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Abstract

Our purpose in this work is to analyse in some detail the in#uence of convection on the formation and the build-up of
the solutal boundary layer during the initial composition transient. Our main assumption is that the alloy is su$ciently
dilute for the variation of the interface temperature to be neglected, in other words that the solidi"cation interval is small
enough. In order to thoroughly characterise the problem, we use a coupled theoretical (analytical and scaling analysis)
and numerical approach. Comparison with existing experimental data is also provided. The e!ect of convection is seen to
be adequately accounted for owing to the convecto-di!usive parameter D. The overall agreement observed allows us to
propose a simple rule of thumb expression for the extent of the initial composition transient. ( 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In many experimental con"gurations, an initial
transient period is necessary before a solidi"cation
steady state can be reached. Such a period was
shown for instance to be important in the study of
pattern formation [1,2] or to control the mor-
phological stability of the growth front [3]. Re-

garding solute segregation in alloy crystals, the
problem had received a lot of attention in the
1950s, where various analytical solutions were pro-
posed by Tiller et al. [4], Pohl [5] as well as Smith
et al. [6] and Memelink [7]. The main assumptions
in these studies was that solute transport proceeded
only by di!usion and that the interface velocity
reached instantaneously its prescribed value. In re-
cent days, the models were re"ned under the same
basic assumptions to account for kinetic under-
cooling at the growth front [8] and solidi"cation
from an initially heterogeneous melt [9]. From
a mathematical standpoint, it should also be noted
that a rigorous new derivation of the results of
Smith et al. was proposed by Nastac [10].
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Nomenclature

A aspect ratio of #uid cavity for numerical
simulations

C solute composition "eld (mass fraction)
C

0
nominal solute composition (mass fraction)

C
S

solid state interface composition in 1-D
analytical approach (mass fraction)

C
S,A7

average solid state interface composition in
numerical simulations (mass fraction)

C
SS

steady state solid state interface
composition (mass fraction)

D solute di!usion coe$cient (m2 s~1)
e rejected solute loss to bulk #uid (mass

fraction)
Gl liquid phase temperature gradient (K m~1)
g gravity (m s~2)
H typical dimension of the #uid cavity (m)
k equilibrium partition coe$cient
k
%&&

e!ective partition coe$cient
t
T

initial transient duration (s)
V #uid velocity (m s~1)

<
%&&

e!ective solute transport velocity (m s~1)
<

I
interface velocity (m s~1)

Z
T

initial transient length (m)
z nondimensional coordinate along crystal

axis (z"Z<
I
/D)

Greek

b
T

thermal expansion coe$cient (K~1)
d solutal boundary layer thickness (m)
D convecto-di!usive parameter (D"d<

I
/D)

*c normalised radial segregation
(*c"*C/C

S,A7
)

l kinematic viscosity (m2 s~1)

Nondimensional numbers

Gr Grashof number (Gr"bGlgH4/l2)
Pe Peclet number (Pe"H<

I
/D)

Sc Schmidt number (Sc"l/D)

Warren and Langer [11], as well as Caroli et al.
[12], addressed the problem of interface recoil, in
other words the fact that the front temperature
changes during the initial transient, due to local
composition variations. Indeed, considering the
relatively low velocities used in conventional solidi-
"cation, a quasi-equilibrium can be assumed at the
solid}liquid interface, meaning that there will be
a direct correlation between temperature and con-
centration changes. Such an e!ect is expected to be
important at high values of *¹

0
/G, where *¹

0
represents the solidi"cation interval at a given alloy
composition C

0
and G the thermal gradient, as

checked by Huang et al. [13]. An assumption com-
mon to all these models is that the thermal transi-
ent necessary for the heat transfer within the
furnace is very short [12], but we shall see in the
experimental section that this hypothesis may be
questionable.

Comparatively, little attention has been paid to
the role of #uid #ow in the formation of the solute

boundary layer ahead of the growth front, even
though most solidi"cation processes take place in
the presence of convection. Using the stagnant "lm
model initially proposed by Burton et al. [14],
Huang et al. obtained a numerical solution for the
composition variations in a sample of "nite length.
Such an approach had been used earlier by Favier
[15], who obtained a solution in the form of an
asymptotic series. However, the lack of physical
basis of the stagnant "lm representation has been
criticised in standard literature works [16}18]; it
thus seemed interesting to see whether the solute
boundary layer model, initially proposed by Wag-
ner [19] and later revived by Wilson [20], could
account for the e!ect of convection on the duration
of the initial transient.

