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Solid-state convection can take place in the rocky or icy mantles of planetary objects,
and these mantles can be surrounded above or below or both by molten layers of
similar composition. A flow towards the interface can proceed through it by changing
phase. This behaviour is modelled by a boundary condition taking into account the
competition between viscous stress in the solid, which builds topography of the
interface with a time scale τη, and convective transfer of the latent heat in the liquid
from places of the boundary where freezing occurs to places of melting, which acts
to erase topography, with a time scale τφ . The ratio Φ = τφ/τη controls whether the
boundary condition is the classical non-penetrative one (Φ → ∞) or allows for a
finite flow through the boundary (small Φ). We study Rayleigh–Bénard convection
in a plane layer subject to this boundary condition at either or both its boundaries
using linear and weakly nonlinear analyses. When both boundaries are phase-change
interfaces with equal values of Φ, a non-deforming translation mode is possible with
a critical Rayleigh number equal to 24Φ. At small values of Φ, this mode competes
with a weakly deforming mode having a slightly lower critical Rayleigh number
and a very long wavelength, λc ∼ 8

√
2π/3
√
Φ. Both modes lead to very efficient

heat transfer, as expressed by the relationship between the Nusselt and Rayleigh
numbers. When only one boundary is subject to a phase-change condition, the critical
Rayleigh number is Rac = 153 and the critical wavelength is λc = 5. The Nusselt
number increases approximately two times faster with the Rayleigh number than
in the classical case with non-penetrative conditions, and the average temperature
diverges from 1/2 when the Rayleigh number is increased, towards larger values
when the bottom boundary is a phase-change interface.

Key words: buoyancy-driven instability, mantle convection, solidification/melting

1. Introduction
Rayleigh–Bénard convection is one of the main heat transfer mechanisms in

natural sciences, responsible for most of the dynamics of the atmosphere and oceans
(Pedlosky 1987), plate tectonics (Schubert, Turcotte & Olson 2001), and dynamo
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action in planetary cores (Roberts & King 2013). It is also one of the most generic
examples of pattern formation mechanism in fluid dynamics (e.g. Cross & Hohenberg
1993; Manneville 2004) and has therefore attracted much attention for a century
since the work of Lord Rayleigh (Rayleigh 1916). However, the mathematical and
experimental studies of Rayleigh–Bénard convection have usually considered boundary
conditions that are not fully relevant to the natural systems that justified them, their
horizontal surfaces being generally considered as subjected to no-slip or free-slip
boundary conditions. The former is valid for convection experiments in a tank and
for natural fluids bounded by much more viscous envelopes, such as the liquid cores
of terrestrial planets and the bottom of the ocean. The latter is often considered as an
approximation for a free-surface condition, as applies to a fluid bounded by a much
less viscous one. This is in particular the case of the solid planetary mantles that,
on long time scales, behave like very viscous fluids (e.g. Turcotte & Oxburgh 1967;
McKenzie, Roberts & Weiss 1974; Jarvis & McKenzie 1980) and are bounded below
and above by liquid or gaseous layers. This approximation neglects the effect of the
topography on convection, and some studies have been devoted to the modelling of
these effects, which can be dramatic when it is associated with, for example, intense
volcanism in hot planets (Monnereau & Dubuffet 2002; Ricard, Labrosse & Dubuffet
2014).

In the present paper, we consider the effects of having horizontal boundaries
at which a solid–liquid phase change occurs on Rayleigh–Bénard convection in
the creeping solid, that has an infinite Prandtl number (Schubert et al. 2001). For
simplicity, we consider a Newtonian fluid with a uniform high viscosity, neglecting the
effects of more complex rheologies (e.g. Parmentier 1978; Christensen & Yuen 1989;
Davaille & Jaupart 1993; Tackley 2000; Bercovici & Ricard 2014), that is bounded
by a low-viscosity liquid of the same composition as the convecting solid. The
boundary between the liquid and the solid consists of a phase change whose position
is controlled by a Clapeyron diagram relating pressure and temperature for phase
equilibrium. In the context of planetary interiors, the pressure is largely dominated by
the hydrostatic contribution and the interface is on average a horizontal surface. The
stress field and associated dynamic pressure due to the dynamics of the solid leads
to deformation of the interface with a viscous time scale τη. The topography creates
variations of the thermal gradient on the liquid side which drives a convective heat
transfer in the liquid acting to erase the topography by transporting the latent heat
released by freezing in topography lows to topography highs where melting occurs.
Other sources of motions in the liquid can also contribute to this lateral heat transfer,
which happens on a time scale τφ , the expression for which is derived in § 2. The
ratio of the two time scales, Φ = τφ/τη, controls the behaviour of the boundary. For
a large value of Φ, the topography is set by the balance between the viscous stress
in the solid and the buoyancy of the topography, the phase change acting on too
long a time scale to affect the classical behaviour of the free surface. The buoyancy
of the topography is responsible for making the vertical velocity drop to zero at the
interface, which leads to an effectively non-penetrating boundary condition. On the
other hand, for low values of Φ, the topography is erased by freezing and melting
at a rate greater than the rate at which it is generated. The removal of the associated
buoyancy leads to a non-null velocity across the interface.

This situation has already been considered in the case of the dynamics of Earth’s
inner core (Alboussière, Deguen & Melzani 2010; Monnereau et al. 2010; Deguen,
Alboussière & Cardin 2013; Mizzon & Monnereau 2013), which is the solid iron
sphere at the centre of the liquid iron core of the Earth. Deguen et al. (2013) have
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Convection with melting and freezing at boundaries 7

derived a general formulation of the boundary condition for arbitrary values of Φ and
shown that the application of this boundary condition to a sphere considerably changes
the dynamics by decreasing the critical Rayleigh number for the onset of thermal
convection and allowing a new mode of convection, the translation mode, where no
deformation occurs in the sphere, melting occurs at the boundary of the advancing
hemisphere, and freezing occurs at the trailing boundary.

A similar situation arises for the ice shell of some satellites of giant planets in the
solar system which are believed to host a liquid ocean below their ice layer (Khurana
et al. 1998; Pappalardo et al. 1998; Gaidos & Nimmo 2000; Tobie, Choblet &
Sotin 2003; Soderlund et al. 2014; Čadek et al. 2016). Some of the largest of such
satellites can also have a layer of high-pressure ices below their ocean (Grasset, Sotin
& Deschamps 2000; Sohl et al. 2003; Baland et al. 2014). Another situation that
implies such a melt–solid interface arises on all terrestrial planets in their early stage,
when their silicate layer is completely or largely molten owing to the high energy
of their accretion (Solomatov 2007; Elkins-Tanton 2012). Convection can start in the
solid mantle during its crystallisation from the magma ocean, while a liquid layer
persists above and/or below (Labrosse, Hernlund & Coltice 2007). It is therefore
interesting to consider convection in a layer, not a full sphere, when a phase-change
boundary condition applies at either or both its horizontal boundaries.

Deguen (2013) performed such a study in the case of a spherical shell with a central
gravity linearly varying with radial position and showed that, again, a translation mode
is possible and favoured in the linear stability analysis if both the upper and lower
boundaries allow an easy phase change – that is if each has a low value of the Φ
parameter. The purpose of the present paper is to extend the analysis to the plane layer
situation and perform the linear stability and weakly nonlinear analysis as a function
of the phase-change parameters of both horizontal boundaries.

The boundary conditions are presented in § 2; § 3 presents the translation mode of
convection, § 4 presents the linear and weakly nonlinear analysis in the case when
both horizontal boundaries have the same value of the phase-change parameter and
§ 5 shows the case when phase change is allowed only on one boundary.

