was further confirmed by the fact that  when the meridional motion and the 

buoyancy driven convection are in the same direction in the vicinity of the interface, the critical 

Grashof number necessary to destabilize an initially stable flow is reduced [135]. Depending on 

the thermal configuration, a rotating magnetic field may thus be ineffective in damping natural 
convection instabilities. 

5.3  H e a t  a n d  m a s s  t r a n s f e r  

Tile first effect of the rotating magnetic field is an uniformization of the temperature and 

the composition along the azimuthal direction, due to the strong primary motion. Such an 

mlitbrmization can be considered beneficial, as it smoothes out undesirable temperature and 

composition heterogeneities; however, it may also induce rotational striations [12] in a thermally 



J. P. Garandet and T Alboussiere / Prog. Crystal Growth and Charact. 38 (1999) 73-132 117 

heterogeneous environment. However, in terms of heat and mass transport,  it is the secondary 

flow that  will most impact  on the quality of the grown crystals. 

Indeed, a significant modification of the interface shape as a function of the magnetic in- 

duction was observed by both Dold and Benz [11] and Priedrich et al. [12] in their experiments 

on gallium doped germanium. Such a result can be understood by the fact that  the classical 

thermal Peclet number may take values significantly higher than unity, even in a good heat 

conductor such as molten germanium, when the rotating field is turned on. The secondary 

convective motion was shown to acccount for the "w" shape of the growth interface [12]. 

The rotating magnetic field was seen to have no effect on the axial composition profiles, 

since the buoyancy driven flow is strong enough to control species transport [12]. In other 

words, in the experiments of Friedrieh et  al., the effective and equilibrium partition coefficients 

(see equation (15)) were very close even at B = 0. However, for other growth conditions, the 

increase of the meridional fluid velocity associated with the secondary action of the rotating 

field may have an impact  on axial segregation. 

A significant improvement in terms of radial composition homogeneity at magnetic induc- 

tions of B = 1.3 raT and B = 4.4 raT was also observed in the experiments of Friedrieh 

et al. [12]. Such a finding was understood as an effect of the increased flow velocity in the 

vicinity of the interface, that  led to a better mixing of the melt. However, the reduction of 

radial segregation was obtained at the expense of a loss in terns of mieroseale concentration 

variations, as the rotating field generated striations in the grown crystals. 

6 Other magnet ic  effects 

6 . 1  T h e r m o e l e c t r i c i t y  

The possible influence of thermoelectric magnetohydrodynamic (TEMHD) effects on fluid flow 

has been recognized dating back to the pioneering works of Shercliff [136] and Gel'fgat and 

Gorbunov [137]. In the field of Bridgman crystal growth, the problem was recently studied 

in detail by Khine and Walker, and our presentation is principally based on their work [138, 

139]. The physical basis for TEMHD effects is the existence of an additional contribution to 

the electric current density in a material of absolute thermoelectric power S submitted to a 

temperature gradient VT,  namely : 

J = o(-V, + V A B - SVT). (77) 

Provided that the cross product V T  A V S  is different from zero 14, the static electric field 

can not balance the thermoelectric contribution and a current wilt run through the material. 

Such a current will interact with an imposed magnetic field and drive some fluid flow. In 

refs. [138, 139], an axial magnetic field was considered and the relevant temperature gradient 

is directed radially along the solid liquid interface; their interaction leads to a principally 

14It should be noted that if S is a function of temperature only, then this product VT A VS vanishes [136]. 
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azimuthal convective motion. Denoting ATR the characteristic temperature difference, the 

radial thermoelectric current density scales as [140] : 

aASATR 
J -  ~ ,  (78) 

where AS stands for the difference in thermoelectric power between the solid and liquid phases 
and H for the radius of the sample. If the Lorentz force J A B is balanced by viscosity, a 
characteristic value of the azimuthal convective velocity can be written as : 

aASATnBH 
V0 = (79) pv 

On the other hand, if the flow is not governed by viscosity, Vo will increase until V0 A B is 
the dominant term in the current density. Comparison with eq. (78) then yields : 

/x s /x r~ 
Vo - B H  (80) 

Since the Hartmann number measures the relative importance of electromagnetic forces and 
viscous stresses, the transition between the ranges of validity of eqs. (79) and (80) should occur 
around Ha ~ 1. The above scaling laws were verified experimentally in the work of Gel'fgat 
and Gorbunov [137] where the authors observed the fluid velocity to be proportional to B(resp. 
B -1) at low (resp. high) magnetic inductions. 