Our focus in the present work will be to examine
in some detail the role of convection in the phases
of formation and build-up of the solute boundary
layer from an initially homogeneous melt. We shall
not consider the interface recoil, and assume that
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the interface velocity jumps instantaneously to its
prescribed value. Our purpose will be to provide
exact (Section 2) and approximate (Section 3) ana-
lytical solutions for the composition variations in
the initial transient, expected to be physically rel-
evant for experimental conditions such that the
ratio *¹

0
/G is low and the thermal transients are

short. The validity of these solutions will be
checked by means of numerical simulations (Sec-
tion 4) and by comparison with existing experi-
mental data (Section 5). These results will allow one
to propose a rule of thumb expression for the dura-
tion of the solute boundary layer build-up, that can
be easily used in practice.

2. Analytical solution

Our starting point will be the classical convecto-
di!usive equation governing solute conservation in
a binary alloy, written in a frame moving at the
interface velocity <

I
. The rationale behind this

choice of reference frame is that it allows a steady
state to be reached, after an initial transient that we
plan to derive. If we let C, D and V stand, respec-
tively, for the alloy composition, solute di!usion
coe$cient and convection velocity, the equation
can be written as

RC/Rt#(V )+ )C"D+2C#(V
I
)+ )C. (1)

In the frame of the boundary layer model, assuming
that the relevant composition variations take place
in the Z-direction, the above equation becomes
[18,21]

RC/Rt"DR2C/RZ2#<
%&&
RC/RZ, (2)

where the constant e!ective velocity <
%&&

is de-
"ned as D/d, d being the steady-state solute bound-
ary layer thickness. This e!ective velocity accounts
for the combination of both di!usive and convec-
tive mass transport [21]. The validity of the formu-
lation has been successfully tested in a variety
of situations [18,22]. An implicit assumption in
Eq. (2) is that the boundary layer thickness has
reached its steady-state extent d in a time that is
short compared to the total duration of the initial

transient. In other words, we suppose that the "ll-
ing-up of the boundary layer is the limiting kinetic
process, but we shall check the validity of this
assumption in the scaling analyses carried out in
Section 3.

To fully specify the mass transport problem, we
need initial and boundary conditions. We shall
assume that at t"0, the melt is at uniform com-
position

C"C
0

at t"0. (3)

In a dilute alloy with a constant partition coe$c-
ient k, solute conservation at the interface takes the
form

!D(RC/RZ)
I
"<

I
(1!k)C

I
. (4)

As for the far "eld condition, we shall assume that
the composition remains equal to its initial value

CPC
0

when ZPR. (5)

We are thus left with a linear equation with con-
stant coe$cients, that can be solved using a La-
place transform technique, initially proposed in
Refs. [6,7]. The interested reader is referred to the
Appendix for the details of the derivation. The
composition pro"le can be expressed as a function
of the nondimensional parameter D"d<

I
/D that

measures the relative importance of di!usive and
convective mass transport. This parameter
D ranges from values close to zero in the case of
strong #uid #ows to unity for purely di!usive mass
transport. In the following, we shall refer to D as the
convecto-di!usive parameter [18]. Equivalently,
composition pro"les can be characterised by the
e!ective partition coe$cient k

%&&
, de"ned as C

SS
/C

0
,

C
SS

being the steady-state composition in the solid.
The e!ective partition coe$cient k

%&&
will range

between k (total mixing in the melt) and unity
(purely di!usive mass transport). More speci"cally,
the relation between the e!ective partition coe$c-
ient and the convecto-di!usive parameter can be
written as [18]

k
%&&

"k/[1!(1!k)D]. (6)

Setting q"(1!k) and de"ning the nondimen-
sional distance z as z"Z<

I
/D, the solid state
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composition pro"le can be expressed as

C
S
(z)"

1

2
k
%&&

C
0G1#erfC

Jz

2D D
#(1!2qD)e~(1~qD)qz@D

]erfcC
(2(1!qD)!1)Jz

2D DH. (7)

The e!ect of convection is thus taken into account
through the convecto-di!usive parameter D. Our
"nal closed form result appears relatively simple
compared to Huang's numerical formulation [13]
or to Favier's series expansion [15]. However, we
shall now see that it can be further amended owing
to the scaling analyses of next section.

3. Scaling analysis arguments

The developments of this section will be based on
the physical assumption that the initial transient
consists of two stages: in the `formationa stage, the
extent of the established liquid-phase composition
gradient will rise from zero (homogeneous #uid) to
d, the thickness of the steady-state boundary layer.
Later, in the `"lling-upa stage, the interface com-
position will increase to reach its "nal value, C

SS
/k.

Depending on the kinetics of both processes, di!er-
ent assumptions will be made. We shall "rst con-
sider the case where the initial transient duration is
governed by the "lling up of the solute boundary
layer.