2. Conservation equations and boundary conditions

We consider a layer of creeping solid that behaves like a Newtonian fluid on long
time scales and that is bounded above or below or both by a liquid related to the
solid by a phase change (figure 1). The temperature field at rest is the solution of
the thermal conduction problem with temperatures at the boundaries, T+ at the top
and T− at the bottom, that each equal the melting temperature Tm at the relevant
pressure. Pressure, in the context of planetary interiors, is largely dominated by the
hydrostatic part. The melting temperature therefore mainly depends on the vertical
coordinate. The possibility of crossing the melting temperature at both the top and
bottom of our computational domain requires either a nonlinear dependence of Tm

on pressure or, more easily, a compositional difference between the solid and both
upper and lower liquid layers (Labrosse et al. 2007). For simplicity here, we do not
consider the dynamical effects of compositional variations. The vertical dependence of
the melting temperature is linearised around the reference positions of the boundaries,
owing to the smallness of their topographies compared to the total thickness of the
layer, d.
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FIGURE 1. Definition of the topography (exaggerated here for clarity) and the temperature
for the boundary conditions. The dash-dotted lines are the reference positions for the
conductive motionless solutions of the top and bottom boundaries. The plot on the
right shows the reference temperature profile (thick solid line) intersecting the melting
temperature at the top and bottom (thin solid lines) at temperatures T+ and T−,
respectively. Lateral variations of the topography make the intersection deviate laterally
in temperature. Representative temperature profiles in the liquid sides are shown as
dashed lines. In the context of planetary applications, the temperature profiles should be
interpreted as deviations from the isentropic reference.

The conduction temperature profile that is used as reference is written as

T0 =
T+ + T−

2
+

z
d
(T+ − T−), (2.1)

the reference for the vertical position z being at the centre of the domain. Deviations
from the conduction temperature profiles are made dimensionless using 1T=T−−T+
as reference and denoted by θ . In the following, superscripts + and − are used for
quantities pertaining to the top and bottom boundaries, respectively, and omitted in
equations that apply to both boundaries.

The crossing positions of the conduction solution with the melting temperature at
the top and bottom are used as the reference around which a topography height, h+
and h−, is defined for each boundary, respectively (figure 1). These topographies can
have either sign, positive upward, and need not average to 0, as will be shown below.
At each phase-change interface, two thermal boundary conditions are necessary to
account for the moving boundary (Crank 1984). The temperature must equal the
phase-change temperature and the heat flux discontinuity across the interface must
balance the release or consumption of latent heat, L (Stefan condition). The two
thermal boundary conditions are written as

T(h)= Tm(h), (2.2)
ρsLvφ = JqK, (2.3)

with vφ the freezing rate, ρs the density of the solid and JqK the heat flux difference
between the liquid and the solid sides. These boundary conditions apply to the
deformed interface and need to be projected to the reference level that is used as
boundary for the computation domain. Developing equation (2.2) to first order in h
gives

T
(
±

d
2

)
= T± +

(
∂T±m
∂z
−
∂T0

∂z

)
h±. (2.4)
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Convection with melting and freezing at boundaries 9

In dimensionless form, (2.4) is written as

θ

(
±

1
2

)
=

(
1+

d
1T

∂T±m
∂z

)
h±

d
. (2.5)

In the following, we assume h±/d to be small and we apply

θ = 0, z=±
1
2
. (2.6a,b)

Turning to the second thermal boundary condition, the discontinuity of heat flow
on the right-hand side of (2.3) is assumed to be dominated by the convective heat
flow on the low-viscosity liquid side, f ∼ ρlcplulδTl, with ρl and cpl the density and
heat capacity of the liquid, ul the characteristic liquid velocity and δTl the temperature
difference between the boundary and the bulk of the liquid. This difference results
from variations of the topography (figure 1) and the vertical gradient of the melting
temperature so that

f ∼−ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣ h. (2.7)

The temperature difference h∂Tm/∂z is negligible on the solid side, but crucial for the
convective heat flux on the liquid side. Figure 1 shows as dashed lines the typical
local temperature profiles on the liquid side of each boundary for topography highs
and lows, indicating that the implied lateral variations of heat flux density should
lead to melting of regions where the solid protrudes in the liquid, with freezing in
depressed regions, tending to erase the topography. This behaviour is ensured by
the anti-correlation of f and h in (2.7), independently of the sign of ∂Tm/∂z, and
this applies to both top and bottom boundaries. The case of ∂Tm/∂z < 0 depicted
here for the top boundary is the most usual and the opposite case depicted here for
the bottom boundary is encountered for water. Note, however, that in the context
of planetary applications, the temperature considered here in the liquid layers and
depicted on figure 1 is in fact the deviation from the reference isentropic temperature
profile (Jeffreys 1930; Deguen et al. 2013) and the pressure derivative of the actual
melting temperature need not be negative to have a liquid underlying the solid layer.
Assuming that the convective heat flow on the liquid side dominates the right-hand
side of (2.3), we write

ρsLvφ ∼−ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣ h. (2.8)

The freezing rate is related to the vertical velocity w across the boundary and the
rate of change of the topography as

v±φ =±
∂h±

∂t
∓w. (2.9)

Combining with (2.8) gives

w∓
∂h
∂t
=
ρlcplul

ρsL

∣∣∣∣∂Tm

∂z

∣∣∣∣ h≡
h
τφ
, (2.10)
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10 S. Labrosse, A. Morison, R. Deguen and T. Alboussière

with

τφ =
ρsL

ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣ (2.11)

the characteristic phase-change time scale for changing the topography by transferring
latent heat from regions where it is released to places where it is consumed. ul
depends on the dynamics of the liquid, which is not solved in this paper. The
uncertainty in this quantity as well as the scaling coefficients implied by the ∼ sign
in (2.7) and (2.8) are all combined to make τφ the control parameter in our study.

Across the boundaries, the total traction must be continuous. Assuming that the
topography is small (i.e. the horizontal gradient of h± is small compared to 1,
|∇hh±| � 1), for the vertical component this is written as

−Ps(h±)+ 2η
∂w
∂z
=−Pl(h±), (2.12)

where P is total pressure, s and l are for the solid and liquid sides, respectively, and
η is the dynamic viscosity of the solid. The total pressure on the solid and liquid
sides is split into its hydrostatic part, P(0) − ρs,lgh± (z = 0 being the reference for
h at each boundary) and the dynamic part p. On the liquid side, viscous stress and
pressure fluctuations are neglected. With these assumptions, we get

−p+ (ρs − ρ
±

l )gh± + 2η
∂w
∂z
= 0. (2.13)

Note that the density difference across the phase-change boundary, 1ρ± = ρs − ρ
±

l ,
takes different signs at the top and bottom since the solid must be denser than the
overlying liquid but less dense that the underlying one. Therefore 1ρ+>0 and 1ρ−<
0.

The topography at each boundary is produced as a result of total stress in the
solid, with a typical time scale τη = η/|1ρ±|gd (the post-glacial rebound time scale,
Turcotte & Schubert 2001), and erased by melting and freezing, as discussed above,
with a time scale τφ . Both time scales are generally much shorter than the time scale
for convection in the whole domain, so that we assume that the topography adjusts
instantaneously to the competition between viscous stress and phase change. Therefore,
we neglect ∂h/∂t in (2.10) and, combining it with (2.13) to eliminate h±, we get

−p+1ρ±gτ±φ w+ 2η
∂w
∂z
= 0. (2.14)

Introducing the phase-change dimensionless number (Deguen 2013; Deguen et al.
2013)

Φ± =
τφ± |1ρ

±
|gd

η
(2.15)

equation (2.14) takes the dimensionless form

±Φ±w+ 2
∂w
∂z
− p= 0, z=±

1
2
. (2.16)
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Convection with melting and freezing at boundaries 11

Φ± is the ratio of the phase-change time scale to the viscous deformation time scale.
For large values of this parameter, the boundary condition (2.16) reduces to the usual
non-penetration condition, w = 0, while for small values it allows a non-zero mass
flow through the boundary. The physical interpretation is straightforward: if τη� τφ± ,
topography evolves without the possibility of the phase change happening and is
limited by its own weight, which has to be supported by viscous stress in the solid.
In practice, this means that the flow velocity goes to zero at the free interface and
is very small at the reference boundaries z = ±1/2, which is usually modelled as a
non-penetrating boundary. In the other limiting case, τη� τφ± , topography is removed
by phase change as fast as it is created by viscous stresses, and this allows a flow
across the boundary.

