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An experiment of thermal convection with significant compressible effects is presented.
The high-gravity environment of a centrifuge and the choice of xenon gas enable us to
observe an average adiabatic temperature gradient up to 3.5 K cm−1 over a 4 cm high
cavity. At the highest rotation rate investigated, 9990 rpm, the superadiabatic temperature
difference applied to the gas layer is less than the adiabatic temperature difference. The
convective regime is characterized by a large Rayleigh number, about 1012, and dominant
Coriolis forces (Ekman number of order 10−6). The analysis of temperature and pressure
fluctuations in our experiments shows that the dynamics of the flow is in a quasigeostrophic
regime. Still, a classical power law (exponent 0.3 ± 0.04) is observed between the Nusselt
number (dimensionless heat flux) and the superadiabatic Rayleigh number (dimensionless
superadiabatic temperature difference). However, a potential hysteresis is seen between this
classical high flux regime and a lower heat flux regime. It is unclear whether this is due to
compressible or Coriolis effects. In the transient regime of convection from an isothermal
state, we observe a local decrease of temperature which can only be explained by adiabatic
decompression.
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I. INTRODUCTION

Thermal convection is an important mechanism in the dynamical and thermal evolution of
geophysical and astrophysical systems. One of the first theoretical descriptions of this phenomenon
was made by Boussinesq [1] in an incompressible regime. This study was used by Rayleigh
who obtained the criterion of stability of a layer of a fluid heated from below [2]. First works
on convection focused on incompressible fluids and could not be applied to geophysical and
astrophysical systems in which compressibility is important due to large variations across large-
scale objects. To study these kinds of systems, Ogura and Phillips [3] proposed the anelastic
approximation in which acoustic waves vanish while other compressibility effects are retained.
This approximation consists in considering convection as fluctuations around an isentropic state.
The nearly hydrostatic pressure gradient and the isentropic hypothesis imply the existence of a
temperature gradient, called the adiabatic gradient, from low temperatures at high altitude to high
temperatures at low altitude, as first suggested by Carnot [4].

The anelastic approximation has been applied to many different natural objects such as the
atmosphere [3], the Earth’s outer core [5], gas giant planets [6], and stars [7,8]. In addition, more
theoretical studies have been conducted to gain a better understanding of phenomena which take
place in compressible convection [9,10]. Nevertheless, all these studies are theoretical or based on
numerical approaches.
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On the other side, many convection experiments have been done, but the overwhelming majority
of them are in the incompressible regime. In the geophysical and astrophysical fields, most of
these experiments focus on the heat transfer due to convection by evaluating the Rayleigh-Nusselt
relationship and on the influence of the rotation on this transfer. Different geometries (cylindrical
cell, spherical, hemispherical) and fluids have been tested. A review of the obtained power laws was
made by Aurnou [11].

The adiabatic gradient has been observed in the Earth’s atmosphere by sounding balloons [12],
but there are very few experiments in which compressible convection effects are present. One study
in a gas-pressurized Rayleigh-Bénard cell [13] mentions the adiabatic gradient and takes it into
account to estimate a superadiabatic temperature difference. The total adiabatic temperature drop
was 9.5 mK (meaningful as the temperature control is within 0.4 mK) over a height equal to 105 mm,
using SF6 close to the critical point. The maximum temperature difference applied was 10 K, so that
the adiabatic temperature difference introduced a small correction most of the time, except for the
smallest temperature differences.

We present here an experiment especially designed to study compressible convection in the
laboratory. The parameters of the experiment have been optimized for having significant com-
pressible effects: we use xenon gas placed in a centrifuge. An important dimensionless parameter
characterizing compressibility during convection is the dissipation number

D = αgL

cp
, (1)

where α and cp are typical values for the thermal expansion coefficient and heat capacity of the fluid,
respectively, while g and L are typical values of gravity and size of the system, respectively. The
dissipation number D is equal to the difference between the maximal (near the bottom) and minimal
(near the top) values of the adiabatic temperature profile, divided by an average temperature in the
system. The dissipation number is also close to the typical ratio of the viscous dissipation to the
heat flux transferred across the system. Our experiments reach a dissipation number of 0.06, still an
order of magnitude less than that of the Earth’s outer core or mantle. This value D = 0.06 is enough
to reach an adiabatic profile of amplitude above 10 K. Usually, thermal convection experiments
in a laboratory have a dissipation number below 10−5. In our experiment, we also have access to
the departures of pressure and temperature away from their hydrostatic and adiabatic profiles. The
values show that the pressure departures contribute significantly to entropy departures. This means
that the anelastic liquid approximation should not be used to model our experiments, although the
criterion for its validity seems to be met according to Anufriev et al. [5].

In the first part (Sec. II), we explain how the experiment was designed to obtain compressible
effects in the laboratory, and we derive expressions for the adiabatic profile of an ideal gas placed in
a centrifuge. In Sec. III we describe extensively our experimental setup, and we study heat losses.
In Sec. IV we present the results of our experiment. We compare the temperature gradient to the
adiabatic gradient. We then study the Rayleigh-Nusselt power law relationship. Next, we examine
the temperature fluctuations and pressure signals to describe the flow dynamics. Finally, we study
how convection is established in the initial transient of an experiment through the propagation of a
convective front at the expense of a stably stratified state. Concluding remarks are made in Sec. V.