3.1. `Filling-upa limited kinetics

The boundary layer having reached its steady-
state extent, it is reasonable to assume that the rate
of solute loss through the boundary layer towards
the bulk #uid is proportional to C

S
/k!C

0
, in

other words to the instantaneous composition dif-
ference between the interface and in"nity. We shall
see that such a hypothesis is essentially equivalent
to that made by Tiller et al. [4] in the case of
di!usion-controlled solute transport. Denoting e as
the amount of solute that escapes per unit of length

solidi"ed, we can write

e"c(C
S
!kC

0
), (8)

where the proportionality constant c can be derived
using the fact that at steady state, i.e. when
C

S
"C

SS
, e is equal to C

0
!C

SS
. Indeed, at steady

state, a solid of composition C
SS

forms from
a liquid of composition C

0
. As both the spatial

extent and the amplitude of the composition vari-
ations of the boundary layer are "xed, the solute
rejected by the advancing interface has to `escapea
in the bulk #uid. We thus get

c"(C
0
!C

SS
)/(C

SS
!kC

0
). (9)

We can now write that when the interface is at the
abscissa Z, the amount of solute inside the bound-
ary layer Q is equal to the total amount rejected
since the beginning of solidi"cation (Z"0) minus
the amount that has been lost to the bulk #uid

Q"P
Z

0

(C
0
!C

S
) du!P

Z

0

e du. (10)

The amount Q can be estimated by stating that the
solute composition in the #uid decreases exponen-
tially from C

S
/k at the interface to C

0
in the bulk

#uid over a length scale d

Q"A
C

S
k

!C
0Bd. (11)

Di!erentiating Eq. (10) with respect to Z using the
expression of Q given by Eq. (11), we obtain a "rst-
order linear di!erential equation with constant co-
e$cients in terms of C

S

j
1

dC
S
/dZ#j

2
C

S
"j

3
(12)

the constants j
1
, j

2
and j

3
being given as

j
1
"d/k, j

2
"C

0
(1!k)/(C

SS
!kC

0
),

j
3
"C

SS
C

0
(1!k)/(C

SS
!kC

0
). (13)

Without a priori prescribing the rate of approach
towards steady-state conditions, as assumed by
Tiller et al. [4] for di!usion-controlled solute trans-
port, we thus "nd that the kinetics of the initial
transient are exponential. The characteristic length
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scale for the "lling-up of the solutal boundary layer,
and thus of the initial transient, can be de"ned as
Z

T
"j

1
/j

2
from the structure of Eq. (12). Plugging

in C
SS
"k

%&&
C

0
, with k

%&&
given by Eq. (6), we get

Z
T
"dD/[1!(1!k)D]

"(D/<
I
)D2/[1!(1!k)D]. (14)

More precisely, the solution to Eq. (12) yields the
composition pro"le in the solid

C
S
(Z)"C

SS
[1!(1!k)D exp(!Z/Z

T
)]. (15)

It is interesting to note that, in the limiting cases of
di!usion-controlled and highly convective solute
transport, Eq. (14) reduces to

Z
T
"

D

k<
I

(D"1), (16)

Z
T
"

D

<
I

D2 (DP0). (17)

Eq. (14) thus accounts for the e!ect of convection
on the duration of the initial transient. However,
we now have to check the validity of the `"lling-upa
limited kinetics assumption: to do so, the time ne-
cessary to establish by di!usion a composition
gradient over a length scale d, in other words the
`formation timea, will be estimated as d2/D

t
&03.!5*0/

"

d2
D

"

D

<2
I

D2.

This is to be compared with the `"ling-upa time,
derived from Eq. (14)

t
&*--*/'v61

"

Z
T
<

I

"

D

<2
I

D2

1!(1!k)D
.

The ratio between the `formationa and `"lling-upa
times is thus given as

t
&03.!5*0/

/t
&*--*/'v61

"1!(1!k)D. (18)

Such a ratio varies from k for the di!usive transport
regime to unity for convective conditions. When
DP0, we shall now see that other solute conserva-
tion arguments can be invoked to estimate the
duration of the initial transient.