The liquid is assumed inviscid and therefore exerts no shear stress on the convecting
solid. The topography of the boundary is assumed to be small and we approximate the
horizontal component of the continuity condition for traction by a free-slip boundary
condition at both horizontal boundaries,

∂u
∂z
+
∂w
∂x
= 0, z=±

1
2
. (2.17)

The dimensionless equations for the conservation of momentum, mass and energy
are written in the classical Boussinesq approximation as

1
Pr

(
∂v

∂t
+ v · ∇v

)
=−∇p+∇2v + Raθ ẑ, (2.18)

∇ · v = 0, (2.19)
∂θ

∂t
+ v · ∇θ =w+∇2θ, (2.20)

where Pr = ν/κ is the Prandtl number, with ν and κ the momentum and thermal
diffusivities, v = (u, v, w) is the fluid velocity, p is the dynamic pressure, Ra =
α1Tgd3/κν is the Rayleigh number, with α the thermal expansion coefficient, and
ẑ is the upward vertical unit vector. These equations have been made dimensionless
using the thickness of the layer d as length scale and the thermal diffusion time d2/κ
as time scale.

Since we are concerned here with convection in solid, albeit creeping, layers, we
will generally consider the Prandtl number to be infinite in most of the calculations
below.

3. The translation mode
The boundary condition (2.16) discussed in the previous section permits a non-zero

vertical velocity across the boundaries. If both boundaries are semi-permeable (finite
values of both Φ+ and Φ−), the possibility of a uniform vertical translation arises.
This situation has been explored systematically in the context of the dynamics of
Earth’s inner core (Alboussière et al. 2010; Deguen et al. 2013; Mizzon & Monnereau
2013) and in spherical shells (Deguen 2013) but, in the case of a spherical geometry,
the horizontally average vertical velocity is still null for a translation mode. Here we
show that a translation mode with a uniform vertical velocity also exists in the case
of a plane layer.

We search for a solution that is independent of the horizontal direction and therefore
only has a vertical velocity, v=wẑ. The mass conservation equation (2.19) implies that
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12 S. Labrosse, A. Morison, R. Deguen and T. Alboussière

w is independent of z and we consider two situations, the linear stability problem for
which w=Weσ t and the steady-state case for which w is constant. Similarly, we can
write the temperature as θ(z, t) = Θ(z)eσ t to study the onset of convection in that
mode, with θ as a function of z only at steady state, and use a similar convention for
pressure as p and P.

3.1. Linear stability analysis
The conservation equations (2.18)–(2.20) linearised around the hydrostatic state reduce
to two equations:

σ

Pr
W =−DP+ RaΘ, (3.1)

σΘ =W +D2Θ, (3.2)

with D≡ d/dz. For neutral stability, σ = 0, solving in turn (3.2) for Θ and (3.1) for
P subject to the boundary conditions (2.6) and (2.16) leads to

[Ra− 12(Φ+ +Φ−)]W = 0. (3.3)

A non-trivial solution for W can then exist for

Ra= Rac = 12(Φ+ +Φ−), (3.4)

which is the condition for marginal stability of the translation mode.
This system of equations can also be solved for a finite value of σ in order to relate

it to Ra. Equation (3.2) subject to boundary conditions θ(±1/2)= 0 gives

Θ =
W
σ

[
1− 2

sinh(σ 1/2/2)
sinh(σ 1/2)

cosh(σ 1/2z)

]
. (3.5)

Inserting this expression into (3.1) and solving for P, we obtain

P= cst+
(

Ra
σ
−
σ

Pr

)
Wz− 2Ra Wσ−3/2 sinh(σ 1/2/2)

sinh(σ 1/2)
sinh(σ 1/2z). (3.6)

Using the boundary condition (2.16) at z= 1/2 allows us to determine the integration
constant, which gives

P = Φ+W +
(

Ra
σ
−
σ

Pr

)
W(z− 1/2)

− 2Ra Wσ−3/2 sinh(σ 1/2/2)
sinh(σ 1/2)

[sinh(σ 1/2z)− sinh(σ 1/2/2)]. (3.7)

Finally, using the boundary condition at z = −1/2, −φ−W = P(−1/2), gives, after
rearranging, the following dispersion equation:

0=
σ 2

Pr(Φ+ +Φ−)
+ σ +

Ra
Φ+ +Φ−

[
2σ−1/2 cosh σ 1/2

− 1
sinh σ 1/2

− 1

]
. (3.8)
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Convection with melting and freezing at boundaries 13

An approximate solution for small σ can be obtained by developing the ratio of cosh
and sinh functions to the second order in σ , which gives

σ =
10

1+
120

Pr Ra

(
1−

12(Φ+ +Φ−)
Ra

)
. (3.9)

The critical Rayleigh number, obtained by setting σ = 0, is the same as that of (3.4).
If GrT ≡Pr Ra (similar to the Grashof number but with κ in place of ν) is large, the
expression for the growth rate reduces to

σ = 10
(

1−
12(Φ+ +Φ−)

Ra

)
. (3.10)

In the limit of a large σ ,

2σ−1/2 cosh σ 1/2
− 1

sinh σ 1/2
− 1→−1 (3.11)

and the dispersion relation reduces to

0=
σ 2

GrT
+
Φ+ +Φ−

Ra
σ − 1. (3.12)

The positive root is

σ =
Φ+ +Φ−

Ra
GrT

2

√1+
4

GrT

(
Ra

Φ+ +Φ−

)2

− 1

 (3.13)

which reduces to

σ =
Ra

Φ+ +Φ−
(3.14)

in the limit of (1/GrT)(Ra/Φ+ +Φ−)2� 1. The growth rate in the large-GrT limit is
plotted as function of Ra/Rac on figure 2.

3.2. Steady-state translation
The steady-state finite-amplitude translation mode is solution of

0=−Dp+ Raθ, (3.15)
wDθ =w+D2θ. (3.16)

Solving first the energy balance equation (3.16) subject to boundary conditions (2.6)
gives

θ = z+
cosh

(
w
2

)
− ewz

2 sinh
(

w
2

) ⇒ T =
1
2
+

cosh
(

w
2

)
− ewz

2 sinh
(

w
2

) . (3.17)
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FIGURE 2. (Colour online) Instability growth rate σ as a function of Ra/Rac, for infinite
GrT , as given by the numerical solution of the full dispersion relation (solid blue line),
and by the small- and large-σ approximations (black dashed lines).

Using the momentum balance equation (3.15) and the boundary conditions (2.16) then
gives

(Φ+ +Φ−)w= Ra


cosh

(
w
2

)
2 sinh

(
w
2

) − 1
w

 . (3.18)

This transcendental equation relates the translation velocity w to the Rayleigh number.
Close to onset, assuming the Péclet number, |w|, to be small, equation (3.18) can

be developed as a function of (Ra− Rac)/Rac to give to leading order

w=±2

√
15

Ra− Rac

Rac
. (3.19)

The corresponding temperature anomaly is

θ =
w
8
(1− 4z2)+O(w2), (3.20)

showing that the temperature only differs from the conduction solution by an amount
proportional to the Péclet number.

For a large Péclet number, |w| � 1, equation (3.18) reduces to

w∼±
Ra

2(Φ+ +Φ−)
=±

6Ra
Rac

. (3.21)

Figure 3 shows how the translation velocity |w| depends on Rayleigh number,
computed using the full equation (3.18) and either the low- or the large-velocity
development. It shows that the transition between the two regimes happens for
Ra∼ 2Rac.
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Complete solution
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Large-w approximation

FIGURE 3. (Colour online) Finite-amplitude velocity in the translation mode. The dashed
line is the small-velocity approximation given by (3.19), the dash-dotted line is the
large-velocity approximation given by (3.21) and the solid line is the solution to the full
equation (3.18).

In the high-Péclet-number regime, the temperature anomaly takes a simple form:

θ ∼ z+ sgn(w)
[

1
2
− ew(z−sgn(w)/2)

]
⇒ T ∼

1
2
[1+ sgn(w)] − sgn(w)ew(z−sgn(w)/2).

(3.22)

The exponential in the last equation is negligible everywhere except close to the upper
boundary (z= 1/2; respectively lower boundary, z=−1/2) when w� 1 (respectively
w � −1). Therefore, the temperature is essentially equal to that imposed at the
boundary the fluid originates from (0 at the top, 1 at the bottom) and adjusts to that
of the opposite side in a boundary layer of thickness δ ∼ 1/w. In dimensional units,
δ is simply defined as the thickness that makes the Péclet number approximately
1: Pe = wδ/κ ∼ 1. Figure 4 shows the temperature profiles for the upward and
downward translation modes computed both with the exact (3.17) and approximate
(3.22) expressions, showing that the approximation is quite good.