It should be recalled that natural convection velocities scale as either B -2 or B -1 depend- 
ing mostly on symmetry considerations. Equation (80) shows clearly that TEMHD effects may 
be dominant at high magnetic fields provided natural convection follows the B -2 power law. 

Taking once more characteristic values of thermophysical properties of liquid metals and semi- 
conductors, c~ = 2 x 106 f~-lm-1, p = 104 kg.m -3, v = 3 x 10 -7 m2s -1, and setting 

B = 0.1T, H = 0.01m, AS = 10 - S V K  - l andATR = 1 K, wegetHa = 25, andeq. 
(80) yields ~ = 0.01 ms -1. One should thus be aware that a relatively modest temperature 
difference along the interface can drive a fairly rapid azimuthal motion. 

As noted in section 5 for the rotating field problem, such an azimuthal motion may lead to 

rotational striations if the growth environment is not perfectly axisymmetric. Such striations 
were experimentally observed by Cr511 et al. [141] in float zone growth of doped silicon crys- 
tals. Besides, an excessive azimuthal velocity may lead to Taylor-Couette type hydrodynamic 
instabilities. However, the magnetic fields necessary for the observation of TEMHD effects are 
often quite high (Ha >> 1) and should thus be efficient in the damping of fluctuations. 

Another formal similarity with the rotating field problem can be found, namely that the 
primary azimuthal flow drives a secondary meridional motion. Indeed, the centrifugal force can 
only be balanced by a pressure gradient if Vo is independent of the axial coordinate Z. More 

precisely, it can be shown that the governing equation for meridional motion features a forcing 
t~ OVo/OZ term [138]. 

An estimate for the characteristic value of the meridional velocity can be obtained by writing 
a balance between the pressure gradient associated with the azimuthal flow, and, depending 
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on the magnitude of the Har tmann number, either the viscous stresses or the Lorentz force of 

the meridional flow. For instance, in the usual case where Ha is larger than unity, equating 

p l/~ ~ / H and a VM B 2 yields for the meridional velocity : 

P A S 2 A T ~  (Sl) 
VM -- a H 3 B  4 

Using the numerical values listed in this section, we get VM = 5 10 -3 m s  -1. Such a convection 

velocity can clearly have an impact on mass transport in the melt, and thus on solute segrega- 

tion, specially at low growth rates (see e.g. eq. (11)). However, due to the B -4 dependence of 

~/~, a higher magnetic field will result in a much reduced meridional velocity [138], so that no 

general conclusion can be drawn on this point. To sum things up, it appears that  thermoelectric 

effects must never be a priori neglected, since they can have a significant impact on the growth 

process. 

Finally, an important  practical point lies in the electrical nature of the crucible. If the latter 

is electrically conducting (graphite is sometimes used), and since its absolute thermoelectric 

power is likely to differ from that  of the liquid, the imposed axial thermal gradient will drive a 

strong thermoelectric current and hence a strong convection when a magnetic field is applied. 

The temperature difference involved being much larger then the temperature difference on the 

solid-liquid surface, this motion would dominate the above-mentioned convection. The use of 

an electrically insulating crucible material eliminates this effect. 

6 . 2  T h e  m a g n e t i c  f o r c e  a n d  i t s  c o n s e q u e n c e s  

Apart from its coupling with conduction electric currents (essentially due to the movement of the 

free electrons), the magnetic field can have a direct effect on the atomic structure (essentially on 

the electrons linked to the nucleus) which generates a magnetic moment that  interacts with the 

background magnetic field. This results in a force density, the "magnetic force", independent 

of the Lorentz force J A B. A striking example of the magnetic force is ferromagnetism. 