3.2. Simultaneous `formationa and `xlling-upa

We shall here assume that, as long as the solutal
boundary layer has not reached its "nal extent d, all
the solute rejected by the advancing interface re-
mains in the vicinity of the growth front. Such an
assumption is reasonable, since convection is not
e$cient in removing the solute at a scale smaller
than d, as shown in Ref. [18]. It is however some-
what drastic, since it amounts to stating that, after
the `formationa stage, all the solute escapes to the
bulk #uid, whereas it remained in the vicinity of the
growth front in the `formationa stage. At the loca-
tion Z

T
of that transition, we can write that enough

solute has been rejected to build the steady state
boundary layer

Q"P
ZT

0

(C
0
!C

S
) du. (19)

The amount Q being again given by Eq. (11) with
C

S
"C

SS
. In the limit of highly convective solute

transport (DP0), it is licit to assume that during
the initial transient, as well as in the steady state,
C

S
remains close to kC

0
. Eq. (19) thus becomes

(C
SS

/k!C
0
)d"Z

T
(1!k)C

0
.

Or, after simple algebra, plugging in again
C

SS
"k

%&&
C

0
, with k

%&&
given by Eq. (6)

Z
T
"dD"(D/<

I
)D2. (20)

For the sake of consistency, we wrote Eq. (20) in the
limit DP0. To conclude, we "nd that the predic-
tion of Eqs. (14) and (20) are equivalent in the
convective solute transport regime limit. As the
underlying physical assumptions are totally di!er-
ent in the two cases, such a result could not have
been a priori expected. Even though the conver-
gence of two approximate solutions cannot be
taken as a proof of their validity, we shall consider
that Eq. (14) can be used whatever the convecto-
di!usive state of the melt.

3.3. Validation of the approximate solution

The simple exponential behaviour of Eq. (15)
cannot obviously account for the more complex
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Fig. 1. Variation of the nondimensional initial transient length
z
T
"Z

T
<

I
/D with the convecto-di!usive parameter D. Com-

parison of the predictions of the analytical (Eq. (7), symbols) and
order of magnitude (Eq. (14), full line) theoretical approaches.

Fig. 2. Axial composition pro"les versus nondimensional dis-
tance z"Z<

I
/D, as computed from Eq. (7) (full line) and result-

ing from the numerical simulations of Favier and Wilson
(symbols). The equilibrium partition coe$cient k was taken to
be equal to 0.01.

form predicted by Eq. (7). Nevertheless, both com-
position pro"les have the same starting (kC

0
) and

end (C
SS

) points. The remaining question is whether
the variation predicted by Eq. (7) takes place over
a length scale of the order of Z

T
. To assess quanti-

tatively the possible discrepancies for a variety of
k and D values, we computed for both composition
pro"les the distance where the concentration level
reaches kC

0
#(1!e~1)(C

SS
!kC

0
). For the ex-

ponential behaviour of Eq. (15), this distance is
simply Z

T
. The comparison presented in terms of

nondimensional values in Fig. 1 shows that the
agreement between the two analytical approaches
is very good, the maximum discrepancy being of
the order of 30%. More precisely, in the convective
regime, the characteristic length Z

T
of the initial

transient computed from Eq. (7) is given by

Z@
T
"0.7(D/<

I
)D2. (21)

It is interesting to note that in this convective
regime, Z@

T
is independent of the partition coe$-

cient k, in agreement with the predictions of the
scaling analysis, as given by Eq. (17). The most
striking result of the analytical approaches is that
the initial transient is very short, since in many
actual growth experiments the convecto-di!usive is
fairly small, say D(0.3. We shall now con"rm the
validity of the analytical approaches with the help
of numerical simulations, presented in the next
section.

4. Numerical simulations

We "rst relied on the simulations carried out in
Ref. [23], where an idealised Czochralski con"g-
uration was numerically modelled. In order to ac-
count for the e!ect of convection, the results were
presented in terms of an equivalent stagnant "lm
thickness. It was thus possible to derive the con-
vecto-di!usive parameter D for purposes of com-
parison with our model. Fig. 2 shows the numerical
composition pro"les along with those predicted by
Eq. (7). The agreement can be considered very
good, the maximum error being of the order of 8%.
Nevertheless, due to the relatively low number of
cases simulated, no de"nite conclusion regarding
the validity of our analytical approaches could be
drawn. That is why we decided to perform dedi-
cated numerical simulations to carry out a para-
metric study.

To assess the capacity of the convecto-di!usive
parameter to account for the e!ect of convection,
both a horizontal and a vertical Bridgman con"g-
urations were modelled. The governing equations
were solved using an alternating direction implicit
(ADI) technique, with a "nite-di!erence method
involving forward di!erences for time derivatives
and Hermitian relationships for spatial derivatives,
resulting in a truncation error of the second and
fourth orders in O(*t2, *r4) for time and space
steps respectively (see Hirsh [24] and Roux et al.
[25]). The mesh used to solve the problem was
generated by Thompson technique [26]. The node
density is of course larger near the side walls of the
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Fig. 3. Typical radial and axial segregation pro"les obtained
from our numerical simulations, demonstrating the correspond-
ence between the in#exion point of C

S,A7
and the maximum in

*c. The equilibrium partition coe$cient k was taken to be equal
to 0.087.

cavity, especially in the vicinity of the growth inter-
face. A 25]101 grid was found to guarantee a su$-
cient accuracy for such studies, as shown in Refs.
[27,28] where the details of the numerical proced-
ure are presented.