The steady-state velocity given by (3.21) can also be obtained from a simple
physical argument. In the steady-translation regime, the (uniform) topography at each
boundary is related to the translation velocity and the phase-change time scale by

h± = τφ±w. (3.23)

In steady state, the excess (respectively deficit) weight of the cooler (respectively
warmer) solid layer is balanced by the sum of pressure deviations from the hydrostatic
equilibrium at both boundaries as

αρ0g
1Td

2
=1ρ+gh+ +1ρ−gh−, (3.24)

where the temperature in the solid layer has been assumed uniform, i.e. the
contribution of the boundary layer to its buoyancy has been neglected. This gives for
the translation velocity

w=
αρ0g1Td

2(1ρ+gτφ+ +1ρ−gτφ−)
. (3.25)

In dimensionless form, this is exactly (3.21).
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0.4

0.4 0.6

T

z

0.8 1.0

0.2

0.2

0

0

–0.2
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FIGURE 4. (Colour online) Temperature profile in the translation mode for (Ra −
Rac)/Rac = 5. The solid (respectively dashed) line is for the ascending (respectively
descending) mode calculated using the full equation (3.17) and the up (respectively down)
triangles are obtained using the approximate equation (3.22).

It is also worth considering the heat transfer efficiency in the translation mode.
Equation (3.16) can be integrated to show that wT − DT is independent of z and
this implies that w = DT(−1/2) − DT(1/2), meaning that the difference between
the conductive heat fluxes across the horizontal boundaries is equal to the advection
by translation. Figure 4 shows that the heat flow (Nusselt number Nu) should be
computed on the exit side, where a boundary layer is produced:

Nu=−DT
(

sgn(w)
1
2

)
= |w| −DT

(
−sgn(w)

1
2

)
= |w| +

we−|w|/2

2 sinh(w/2)
. (3.26)

The small- and large-|w| limit cases give

Nu= 1+
|w|
2
= 1+

√
15

Ra− Rac

Rac
, (3.27)

Nu= |w| = 6
Ra
Rac

, (3.28)

respectively. The large-Rayleigh-number behaviour is in striking contrast to the
situation encountered for standard Rayleigh–Bénard convection, for which Nu ∼ Raβ

with β ∼ 1/3.

4. Non-translating modes with Φ+ =Φ−

In this section, we consider the situation with values of the phase-change parameter
of both boundaries equal, Φ ≡Φ+ =Φ−.

4.1. Linear stability
Non-translating solutions can be obtained using standard approaches for the classical
Rayleigh–Bénard problem. For the linear stability problem, a solution using separation
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Convection with melting and freezing at boundaries 17

of variables is sought, i.e. u = U(z)eikxeσ t, and similarly for w, p and θ . Linearised
equations (2.18) to (2.20) reduce to

ikU +DW = 0, (4.1)
Pr[−ikP+ (D2

− k2)U] = σU, (4.2)
Pr[−DP+ (D2

− k2)W + RaΘ] = σW, (4.3)
W + (D2

− k2)Θ = σΘ (4.4)

since, at the linear stage, the problem is fully degenerate in terms of orientation of
the mode, which can be taken as depending only on x. These equations must be
complemented by boundary conditions applying at z=±1/2:

DU + ikW = 0, (4.5)
±Φ±W + 2DW − P= 0, (4.6)

Θ = 0. (4.7)

This forms a generalised eigenvalue problem that we solve using a Chebyshev-
collocation pseudo-spectral approach (e.g. Canuto et al. 1988; Guo, Labrosse &
Narayanan 2012). Given the Chebyshev–Gauss–Lobatto nodal point zi= cos (iπ/N), i=
0 . . . N, in the interval [−1, 1], the values of the z-dependent mode functions at
zi/2 are denoted as Ui for U and similarly for other variables. Division by two is
required here to map the interval on which Chebyshev polynomials are defined onto
[−1/2, 1/2]. The kth derivative of each function at the nodal points is related to the
nodal values of the function itself by differentiation matrices:

U(k)
= D(k)

·U. (4.8)

The calculation of the differentiation matrices is done using a Python adaptation
(available at https://github.com/labrosse/dmsuite) of DMSUITE (Weideman & Reddy
2000). With these differentiation matrices, the system of equations (4.1) to (4.4) can
be written as a generalised eigenvalue problem of the form

L ·X= σR ·X, (4.9)

with X= (P;U;W;Θ)T the global vertical mode vector composed of the concatenation
of vectors P, U, W and Θ , and L and R two matrices representing the system with
its boundary conditions. The general structure of L reads as

L=

0 :N 0 :N 0 :N 1 :N − 1



0 ikI D 0 0 :N
0 D ikI 0 0

−PrikI Pr(D(2)
− k2I) 0 0 1 :N − 1

0 D ikI 0 N
−I 0 Φ+I + 2D 0 0
−PrD 0 Pr(D(2)

− k2I) PrRaI 1 :N − 1
−I 0 −Φ−I + 2D 0 N
0 0 I (D(2)

− k2I) 1 :N − 1,

(4.10)
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FIGURE 5. (Colour online) Critical Rayleigh number (a) and wavenumber (b) as functions
of the phase-change numbers, both taken equal here. Filled circles are results of the
calculation using the Chebyshev-collocation technique, the dash-dotted lines represent the
classical Φ→∞ limit, the dashed line in (a) represents the result for the translating mode
(3.4) and the solid lines represent the small-Φ leading-order development.

with I and 0 the identity and zero matrices, respectively. The restrictions of line
and column indices, indicated on the right and top of the matrix respectively, are
necessary to leave out the boundary points from applications of (4.1) to (4.4), since
these follow equations (4.5)–(4.7) instead. For example, in the second line of the
matrix that represents (4.5), only the first line (index 0) of the matrice 0, D, ikI and
0 are present. Note that the boundary values for the temperature are simply left out
since the Dirichlet boundary condition (4.7) is, in a collocation approach, naturally
enforced by removing the extreme Chebyshev points.

The R matrix contains ones on the diagonal corresponding to the interior points
of the equations for U, W and Θ , with zeros elsewhere. When solving for an
infinite Prandtl number, which is the case below, the interior points for the U and
W equations are also set to 0, leaving ones only for the interior points of the Θ

equation. The resulting system is singular and many eigenvalues are infinite, one for
each zero on the diagonal of the R matrix. Filtering these spurious eigenvalues leaves
us with the relevant eigenvalues that are used to assess stability. For any values of
Φ−, Φ+ and k, the minimum value of Ra that makes the real part of one of the
eigenvalues become positive is the critical Rayleigh number for perturbations with that
wavenumber. Minimising Ra as function of k gives the critical Rayleigh number for
all infinitesimal perturbations. Figure 5 shows the evolution of the critical Rayleigh
number and the associated wavenumber as functions of the value of Φ±, both taken
equal, Φ+ = Φ− = Φ. One can see that the classical value derived by Rayleigh
(1916) is recovered when Φ→∞, as expected. In the other limit, Φ→ 0, the critical
Rayleigh number follows the analytical expression obtained for the translation mode
(§ 3), while k→ 0, as expected.
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Convection with melting and freezing at boundaries 19

The behaviour of the system in the limit of small Φ can be obtained using a
polynomial expansion of all the functions, both in z and Φ. Specifically, considering
the symmetry of the problem around z= 0, we write the temperature as

Θ =

N∑
n=0

anz2n. (4.11)

The Hermitian character of the linear problem (see appendix A) ensures that σ is
real and, therefore, σ = 0 at onset. Then W and U can be obtained using (4.4)
and (4.1). Equations (4.2) and (4.3) then provide two expressions for DP and their
equality implies several equations, one for each polynomial order considered. All the
functions are developed to the same order as the temperature, 2N. Note that even if
the definition of Θ for a given N only requires N+ 1 coefficients an, the development
of the other profiles to the same order requires the inclusion of an for values up to
n=N + 2 because of the derivatives in the linear system. Using, for example, N = 2
gives a pressure gradient DP that contains terms in z2n, n = 0 . . . 2, and provides
therefore three independent equations for the equality between the two expressions.
With the symmetry considered here, the boundary conditions (4.5)–(4.7) introduce
three additional equations for the coefficients an.