Nevertheless, we shall not be interested in ferromagnetism since it does not concern liquids 

nor high temperature solids above the Curie point. Even the so-called non-magnetic materials 

are slightly magnetic and the magnetic moment density field M takes the general expression 

[142]: 
M = x,~H, (82) 

where Xm is called the magnetic susceptibility of the material and H is the magnetic field 15. 

For ferromagnetic magnetic materials, Xm would be of order unity and positive, For most non- 

magnetic, diamagnetic materials, Xm is slightly negative (Xm ~ - 1 0  -6) and for some others, 

paramagnetic materials, it is slightly positive (Xm ~ 10-4). The density of force, per unit 

volume, associated to the magnetic moment (82), can be written: 

X~ V (B 2) (83) F = 2 # 0  

15The magnetic field H is defined from the magnetic induction B and the magnetic moment field M by the 
relation: H = B/#o - M, where Po = 4rrlO-7H/m is the vacuum magnetic permeability. In practice, because 
Xm is so small, of order 10 -~ for diamagnetic materials, we can assume that the magnetic field is undisturbed 
by the magnetic moment density created. By abuse of language, we also call B the magnetic field. 
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As can be seen in this expression, only the gradient of magnetic field produces some force. 
In spite of the very small value of Xm for non magnetic materials like water or wood, these 

materials can be levitated in a strong magnetic field gradient [143]. Magnetic fields of order 
10 T varying over a distance of order 10 e m  are necessary. 

Magne t ica l ly -dr iven  convect ion  

A buoyancy driven flow in a non-uniform magnetic field is subjected to the magnetic force 
(83). Depending on the arrangement of the imposed magnetic field, buoyancy can be enhanced 
or reduced. Braithwaite et al. [144] considered a Rayleigh-B6nard configuration using a electri- 
cally insulating liquid with a magnetic force upwards and downwards respectively. In the first 
case the Nusselt number is increased and in the second case, it is decreased. With a strong 
enough downwards magnetic force density, they report that convection is suppressed and the 
diffusive temperature field is observed (Nusselt is unity). This effect arises because the mag- 
ne|ic susceptibility depends on temperature; indeed, if Xm were uniform, the magnetic force 
could just be equilibrated by a pressure gradient. With the variation of Xm with temperature, 
the magnetic force becomes analogous to the buoyant force, for which the density variations 
with temperature result in a net torque causing convection after some threshold. Because the 
magnetic force was able to cancel the effects of ordinary buoyancy forces, they have been re- 
ferred to as anti-gravity forces[144]. 

Ill crystal growth relevant configuration with an electrically conducting liquid, both the 
magnetic force (83) and the Lorentz force should be taken into account. The order of mag- 
nitude of each force should be estimated, bearing in mind that only the variations of Xm will 
produce a motion. 

E f f e c t s  o n  m i c r o - s t r u c t u r e s  

A strong uniform magnetic field can have an influence on the structure of polycrystals. 

The effects are quite complex and their interpretation is still unsure. However it seems that 
they carl be divided into two categories: the effect of a magnetic field on the conditions of 
homogeneous nucleation and the orientation effect of the magnetic field on the small crystals. 
Under a 3.5 T, it was reported [145] that nucleation was enhanced in comparison with the case 
of no magnetic field. The explanation involves energetic considerations from the appearance of 
a crystal nucleus and the effect of the magnetic field. Other studies with weak magnetic field 
show no change due to the application of a magnetic field (for instance [146]). 

In the case of the solidification of a magnetically non-isotropic atomic structure, the appli- 
cation of a strong magnetic field (several teslas) results in an orientation of all the grains in 
tile same direction[147]. This is used in practice to produce anisotropie materials with specific 
electric properties along one direction like superconducting rods. 