Regarding physical assumptions, only thermal
convection was considered (dilute alloy approxima-
tion). In both cases, the numerical approach was
two-dimensional, respectively cartesian and axi-
symmetric for the horizontal and vertical problems.
A vorticity}stream function formulation was used
for the hydrodynamic "eld. In addition to the parti-
tion coe$cient k, the nondimensional parameters
of the problem were:

f the Grashof number, Gr"b
T
GlgH4/l2, charac-

terising the convection driving force; its de"ni-
tion features the thermal expansion coe$cient
b
T
, the liquid phase temperature gradient Gl

normal to the gravity vector g, a sample macro-
scopic dimension H and the cinematic viscosity
of the #uid l.

f the Schmidt number Sc"l/D, measuring the
ratio of the momentum and species di!usivities.

f the Peclet number Pe"H<
I
/D, scaling the

growth velocity.

Axial and radial solute segregation were, respec-
tively, characterised by the average composition on
slices taken normal to the growth direction C

S,A7
and by the normalised composition di!erence
along the interface *c, de"ned as

*c"(C
S,M!9

!C
S,.*/

)/C
S,A7

(22)

the quantities C
S,M!9

and C
S,.*/

representing, re-
spectively, the maximum and the minimum of the
concentration at a given location of the interface.

A characteristic of all the numerical simulations
performed was that the initial elongation ratio was
relatively small, A"4. As opposed to the work
conditions of Favier and Wilson [23], no true
steady-state composition plateau could be reached
in our simulations, and we had to design a new
strategy to estimate the characteristic length scale
of the initial transient. To do so, we took advantage
of the structure of the normalised radial segrega-
tion pro"les: these were found to start from zero
(homogeneous melt initial condition), and increase

to a maximum value *cM lying just above a fairly
well-de"ned plateau value (see Fig. 3).

The location of this maximum *cM was shown to
correspond to the in#exion point in the axial segre-
gation pro"les, and we thus de"ned the character-
istic length scale of the initial transient Z

T
as

the point where the radial concentration reached
the value (1!e~1)*cM. It should be noted that the
coincidence between C

S,A7
and *c in terms of

steady-state attainment rate cannot at this point be
explained by simple scaling analysis arguments. It
is, nevertheless, an interesting result of the numer-
ical simulations that the initial transient duration is
the same for both axial and radial segregations.
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Fig. 4. Summary of numerical results showing the variation of
the extent of the initial transient with the convecto-di!usive
parameter D for both horizontal (squares) and vertical (circles)
Bridgman con"gurations.

Overall, a very good agreement was observed
between the simulation results and the theoretical
predictions of Section 3. Special emphasis was laid
on the convective solute transport limit, since it is
the most important in experimental practice. The
analysis of the numerical segregation pro"les shows
that Z

T
/H is independent of the partition coe$-

cient k and varies linearly with the Peclet number in
the low D range. This can be understood from Eq.
(17), that can be rewritten as Z

T
/H"D2/Pe, and

from the fact that D is proportional to Pe in the
convective solute transport limit [18].

The variation of Z
T
/H with the Grashof and

Schmidt number is more intricate, but the results
can be nicely interpreted if the convecto-di!usive
parameter D is computed for each simulation. In-
deed, as can be seen in Fig. 4, the numerical results
for both the vertical and the horizontal con"gura-
tions are found to be smoothly "tted by a parabolic
law in accordance with Eq. (17). However, the pro-
portionality constants m in the Z

T
/H&mD2 power

law are slightly di!erent, namely m"1.6 for vertical
Bridgman and m"1.8 for horizontal Bridgman.
This means that the convecto-di!usive parameter
D cannot by itself account for all the details of
transient solute incorporation.

Nevertheless, the fact that the proportionality
constants are both close to each other and close to
unity supports the validity of the scaling analysis of
Section 3. Our numerical results also support the
ability of the convecto-di!usive parameter D to

capture the main physics of the mass transport
phenomena in the melt, as already observed in
a variety of related problems [21,22]. In any case,
an important consequence of the above results is
that, for the case usually met in practice where the
convecto-di!usive parameter is small, the initial
transient related to the solutal boundary layer will
be very short. We shall see in the next section that
this is indeed the case for most of the available
experimental results.