Setting first Φ = 0 leads to a non-trivial solution only for Ra = 0 and k = 0, the
solution being equal to the low-Φ development of the translation solution. To go
beyond that, each coefficient an is itself developed as a polynomial of Φ:

an =

J∑
j=0

an,jΦ
j. (4.12)

Similarly, the critical Rayleigh number Rac and the square of the critical wavenumber
k2 are developed in powers of Φ:

Rac =

J∑
j=0

rjΦ
j, k2

c =

J∑
j=0

KjΦ
j. (4.13a,b)

The three boundary conditions and the equations implied by the equality of the
two pressure expressions are then written and solved for increasing degrees in the
development in Φ. In practice, we restrict ourselves to N = J = 2. At order 0 in Φ,
the set of linear equations can admit a non-trivial solution only if the determinant
of the implied matrix is zero, which provides two possible values of r0. The lowest
one admits a minimum, r0 = 0, for K0 = 0. This implies a2,0 = a3,0 = a4,0 = 0 and
a1,0=−4a0,0. At order 1 in Φ, we get directly that a2,1= a3,1= a4,1= 0, a1,1=−4a0,1
and r1 = 24 with no information on K1. This is, however, obtained at the next order,
where we find that K1= 9/32 minimises r2, which is then r2=−81/256. The order-2
coefficients are also obtained as a function of a0,0, which is the value of the maximum
of Θ . These can then be used to determine the shape of the different functions Θ ,
W, U and P for small values of Φ. To leading order in Φ we get

kc =
3

4
√

2

√
Φ, (4.14)

Rac = 24Φ −
81
256

Φ2, (4.15)
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FIGURE 6. (Colour online) Variation of the maxima of profiles of P, U and W of the first
unstable mode (a–c, respectively), that for Θ being set to 1, as a function of Φ. Panel
(d) shows the difference between 24Φ and the critical Rayleigh number. On each plot,
the solid circles are the results of the calculation using the Chebyshev-collocation method
while the dashed lines are the low-Φ predictions of equations (4.15) to (4.19).

Θ = (1− 4z2)Θmax, (4.16)
W = 8Θmax, (4.17)

U =−3i
√

2ΦzΘmax, (4.18)

P=
z
2
(39− 64z2)ΦΘmax. (4.19)

Θmax = a0,0 is used to normalise all profiles. Note that the shape of the temperature
(4.16) and vertical velocity (4.17) profiles are of order 0 in Φ and are equal to their
counterpart in the steady-state-translation solution (3.20). The small-Φ development
of the solution to the linear problem can be compared to the results obtained using
the Chebyshev-collocation method for cross-validation. The match between the mode
profiles is very good for Φ 6 0.1. Figure 5 shows the variation of Rac and kc as
functions of Φ as computed by the Chebyshev-collocation approach (in solid symbols)
as well as the analytical value classically obtained for non-penetrating conditions and
the small-Φ expansion. Additionally, figure 6 shows the variation of the maximum of
profiles of P, U and W, that of Θ being set to 1, as well as the difference between
the critical Rayleigh number for uniform translation (24Φ) and that for a deforming
mode, each as functions of Φ. It shows the consistency between the calculations using
the Chebyshev-collocation approach and the low-Φ development.
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FIGURE 7. (Colour online) First unstable mode for three different values of Φ+=Φ−: 105

(a), 10 (b) and 10−2 (c). The colour represents temperature and the flow lines thickness
is proportional to the norm of the velocity. Note that the x range is different in (a), (b)
and (c) due to the change in wavelength. The z axis has been scaled accordingly in (a)
and (b), but not in (c) as the height of the figure would be too small to read.

At low Φ, the wavelength of the first unstable mode tends to infinity as ∼1/
√
Φ,

which means that deformation of the solid becomes negligible. Accordingly, the
viscous stress ceases to be a limiting factor for the flow, and Rac/Φ, which contains
no viscosity, tends to a constant value. This ratio,

Ra
Φ
=
ρα1Td2

1ρ±κτφ
≡
1ρT

1ρ±

τκ

τφ
, (4.20)

is the ratio of the driving thermal density difference 1ρT to that involved in the phase
change, times the ratio of the thermal time scale to the phase-change time scale, and
can be considered as the effective Rayleigh number in the low-Φ limit.

Figure 7 shows the first unstable mode for different values of the phase-change
parameter. In the case of Φ = 105, the critical Rayleigh number and wavenumber
are very close to that obtained using classical non-penetrating boundary conditions
(figure 5), and so is the first unstable mode. For Φ = 10, the critical Rayleigh number
has already decreased significantly (Rac = 190), the critical wavelength significantly
increased (λc = 4.55) and the critical mode displays streamlines that cross both
boundaries. For Φ = 10−2, the critical Rayleigh number is slightly less than 0.24,
the critical wavelength is approximately 115 and streamlines are essentially vertical.
At each horizontal position, this mode of convection has exactly the same shape as
the linearly unstable translation mode, but it is modulated laterally, with a very long
wavelength that increases as ∼1/

√
Φ when Φ → 0. The fact that this makes the
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critical Rayleigh number smaller than that for pure solid-body translation is rather
mysterious.

The critical Rayleigh number for the instability for the non-null k mode is always
lower than that for pure translation, as shown by (4.15) and figure 5, and should
therefore always be favoured. This might be true in an infinite layer but, in practical
cases, the horizontal direction is periodic, either in numerical models or in a planetary
mantle. In that case, the minimal value of k that can be attained is 2π/L, with L the
horizontal periodicity. If the value of k corresponding to the critical Rayleigh number
is smaller than 2π/L, the translation mode could still be favoured. The study of the
stability of the uniformly translating solution with respect to laterally varying modes
is a simple extension to the stability of the conduction solution. Considering now that
(p, v, θ) are infinitesimal perturbations with respect to the steady-translation solution
(pt, wtẑ, Tt), the only equation to be modified compared to that treated in § 4.1 at
infinite Prandtl number is the temperature equation, which now reads

(D2
− k2)Θ −wtDΘ −WDTt = σΘ (4.21)

instead of (4.4). Using the steady-translation solution provided in § 3.2, this equation
can be implemented in the stability calculation to compute the growth rate of
a deforming perturbation of wavenumber k when a steady-translation solution is in
place for a given Rayleigh number above the critical value for the translation solution.
We denote by ε= (Ra−Rac)/Rac the reduced Rayleigh number, Rac= 12(Φ++Φ−),
being here the critical value for the onset of uniform translation. When ε tends to
zero, the translation velocity wt tends to zero and the system of equations tends
to that solved for the stability of the steady-conduction solution. But since ε = 0
corresponds to the critical Rayleigh number for the translation solution, which is
finitely greater than the critical value for the instability with finite k, we expect a
finite instability growth rate in a finite band of wavenumbers. We therefore expect an
infinitely slow translation solution to be unstable with respect to deforming modes.
However, when the Rayleigh number is increased above the critical value for the
translation mode, we expect this translation mode with a finite velocity to become
more stable since perturbations with a finite k are then transported away by translation.
Figure 8 indeed shows that, for a given value of the phase-change number Φ (equal
for both boundaries here), increasing the Rayleigh number above the critical value
for the translation mode, and therefore the steady-state-translation velocity, the linear
growth rate of the deforming mode decreases. For a given Rayleigh number, the
growth rate curve as a function of wavenumber displays a maximum; this maximum
decreases with Rayleigh number and eventually becomes negative. There is therefore
a maximum Rayleigh number beyond which the translation solution is linearly stable
against any deforming perturbation. Figure 9 shows the range of unstable modes
in the k–ε space for three different values of the phase-change number. The range
of Rayleigh numbers above the critical one for translation that allows the finite-k
instabilities to develop shrinks when Φ decreases and the translation mode becomes
increasingly more relevant. Figure 10 shows that the maximum growth rate of the
instability at ε = 0 varies linearly with Φ, as also does the maximum value of ε for
an instability to develop. The wavenumber for the instability is found to be equal to
that for the instability of the conductive solution (figure 9), and therefore varies as
√
Φ (figure 5).
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FIGURE 8. (Colour online) Growth rate of deforming perturbation over a steady-translating
solution as a function of the perturbation wavenumber k, for different values of the
reduced Rayleigh number ε= (Ra− Rac)/Rac and for Φ+ =Φ− = 1.
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FIGURE 9. (Colour online) Range of wavenumbers as a function of the reduced Rayleigh
number for which the translation solution is unstable versus deforming modes. Three
different shaded regions for three different values of Φ are represented. For each shaded
area, the dashed line represents the values of the wavenumber giving the maximum growth
rate as a function of the reduced Rayleigh number.