6 .3  M a g n e t i c  d e p e n d e n c e  o f  t h e r m o - p h y s i c a l  p r o p e r t i e s  

More generally, a magnetic field should affect all thermo-physical coefficients as an independent 
generalized force applied to a thermodynamic system (here the material studied). In reference 
[148], Youdelis et al. used condensed matter theories and stated that solute diffusivity and 
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liquidus and solidus temperatures could be dependent on the magnetic field. The same authors 
also performed some experiments, that seem to support their theoretical conclusions. Recently, 
new experiments were reported [149] were effects predicted and reported experimentally by 
Youdelis et al. were invalidated (see [149]). In the reference [149], a 3 .5T magnetic field 
is reported to have no effect on liquidus temperature of A1Cu or AISi alloys, nor on their 

eutectic temperature, whereas Youdelis et al. found an effect. Regarding solute diffusivities, our 
opinion is that the discrepancy concerning the experimental data can be explained by disturbing 
convective effects: the measurements assume that there is no convection (see Garandet et al. 

[150] for the measurement of solute diffusivities) while in reality convective effects can play a 
role. In the case when a magnetic field is applied, it may reduce significantly the convectiw~ 
contribution to the measurement. So, some experiments reporting effects of a magnetic field 
on thermophysical properties may be just  related to the damping Lorentz force of convection. 
Nevertheless, the real effect of the magnetic field on thermophysical properties can not be 
denied a pr ior i  and fllrther careful experimental studies are needed. For instance, the analysis 
of the magnetic tbrce on the boundary of a material shows that the surface tension is modified 
in the presence of a strong magnetic field [142, 151]. Again, the effect is quite weak and should 
be sensitive only for magnetic fields larger than several teslas. In the case of a Bridgman 

configuration with a free surface, this effect may add to the classical Marangoni convection. In 
any case, the striking point is the knowledge of the limit of the damping effect of the magnetic 
field (see for instance the measurement of diffusivities [152]). It may be interesting to apply a 
very high magnetic field, provided the thermophysical properties are unchanged, 

7 Concluding remarks 

In most applications of Bridgman growth under magnetic fields, the objective is to act on solute 
segregation through a modification of the convective flows in the melt. Our purpose in this 
contribution was to review the obtained modelling and experimental results to outline the var- 
ious physical mechanisms involved and to assess their relevance to a given process using rule of 
thumb scaling laws. Since it was obviously not possible to get into the details of each problem, 
the interested reader is often referred to the original publications for a more comprehensive 
discussion. 

Nevertheless. some trends were clearly identified in the course of this work. For instance, 
it was seen that relatively modest magnetic fields (say in the 0.01T to OAT range) were very 
efficient in damping hydrodynamic fluctuations and the induced solute striations, almost ir- 

respectively of the magnetic lines orientation. The damping effect can be attr ibuted to Jonle 
dissipation affecting both the basic flow and the possible distubanees. 

Tile efforts aiming at the obtaining of diffusion controlled solute transport conditions using 
static magnetic fields in tile tesla range were less conclusive. A significant decrease of the con- 

vection level was indeed achieved, depending highly on the magnetic field orientation and more 

generally on the global symmetry of the configuration. Nevertheless, the efficiency of the field 
in terms of mass transport  was seen to be reduced in the vicinity of the growth interface due 
to the local interaction of the hydrodynamic and the solute boundary layers. Besides, a lower 
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fluid velocity may lead to an increase of the radial segregation, meaning that the overall effect 
of the magnetic field in terms of composition homogeneity is not necessarily positive. 

Rotating magnetic fields were seen to be an efficient way to act on both heat and mass 
transfer in the melt thanks to the high convection velocities driven by the Lorentz force. One 
can thus reduce the curvature of the solid liquid interface and the radial segregation. However, 
the flow may become unsteady at excessive rotation frequencies and/or magnetic inductions, 
meaning that the overall influence of the field on the growth process can again be deleterious. 

Another aspect to be considered is that a variety of miscellaneous problems (e.g. thermo- 
electric magnetohydrodynamics or magnetic volmne forces) are associated with the presence of 
a magnetic field. Even though some of these effects are indeed secondary, our review indicates 
that they should not be a priori  overlooked. For instance, the interaction of thermoelectric 
currents along the interface with an imposed magnetic field can have a key impact on fluid flow 
and mass transfer. 

Our overall conclusion would be that, in Bridgman solidification of electrically conducting 
fluids, the application of a suitable magnetic field is an interesting way to improve the quality 
of the grown crystals. Nevertheless, for the technique to be really useful, all the aspects of the 
transport problem should be first carefully analyzed. 
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