5. Comparison with experimental data

In addition to numerical results, we also wanted
to check the validity of our scaling analysis results
with existing experimental data. However, for the
comparison to be meaningful, the growth condi-
tions have to be su$ciently well speci"ed for the
derivation of the convecto-di!usive parameter. For
instance, we cannot analyse the segregation pro"les
of Inatomi et al. [29] in our theoretical frame.
Besides, due to our starting assumptions, Eq. (14) is
only expected to be valid for experimental condi-
tions such that the ratio *¹

0
/G is low, so that the

interface recoil problem can be bypassed. This
means that our focus will be on dilute alloys, but
our approach is expected to stand in concentrated
systems in the case where convective transport
keeps the solidi"cation interval *¹

0
low enough.

With all these constraints in mind, we mostly relied
on experiments carried out in the Mephisto furnace
facility on tin-based alloys, both on the ground and
in microgravity [30,31], but we were also able to
analyse the works of Helmers et al. [32,33] on GeSi
mixed crystals.

5.1. Mephisto results

Mephisto is essentially a sophisticated Bridgman
furnace developed in cooperation between the
French space (CNES) and nuclear (CEA) national
research agencies. It is equipped with a variety of
diagnostics, including resistance measurements and
Peltier pulsing. Of particular interest for the present
work is the possibility to measure the instan-
taneous composition at the growth interface using
the thermoelectric Seebeck signal. Without going
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Fig. 5. Time variation of the Seebeck signals at growth velocities
ranging from 0.3 mm/min to 1.1 mm/min. In all cases, the onset
of solidi"cation is at t"300 s.

Table 1
Experimentally determined convecto-di!usive parameter D and
characteristic duration of initial transient t%91

T
in Mephisto

ground experiments, along with comparison to predicted values
from Eq. (14)

<
I
(mm/min) D t%91

T
(s) Z!/!

T
(lm) t!/!

T
(s)

0.3 0.19 145 11 2.3
0.5 0.31 106 20 2.4
0.7 0.39 117 24 2
0.9 0.46 83 28 1.9
1.1 0.5 83 27 1.5

into details (see e.g. Refs. [30,31] for more informa-
tion on the topic), the system acts as a ther-
mocouple that yields the temperature and, by
means of the phase diagram, the concentration at
the solidi"cation front. The measurement is both
on line and in situ and is thus particularly well
suited for the study of segregation phenomena.

A series of experiments was carried out on the
ground in a horizontal con"guration. Various
growth velocities <

I
, ranging from 0.3 to

1.1 mm/min, were used, the crucible diameter and
the applied thermal gradient being, respectively,
"xed at 6 mm and 130 K/cm. The time variation of
the Seebeck signals is shown in Fig. 5; as the
Seebeck measurement is di!erential in nature [30],
its value at the onset of solidi"cation (here
t"300 s) is strictly zero. The signals then increase
up to a plateau value <

P
, and we shall take for

the experimental initial transient duration the
time t%91

T
where the Seebeck reaches the value

(1!e~1)<
P
. Using Eq. (6), this plateau value

<
P

can also be used to derive the value of the
convecto-di!usive parameter D, and thus to esti-
mate analytically the initial transient duration
t!/!
T

"Z
T
/<

I
, Z

T
being computed from Eq. (14). As

commonly found in horizontal con"gurations on
earth, the convecto-di!usive parameter increases
with the pulling velocity, but remains smaller than
0.5 even at the fairly large growth rate of
1.1 mm/min.

The results are summarised in Table 1, where it
can be seen that t%91

T
is always much higher than

t!/!
T

. Such a "nding can be explained by the fact that
the thermal lag of the furnace, experimentally
found to be in the 100 s range [31], is much higher
than the time necessary to form and "ll the solutal
boundary layer. It should be noted that such a ther-
mal lag is short compared to those of classical
furnaces, where values of the order of 1000 s are not
uncommon, but the Mephisto facility is equipped
with liquid metal rings in the cold zone that ensure
an e$cient contact with the water-cooled sink. This
allows an e$cient heat extraction, and thus a short
thermal lag time. As the growth velocity only
reaches its prescribed values over a thermal lag
time scale, the latter controls the kinetics of the
initial composition transient. For the sake of com-
pleteness, it should be mentioned that repeated
solidi"cation cycles in the<

I
"0.3 mm/min experi-

ment show that the t%91
T

is more likely to be of the
order of 120 s (see Fig. 4 of Ref. [30]) The thermal
lag time of the furnace is thus found to be roughly
independent of the pulling velocity.