4.2. Weakly nonlinear analysis
Going beyond the linear stability is necessary to assess the behaviour of the system
at Rayleigh numbers larger than the critical value, in particular to investigate the heat
transfer efficiency of the convective system. We here follow the approach classically
developed for weakly nonlinear dynamics (Malkus & Veronis 1958; Schlüter, Lortz
& Busse 1965; Manneville 2004). The system of partial differential equations (2.18)–
(2.20) is separated into its linear and nonlinear parts as

L(∂t, ∂x, ∂z, Ra)X=N(X,X), (4.22)
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FIGURE 10. (Colour online) Maximum growth rate for a non-null k mode at the critical
Rayleigh number for the onset of the translation mode (a) and maximum reduced Rayleigh
number for a positive growth rate of a deforming instability over a finite-amplitude
translation mode (b), as functions of the phase-change number.

with X= (p; u;w; θ)T and for an infinite Prandtl number case

L=


0 ∂x ∂z 0
−∂x ∇

2 0 0
−∂z 0 ∇

2 Ra
0 0 1 ∇

2
− ∂t

 , N(Xl,Xm)=


0
0
0

ul∂xθm +wl∂zθm

 .
(4.23a,b)

The linear operator is further developed around the critical Rayleigh number as

L= Lc − (Ra− Rac)M. (4.24)

By giving Rac as weight to the θ part in the dot product 〈•|•〉, it can be shown
that the operator Lc is self-adjoint (Hermitian), 〈X2|LcX1〉 = 〈LcX2|X1〉 (see appendix
for details). Among other things, it implies that all its eigenvalues are real and the
marginal state is characterised by ∂t= 0. The solution X and the Rayleigh number are
developed as

X= εX1 + ε
2X2 + ε

3X3 + · · · , (4.25)
Ra= Rac + εRa1 + ε

2Ra2 + · · · , (4.26)

and (4.22) leads to a set of equations for increasing orders of ε:

LcX1 = 0, (4.27)
LcX2 =N(X1,X1)+ Ra1MX1, (4.28)

LcX3 =N(X1,X2)+N(X2,X1)+ Ra1MX2 + Ra2MX1, (4.29)

LcXn =

n−1∑
l=1

N(Xl,Xn−l)+

n−1∑
l=1

RalMXn−l. (4.30)
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Equation (4.27) is simply that of the linear stability problem and its solution is X1=

Xc, which can be suitably normalised such that the maximum value of W is 1. Taking
the scalar product of equations of subsequent orders by X1 and making use of the
Hermitian properties of Lc provides solvability conditions (Fredholm alternative) that
determine the values of Rai. For Ra1 one gets:

Ra1 =−
〈X1|N(X1,X1)〉

〈X1|MX1〉
. (4.31)

The x dependence of X1 is of the form eikcx, i.e.

X1 = Z1,1(z)eikcx
+ c.c., (4.32)

with Z1,1(z) = (P1,1(z); U1,1(z); W1,1(z); Θ1,1(z))T the vector composed of the four
vertical modes for all four variables, at degree 1 of weakly nonlinear development
(first index) and for the first mode in the horizontal direction (second index).

Then, N(X1, X1) contains two contributions to its x dependence, one constant and
one in ei2kcx. It is therefore orthogonal to X1 and it can then be concluded that Ra1= 0.
The general solution to (4.28) is the sum of the solution to the homogeneous equation
and a particular solution of the equation with a right-hand side. Since we are seeking
a solution X2 which adds to X1, i.e. orthogonal to it, and since X1 is the general
solution to the homogeneous equation, only the particular solution is of interest. The
x dependence of X2 will contain a constant value of the form Z2,0(z) and a term of
the form Z2,2(z)ei2kcx. Computing the scalar product of (4.29) by X1 gives the value
of Ra2:

Ra2 =−
〈X1|N(X2,X1)〉 + 〈X1|N(X1,X2)〉

〈X1|MX1〉
. (4.33)

X2 containing a term proportional to ei2kcx and a term independent of x, N(X2, X1)
and N(X1, X2) have contributions of the form e±ikcx which can resonate with X1 and
make Ra2 non-null. In that case, the amplitude parameter is, to leading order,

ε =

√
Ra− Rac

Ra2
. (4.34)

The procedure can be extended to any higher order and the general behaviour can be
predicted by recursive reasoning. In particular, it is easy to show that solutions of even
and odd order contain contributions to their x dependence as even and odd powers of
eikcx up to their order value, i.e.

X2n =

n∑
l=0

Z2n,2l(z)ei2lkcx
+ c.c., (4.35)

X2n+1 =

n∑
l=0

Z2n+1,2l+1(z)ei(2l+1)kcx
+ c.c., (4.36)

the vertical normal mode Zn,l = (Pn,l(z); Un,l(z);Wn,l(z); Θn,l(z))T being indexed with
the order n of the solution and harmonic number l in the x dependence. It also appears
recursively that

Ra2n =−

2n∑
l=1

〈X1|N(Xl,X2n+1−l)〉 +

n−1∑
l=1

Ra2l〈X1|MX2(n−l)+1〉

〈X1|MX1〉
, (4.37)
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Ra2n+1 = 0. (4.38)

This is true for orders 1 and 2, as explained above and, assuming it holds up to
degrees 2n− 1 and 2n, the expressions for degrees 2n+ 1 and 2n+ 2 can be predicted
from (4.30). First, equation (4.30) of order 2n+ 1 includes on the right-hand side only
terms up to degree 2n and can be used to predict the form of X2n+1. Each term of the
form N(Xl,X2n+1−l) contains only odd powers of eikcx since it is composed of products
of even (respectively odd) and odd (respectively even) polynomials of eikcx for l even
(respectively odd). Each term of the form RalMX2n+1−l is either null for l odd or an
odd polynomial of eikcx for l even. Summing up, the right-hand side of the equation
being an odd polynomial of eikcx, the solution to the equation is of the form (4.36).

Taking the dot product of (4.30) of order 2n+ 2 with X1 and using the Hermitian
character of Lc provides the equation for Ra2n+1. Starting first with the last term on
the right-hand side, all the terms in the sum except the one in Ra2n+1 drop out either
because Ral is null for l odd or because the dot product 〈X1|MX2n+2−l〉= 0 for l even,
since X2n+2−l then contains only even powers of eikcx. We are left with Ra2n+1〈X1|MX1〉.
Considering the first sum on the right-hand side, each term N(Xl,X2n+2−l) is an even
polynomial of eikcx, as the product of either two even polynomials (for l even) or two
odd polynomials (for l odd). Therefore, each of these terms is orthogonal to X1 and
Ra2n+1 = 0. The same equation (4.30)2n+2 contains only even powers of eikcx on the
right-hand side, and this justifies equation (4.35) for the order 2n+ 2.

Finally, (4.37)2n+2 is obtained by simply taking the dot product of (4.30)2n+3 with
X1.

An important diagnostic for convection is the heat transfer efficiency measured
by the dimensionless mean heat flux density, the Nusselt number Nu. Since the
temperature is uniform on each horizontal boundary and the average vertical velocity
is null for the deforming mode considered here, the advective heat transfer across the
horizontal boundaries is null. Therefore, the Nusselt number can easily be computed
by taking the vertical derivative of the temperature at either boundary. In the Fourier
decomposition used for the nonlinear analysis, only the zeroth order terms in eikcx

contribute to the horizontal average, and they only appear in terms that are even in
the ε development. Restricting ourselves here to an order-2 development, the Nusselt
number can be computed as

Nu= 1− ε2Dθ2,0

(
1
2

)
= 1−Dθ2,0

(
1
2

)
Rac

Ra2

Ra− Rac

Rac
, (4.39)

where (4.34) was used. This equation shows the classical result that the convective
heat flow, Nu − 1, increases linearly with the reduced Rayleigh number ε =

(Ra − Rac)/Rac for small values of ε and the determination of the coefficient of
proportionality, A, is the main goal of the weakly nonlinear analysis presented here.
Note that N(X2, X1) and N(X1, X2) have a non-zero component only along the θ

space (4.23) so that, because of our definition of the dot product (appendix A) and
using (4.33), Ra2 is proportional to Rac.

The procedure just outlined can be applied to the case with classical boundary
conditions. In particular, for free-slip non-penetrating boundary conditions, the
problem can be solved analytically (Malkus & Veronis 1958; Manneville 2004).
Starting with the vertical velocity in the critical mode as w1 = sin kx cos πz, one gets
θ1= (π

2
+ k2)−1 sin kx cos πz, Rac= (π

2
+ k2)3/k2, w2= 0, θ2= (8π(π2

+ k2))−1 sin 2πz
and Ra2 = (π

2
+ k2)2/8k2. This gives A=−Dθ2,0(1/2)Rac/Ra2 = 2.
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FIGURE 11. (Colour online) Heat flux coefficient as a function of the phase-change
numbers, equal to each other (a), and Nusselt number as a function of Rayleigh number
for different values of Φ± (b). In (a), the solid line gives the limit of two non-penetrating
boundaries while the dashed line represents the first-order development obtained for Φ→0
(4.44).

Similarly, the low-Φ expansion of the linear mode, equations (4.14)–(4.19), can be
used to compute the behaviour of coefficient A at low Φ values. We choose Θmax =

1/16 to have a normalisation consistent with the one above (the amplitude of X1 is
not defined by the linear problem and changing its normalisation, say by multiplying
it by a factor a, leads to X2 and Ra2 multiplied by a2, so that by virtue of (4.34), the
total solution X is unchanged) and the solution at order 2 is searched for in the form
of z polynomials, and we get, to order 1 in Φ,

θ2 =−
z

48

(
z2
−

1
4

)[
1+

(
1−

Φ

64

)
cos 2kcx

]
, (4.40)

u2 =−

√
Φ

192
√

2
sin 2kcx, (4.41)

w2 =
zΦ
256

cos 2kcx, (4.42)

Ra2 =
1

320
−

43Φ
430 080

. (4.43)

The heat flux coefficient is then, to order 1 in Φ:

A=
4480

1344− 43Φ
. (4.44)

Figure 11(a) represents the value of the heat flux coefficient A as a function of Φ
obtained using the Chebyshev-collocation approach described above (solid circles, see
appendix B for details on the calculation of nonlinear terms) and the two limiting
cases of Φ→∞ (solid line) and Φ→ 0 (dashed line), which shows a good match.

The heat flux coefficient A, which equals 2 for classical non-penetrating boundaries,
tends to 10/3 when Φ→ 0. This ∼50 % increase makes the Nusselt number increase
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FIGURE 12. (Colour online) First unstable mode when only the bottom boundary is a
phase-change interface, with Φ− = 10 (a) and Φ− = 10−2 (b). The temperature anomaly
compared to the conduction solution is represented in colours and streamlines have a
thickness proportional to the relative norm of the velocity.

when Φ tends to zero, but the main effect comes from the decrease of the critical
Rayleigh number as ∼24Φ, which makes the slope dNu/dRa go to infinity as
∼5/36Φ. This is illustrated on figure 11(b), which shows the Nu − Ra relationship
derived from this analysis for different values of Φ. The heat transfer efficiency
is greatly increased by decreasing Φ for two reasons. First, it makes the critical
Rayleigh number decrease so that convection starts with a lower Rayleigh number.
Second, the rate at which the Nusselt number increases with Ra above its critical
value is also drastically increased when Φ is decreased.

5. Solutions with only one phase-change boundary
Let us now consider the case when only one boundary is a liquid–solid phase

change, the other one being subject to a non-penetrating condition. With the plane
layer geometry considered here, the situation with the upper boundary having a phase
change is symmetrical to the one with a lower boundary having a phase change. The
latter is considered here since it applies to the dynamics of the icy shells of some
satellites of giant planets (Čadek et al. 2016) and possibly to Earth’s mantle for a
large part of its history (Labrosse et al. 2007).

The analysis is done in the same way as for the case with a phase change at
both boundaries. Figure 12 shows examples of the first unstable mode for two
different values of Φ−. The upper one shows that when Φ− = 10, the convection
geometry is not very different from that with a non-penetrating condition (hereafter
‘the classical situation’) but the streamlines are slightly open at the bottom. The
horizontal wavelength at onset, λc = 3.57, is larger than the one for the classical
situation (λc = 2

√
2) and the critical Rayleigh number is smaller (Rac = 352). For

Φ− = 10−2, the streamlines are almost normal to the bottom boundary and the
wavelength λc = 5 is approximately twice the classical one, as if the solution was
the upper half of a classical convective domain. However, the boundary condition
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FIGURE 13. (Colour online) Critical Rayleigh number (a) and wavenumber (b) as function
of the phase-change number for the bottom boundary Φ−, the top boundary having a non-
penetrating condition. The dash-dotted lines represent the classical values obtained for two
non-penetrating conditions, for reference.

imposed for temperature at the bottom is different from what would be obtained in
that case, and the critical Rayleigh number, Rac = 153, is approximately a quarter of
the classical one. This can be understood in a heuristic way: the Rayleigh number
can be written as

Ra=
τντκ

τ 2
c

=
α1Tg

d
d2

ν

d2

κ
, (5.1)

with τc the convective time scale associated with acceleration due to gravity, τν
the viscous time scale and τκ the thermal diffusion time scale. Compared to the
classical situation, we have the same imposed temperature gradient, hence the same
τc. Similarly, diffusion happens on the same vertical length scale and we have the
same τκ . On the other hand, the bottom boundary imposes no limit to vertical flow
and the viscous deformation is distributed over a vertical distance twice the thickness
of the layer, which increases the effective viscous time scale by a factor of four.
Therefore, the Rayleigh number imposed here is equivalent to a value four times
larger than in the classical situation.

Figure 13 shows the variation of the critical Rayleigh number (panel a) and
wavenumber (panel b) as a function of Φ−, and one can see that both tend to a
finite value when Φ−→ 0. The mode obtained for Φ− = 10−2 is close to that limit.
Contrary to the situation with a phase change at both boundaries, the presence of a
non-penetrating boundary condition implies that some deformation is always needed
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FIGURE 14. (Colour online) Heat flux coefficient as a function of the bottom
phase-change number Φ−, the top boundary being non-penetrative (a), and Nusselt number
as a function of Rayleigh number for different values of Φ− (b).

for convection to occur, which makes viscosity still a limiting factor at vanishing
values of Φ−.

Considering now the weakly nonlinear analysis results, figure 14(a) shows that the
heat flux coefficient for only one phase-change boundary condition tends to slightly
greater than 1; that is, approximately half that for the case for both non-penetrative
boundaries. Combining that with a critical Rayleigh number that is approximately
four times smaller makes dNu/dRa approximately twice that for the classical situation.
Therefore, the efficiency of heat transfer is improved compared to the classical case,
both because convection starts for a smaller Rayleigh number and because the rate
of variation of the Nusselt number with Ra is approximately twice as large. This is
illustrated on figure 14(b).

In contrast to the case with both boundaries being a phase change with equal values
of Φ, the case discussed in this section breaks the symmetry around the z= 0 plane.
In particular, this means that the mean temperature in the domain is not equal to
the average of both boundaries, 〈T〉 6= 1/2 in dimensionless form. As for the Nusselt
number (4.39), a contribution from all even orders in ε is expected, and to the leading
order explored here,

〈T〉 =
1
2
+ 〈θ2,0〉

Rac

Ra2

Ra− Rac

Rac
≡

1
2
+ B

Ra− Rac

Rac
. (5.2)

The coefficient B defined above is computed exactly for the case of both non-
penetrating boundaries, and as expected found to be null. Figure 15(a) shows the
evolution of this coefficient as a function of Φ−. One can see that it tends to a finite
positive value in the limit Φ−→ 0. Therefore, for small values of Φ−, the average
temperature is expected to be larger than 1/2 (figure 15b). For the same range of
Rayleigh number as explored in figure 14, figure 15(b) also shows the evolution of
the mean temperature at the leading order given by (5.2). For low values of Φ−, the
mean temperature increases rapidly with Rayleigh number.

The asymmetry of the mean temperature for low values of Φ− is also expressed in
the finite-amplitude solution that can be plotted for a given value of ε. The range of
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FIGURE 15. (Colour online) Mean temperature coefficient (B defined in (5.2)) as function
of the bottom phase-change parameter Φ− (a) and mean temperature as function of Ra
for different values of Φ− (b). The range of Ra values explored is the same as that used
for figure 14.