In microgravity, the results of the USMP1 #ight
of the Mephisto facility in 1992 showed that di!u-
sion-controlled solute transport conditions were
reached at growth velocities higher than <

I
"

0.12 mm/min. The "t of the initial composition
transient allowed to check the coherence of the
parameters data set [31], and especially of the
di!usion and partition coe$cients of bismuth in
tin, estimated at D"1.3]10~9 m2/s and k"0.27,
respectively. Lower growth velocities were used
during the USMP3 mission in 1996, and a slight
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convective interference was observed at the lowest
growth velocity <

I
"0.03 mm/mn. Indeed, the

concentration plateau was located at 1.3 at%. Bi,
for a nominal alloy composition of 1.6 at% Bi,
leading to a value of the convecto-di!usive para-
meter D of 0.91.

The distance where the concentration level
reached kC

0
#(1!e~1)(C

SS
!kC

0
) was found

to be of the order of 5 mm, whereas the value
D/k<

I
predicted by Tiller et al. [4] for purely dif-

fusive solute transport is about 9.6 mm. Our ana-
lytical expression (Eq. (14)) yields a value of
Z

T
"6.4 mm, and allows to account semi-quantit-

atively for the shortening of the initial transient.
Experimentally, the characteristic duration t

T
in

that case is of the order of 10 000 s, and is thus
much higher than the thermal lag time of the fur-
nace. From a practical point of view, it should be
noted that, even for a value of the convecto-dif-
fusive parameter D close to unity, residual convec-
tion leads to a signi"cant reduction of the initial
transient length with respect to the di!usive trans-
port D/k<

I
value.

5.2. Helmers et al. results

In their attempts to grow Ge
1~x

Si
x

mixed
crystals of various compositions by the vertical
Bridgman technique, Helmers et al. [32,33] were
led to analyse the observed initial composition
transients. Of particular interest for our present
work was the fact that the solidi"cation conditions
were su$ciently well de"ned for the derivation of
the relevant nondimensional numbers. Due to the
large composition variations along the crystals,
some thermophysical and growth parameters, such
as partition coe$cient, thermal gradient, could not
be taken as uniform. However, since the observed
initial transients are very short, of the order
of 15 lm, we can safely consider that only the
conditions at the onset of solidi"cation are to be
considered.

A questionable claim made by Helmers et al.
[32] is that the di!usion boundary layer and the
initial transient are necessarily of the same extent.
In our notations, this means that Z

T
would be

equal to d, but such a statement is clearly in contra-
diction with our theoretical and numerical results.

Besides, if we follow Helmers et al., the boundary
layer thickness would be only of circa 15 lm. This
is in contradiction with a number of literature
results on vertical Bridgman growth (see e.g.
[28,34}36]) where d is seen to be much larger. Our
opinion is that the results of Helmers et al. can be
explained using Eq. (14) for the initial transient
along with the expression proposed in Ref. [28] for
the convecto-di!usive parameter in the convective
regime limit

D"13.2 Pe(Gr
%&&

Sc)~1@3, (23)

where Gr
%&&

is the e!ective Grashof number based
on the radial temperature gradient, i.e. on the true
driving force for convective motion. Taking the
sample radius (5.5 mm), the growth velocity
(1 mm/h) and the radial temperature gradient
(20 K/cm), along with the values of the ther-
mophysical parameters, from the paper of Helmers
et al., we get:

Pe"5.9]10~2, Gr
%&&

"27 100, Sc"10.4.

Plugging these values in Eq. (23), we "nd
D"1.2]10~2. Incidentally, at such a low value of
the convecto-di!usive parameter, convection is
clearly the dominant solute transport mode, justify-
ing the use of Eq. (23). It should also be noted that
this value of D translates into a dimensional bound-
ary layer thickness d"1.1 mm, typical of vertical
Bridgman growth. If we now turn to Eq. (14) to
estimate the initial transient duration, we get
Z

T
"13 lm, in unexpectedly good agreement with

the experimental result, Z
T
"15 lm.

One should keep in mind that we deliberately
neglected the solutal stabilisation mechanism. Our
opinion is that, due to the limited extent of the
solutal boundary layer thickness where the relevant
composition gradient exists, the e!ect should not
be very strong. Besides, it should also be noted that
the initial transient duration, derived from Z

T
"

15 lm and <
I
"1 mm/h is of the order of 50 s. It

may well be that the thermal lag time of the furnace
is in that range, but no indication is given in the
original paper to draw a de"nite conclusion. In any
case, we strongly believe that Z

T
"15 lm should

not be taken as the solutal boundary layer thick-
ness, and we think that a coherent picture of the
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experimental results emerges from our theoretical
approach.

6. Concluding remarks

Our purpose in the present work was to analyse
the e!ect of convection on the formation and the
build-up of the solutal boundary layer. To do so, we
adapted the analytical solution "rst derived by
Smith et al. [6] and Memelink [7] under the assump-
tion of negligible interface recoil to account for con-
vective transport. We carried out a scaling analysis of
the transport problem to obtain a simple closed-form
expression for the initial transient duration. The
validity of these theoretical approaches was checked
by means of numerical simulations modelling both
the horizontal and the vertical Bridgman con"gura-
tions. We also found that existing experimental data
could be interpreted in our theoretical frame. The
agreement between the analytical, numerical and ex-
perimental results apparent in the present work
allows one to propose a rule of thumb expression for
the duration of the initial composition transient, that
can be easily used in practice. Convection is ac-
counted for in Eq. (14) by means of the steady-state
convecto-di!usive parameter D, that, in addition to
past successes [18,21,22], appears to be one of the
keys to the modelling of the initial composition tran-
sient in crystal growth from the melt.

An important practical consequence for growth
experiments is that the solutal boundary layer
formation and build-up is generally extremely short
when convection dominates mass transport, say for
values of the convecto-di!usive parameter D small-
er than 0.2. This means that the heat transfer phe-
nomena in the growth furnace will often control the
kinetics of the initial composition transient, as was
indeed observed in our ground-based experiments.
On the other hand, in microgravity conditions
where di!usion mostly controls solute transport,
the solutal boundary layer formation and build-up
will often be much higher than the thermal lag time
of the furnace. In any case, a slight departure from
purely di!usive conditions results in a signi"cant
reduction of the initial transient, as predicted theor-
etically and checked experimentally during the
Mephisto USMP3 experiment.
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Appendix A. Derivation of the analytical solution

Our starting point is the one-dimensional mass
conservation equation written in the e!ective velo-
city formalism; this means that we implicitly sup-
pose the formation phase of the solutal boundary
layer to be small compared to the total length of the
initial transient:

RC
Rt "D

R2C
RZ2

#<
%&&

RC
RZ .

Introducing the Laplace transform

CM (S)"P
=

0

Ce~St dt,

we get

d2CM
dZ2

#

<
%&&
D

dCM
dZ

!

S

D
CM "!

C
0

D
.

Similarly, the interface (Eq. (4)) and far "eld (Eq. (5))
boundary conditions can be transformed as

dCM
dZ

"!

<
I

D
(1!k)CM in Z"0,

CM "
C

0
S

in Z"R.

The solution to this simple di!erential equation is
of the form

CM "Ae~aZ#
C

0
S

,
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where

a"
1

2

<
%&&
D

$J1/DAS#
<2

%&&
4D B

1@2
.

From the boundary conditions, we get

A"

C
0

S

q

aD/<
I
!q

,

where q"(1!k). Substituting the expression of
a in A, we obtain

A"

C
0

S

q<
I
J1/D

J1/D[1
2
<

%&&
!q<

I
]#(S#<2

%&&
/4D)1@2

.

The Laplace transform of the composition thus
becomes

CM "
C

0
S G1

#

q<
I
J1/De~1@2V%&&Z@D]e~J1@D(S#<

%&&
/4D)1@2Z

J1/D(1
2
<

%&&
!q<

I
)#(S#<2

%&&
/4D)1@2 H .

We only kept the positive root of A in order to
satisfy the far-"eld boundary condition. We are left
with an expression exactly similar to that of Smith
et al. (Eq. (25) in Ref. [6]) provided that q, k and
R are, respectively, changed into

q@"qD,

k@"1!q@"1!(1!k)D,

R@"<
%&&

.

Using the inverse Laplace transform proposed by
Smith et al., we get for the liquid-phase composi-
tion

C(Z, t)"C
0G1#

q@
2k@

e~V%&&Z@D

]erfc[1
2
J1/Dt(Z!<

%&&
t)]

!

1

2
erfc[1

2
J1/Dt(Z#<

%&&
t)]

#

q@
2 A

1

q@
!

1

k@Be(~q{V%&& @D)(Z`k{V%&& t)

]erfc[1
2
J1/Dt(Z#2k@!1<

%&&
t)]H.

All that we now have to do to get the solid state
segregation pro"le, given as Eq. (7) in the text,
is to set Z"0 in the above expression and
multiply the result by the partition coe$cient k.
It should be noted that our expression for the
liquid-phase composition has been checked to
yield correct results in terms of interface and
far-"eld boundary conditions, as well as steady-
state value and initial conditions. It should also be
noted that the Mathematica software on our PC
has not been able to solve the starting di!erential
equation.
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