0 1 2 3 4 5

x

−0.50

−0.25

0

0.25

0.50

z

0
0.2
0.4
0.6
0.8
1.0

T

FIGURE 16. (Colour online) Finite-amplitude solution for Φ− = 10−2, ε = 5.58 and a
non-penetrating boundary condition at the top.

validity of such solutions as a function of ε depends on the order of the development.
Computing the solution only up to order 3 in ε, we restrict ourselves to small values
of this number and figure 16 shows the result for ε= 5.58 corresponding to Nu= 1.5.
This shows that the down-welling current is more focused than the up-welling
one. This situation is similar to the case of volumetrically heated convection (e.g.
Parmentier & Sotin 2000), which is not the case here. Preliminary direct numerical
simulations confirm this behaviour, but the full exploration of this question goes
beyond the scope of the present paper.

6. Conclusion

In the context of the dynamics of planetary mantles, convection can happen in solid
shells adjacent to liquid layers. The viscous stress in the solid builds up a topography
of the interface between the solid and liquid layers. In the absence of mechanisms
to erase topography, its buoyancy equilibrates the viscous stress, which effectively
enforces a non-penetrating boundary condition. On the other hand, if the topography
can be suppressed by melting and freezing at the interface at a faster pace than its
building process, the vertical velocity is not required to be null at the interface. The
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non-penetrating boundary condition is then replaced by a relationship between the
normal velocity, its normal gradient and pressure (2.16), and involving a dimensionless
phase-change number, Φ, the ratio of the phase-change time scale to the viscous
time scale (2.15). When this number is large, we recover the classical non-penetrating
condition, while the limit of low Φ allows a large flow through the boundary.

When both boundaries are characterised by a low Φ number, a translating,
non-deforming, mode of convection is possible and competes with a deforming
mode with wavenumber k that decreases as

√
Φ, and therefore ressembles translation

with alternating up- and downward directions. The critical Rayleigh number for the
onset of the deforming mode is slightly below that of the translation mode, Ra= 24Φ,
but the latter is found to be stable against a deforming instability when the Rayleigh
number is ∼Φ2 above the critical value. It is therefore likely to dominate when both
boundaries are characterised by low values of Φ. In both translating and deforming
modes of convection, the heat transfer efficiency, the Nusselt number, is found to
increase strongly with Rayleigh number at small values of Φ.

When only one boundary is a phase-change interface with a low value of Φ, the
wavenumber is approximately half and the critical Rayleigh number is approximately
a quarter those of the corresponding values for the classical non-penetrating boundary
condition. Close to onset, a weakly nonlinear analysis shows that the Nusselt number
varies linearly with the Rayleigh number with a slope that is approximately twice that
for both non-penetrating boundary conditions. The average temperature is also found
to increase strongly with Rayleigh number and the flow geometry is strongly affected,
with down-welling currents more focused than up-welling ones.

Overall, having the possibility of melting and freezing across one or both horizontal
boundaries of an infinite Prandtl number fluid makes convection much easier (i.e. the
critical Rayleigh number is strongly reduced), the preferred horizontal wavelength
much larger and heat transfer much stronger, with important potential implications
for planetary dynamics.
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Appendix A. Self-adjointness of operator Lc

Using a Fourier decomposition for the horizontal decomposition, Lc simply reads
as

Lc =


0 ik D 0
−ik D2

− k2 0 0
−D 0 D2

− k2 Rac

0 0 1 D2
− k2,

 (A 1)

where the time derivative has been omitted since the linear instability is found to be
stationary. In a linear stability analysis, adding a growth rate σ on the diagonal of
the matrix would not alter the adjoint calculation, as will appear below. The boundary
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conditions are given by (4.5) to (4.7). In the calculation of the dot product, the θ part
is given Rac as weight and the horizontal integral can be factored out:

〈X2|LcX1〉 =

∫
ei(k2−k1)dx

[∫ 1/2

−1/2
P̄2(ikU1 +DW1) dz

+

∫ 1/2

−1/2
Ū2(−ikP1 + (D2

− k2)U1) dz

+

∫ 1/2

−1/2
W̄2(−DP1 + (D2

− k2)W1 + RacΘ1) dz

+Rac

∫ 1/2

−1/2
Θ̄2(W1 + (D2

− k2)Θ1) dz

]
, (A 2)

where the overbar means complex conjugate. Since the x part poses no difficulty, we
only consider the z part, which we denote as 〈•|•〉z. Reordering the different integrals
in (A 2) so that terms of X1 are factored out and performing integration by parts on
each term including D, we get

〈X2|LcX1〉z =

∫ 1/2

−1/2
(−ikŪ2 +DW̄2)P1 dz+

∫ 1/2

−1/2
(ikP̄2 + (D2

− k2)Ū2)U1 dz

+

∫ 1/2

−1/2
(DP̄2 + (D2

− k2)W̄1 + RacΘ̄2)W1 dz

+Rac

∫ 1/2

−1/2
(W̄2 + (D2

− k2)Θ̄2)Θ1 dz

+ [P̄2W1]
1/2
−1/2 + [Ū2DU1]

1/2
−1/2 − [U1DŪ2]

1/2
−1/2 − [W̄2P1]

1/2
−1/2

+ [W̄2DW1]
1/2
−1/2 − [W1DW̄2]

1/2
−1/2 + Ra([Θ̄2DΘ1]

1/2
−1/2 − [Θ1DΘ̄2]

1/2
−1/2).

(A 3)

The integral part shows that the adjoint linear system is the same as the direct one,
with Lc as operator. The boundary conditions are such as to allow suppression of all
the boundary values in (A 3). The boundary conditions (4.5) to (4.7) are applied to
X1 to remove Θ1(±1/2) and replace DU1 and P1. In addition, the mass conservation
equation applied to X2 allows one to replace DW2. Factorising W1, U1 and Θ1 gives
for the boundary conditions

[W1(−P̄2 ±Φ
±W̄2 + 2DW̄2)]

1/2
−1/2 + [U1(−ikW̄2 +DŪ2)]

1/2
−1/2 − Ra[Θ̄2DΘ1]

1/2
−1/2 = 0.

(A 4)

Since W1, U1 and DΘ1 can take arbitrary values on the boundaries, the differences
can only be eliminated in a general manner by setting all their coefficients to 0, which
gives the boundary conditions for the adjoint:

DU2 + ikW2 = 0, (A 5)
±Φ±W2 + 2DW2 − P2 = 0, (A 6)

Θ2 = 0. (A 7)

The adjoint problem is therefore identical to the direct one. Among other implications,
all eigenvalues of Lc must be real, which is consistent with our numerical findings.
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Appendix B. Expression of the nonlinear terms

Computation of the nonlinear term N(Xn, Xm) (4.23) is the trickiest part of the
procedure explained in § 4.2 and deserves some details provided here. First of all, it
contains only a Θ component, referred to as N(Xn, Xm)Θ . To compute it, one needs
first to decompose indices n and m as

n= 2p+ q with p=
⌊

n
2

⌋
, (B 1)

m= 2r+ s with r=
⌊

m
2

⌋
, (B 2)

where b c denotes the floor function. In computing N(Xn,Xm)Θ , one needs to account
for the full (i.e. real) expression of Xn and Xm including the complex conjugate. They
write

Xn =

p∑
l1=0

Zn,2l1+q(z)ei(2l1+q)kx
+ c.c., (B 3)

Xm =

r∑
l2=0

Zm,2l1+s(z)ei(2l2+s)kx
+ c.c. (B 4)

Using (4.23), we get

N(Xn,Xm)Θ =

p∑
l1=0

q∑
l2=0

{[
i(2l2 + s)kUn,2l1+qΘm,2l2+s

+Wn,2l1+qDΘm,2l2+s
]
ei[2(l1+l2)+q+s]kx

+
[
−i(2l2 + s)kUn,2l1+qΘ̄m,2l2+s

+Wn,2l1+qDΘ̄m,2l2+s
]
ei(2(l1−l2)+q−s)kx

}
+ c.c. (B 5)

The harmonics of the first term are always positive while those of the second term
can be negative. Either way, each term has its complex conjugate and we solve only
for the positive or null harmonics, the rest of the solution simply being obtained as
the conjugate of the computed part.
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