II. ADIABATIC PROFILE OF XENON GAS IN A CENTRIFUGE

In this section, we derive the analytic expression for the isentropic hydrostatic profile (also called
the adiabatic profile) in the rotating frame of a rotor centrifuge for xenon gas. When convection is
sufficiently developed in a compressible flow, the fluid state is isentropic due to the fast mixing of
entropy, compared to the timescale of viscous or thermal dissipation. With the additional condition
of hydrostatic equilibrium, a unique profile is obtained [14]. This profile, which is the neutral
convective stability profile [15], is called the adiabatic profile. Thus the equations governing the
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adiabatic profile are

∇sa = 0, (2)

∇pa = ρag, (3)

∇Ta = αsg, (4)

where the subscript a refers to the adiabatic profile, sa is the specific entropy, Ta the temperature, pa

the pressure, ρa the density, g the gravitational acceleration, and αs the isobaric entropy expansion
coefficient

αs = − 1

ρ

(
∂ρ

∂s

)
p

= αT

cp
, (5)

where α is the isobaric thermal expansion coefficient and cp the specific heat capacity at constant
pressure.

The so-called adiabatic gradient is defined by Eq. (4). It is easily deduced from Eq. (2) and
Eq. (3) by using thermodynamic identities. In order to obtain sizable effects of compressibility in
the experiment, our goal was to maximize the adiabatic gradient. There are two ways to do so:
artificially increase gravity g or choose a fluid with good thermodynamic properties (large αs, i.e.,
large αT value and small cp). We have been following both ways.

A convenient way to raise the value of gravity to a high level is to use a centrifuge which creates
a radial acceleration of amplitude r�2 where r is the distance from the rotation axis and � is the
rotation rate. With a rotation rate of several thousands rotations per minute and a rotor size of several
centimeters, the rotational acceleration can reach values several thousand times larger than Earth’s
gravity. As a consequence, we will neglect Earth’s gravity in the following and consider a purely
radial gravity.

In order to maximize the adiabatic gradient, it is better to use a gas (αT ∼ 1) than a liquid
(αT ∼ 10−4). The best gas candidates are thus the ones with the smallest cp, hence monoatomic
gases with large molar masses. We decided to use xenon, which is one of the monoatomic gas
with the smaller specific heat capacity due to its large molar mass. Radon gas is still better but
was discarded because of its radioactivity. In the range of our experiments, T ∈ [280 K; 330 K],
p ∈ [1.75 MPa; 2.25 MPa], xenon is not an ideal gas. Because there is no simple analytic equation of
state for xenon in these conditions, we use the CoolProp library [16] to evaluate the thermodynamic
properties of xenon in the conditions of our experiments. This library uses the empirical data of
xenon given by Lemmon and Span [17]. Thermophysical properties of Xenon at 300 K and 2 Mbar
are listed in Table I.

In Fig. 1 we plot the isobaric entropy expansion coefficient αs in the range of pressure and
temperature in our experiments. We see that its value has very little variations, in particular along
isentropic curves. For instance, red lines (isovalues of αs) are different but very close to adiabats
(dashed lines). Hereafter, we take αs constant, which is true to a very good approximation. With this
approximation, the expression for the temperature adiabatic profile is easily determined by solving
Eq. (4):

Ta(r) = T max
a + αs�

2

2

(
r2 − r2

max

)
, (6)

where T max
a is the extrapolated temperature, on the adiabat, at the bottom plate at r = rmax.

This expression will be used in Sec. IV to compare the measured and adiabatic profiles.
Any difference between temperature and the adiabatic profile will be called the superadiabatic
temperature.
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TABLE I. Xenon properties at 300 K and 2 MPa. Except for the thermal conductivity and the viscosity, all
these data are evaluated with the CoolProp library [16] using the xenon equation of state given by Lemmon
and Span [17].

Molar mass M 0.1313 kg mol−1

Density ρ0 118 kg m−3

Specific heat capacity at constant volume cv 105 J K−1 kg−1

Specific heat capacity at constant pressure cp 204 J K−1 kg−1

Heat capacity ratio cp/cv 1.98
Isobaric thermal expansion coefficient α 4.73×10−3 K−1

Product αT αT 1.42
Entropic thermal expansion coefficient αs 6.94×10−3 K kg J−1

Thermal conductivity [18] k 6.54×10−3 W K−1 m−1

Dynamic viscosity [19] η 2.46×10−5 Pa s
Prandtl number ηcp/k 0.77

III. EXPERIMENTAL SETUP

A. Global description

In our experiments, xenon gas is mostly contained in a cuboid cavity placed in a centrifuge
(Figs. 2 and 3). We use cylindrical coordinates (er, eθ , ez ). The rotation axis of the centrifuge ez is
vertical in the laboratory, and the long axis of the cavity is along the radial direction er . To simplify
our explanations in the following, we give different names to the different walls of the cavity. The
two walls of normal vector er are called the top and bottom walls. The farthest from the rotation
axis, where heat will be provided to the fluid, is the bottom wall and the closest to the axis, is the
top wall. The other four faces are named according to the type of boundary layer that develops due
to the rotation. Thus, walls of normal vector ez are called Ekman walls, and the last two walls are
called Stewartson walls.

The cavity is cut into a polycarbonate cylinder fixed to the centrifuge’s rotor by a titanium lid
(Fig. 2). The cavity is L = 39 mm long with a section of H2 = 23×23 mm2. Ekman and Stewartson
walls are thermally insulated by a 1 mm layer of aerogel (Airloy X103 Class M). On the top wall,
there are two cylindrical holes with radii 6 mm and 7.7 mm long through which xenon is in contact
with the rotor’s titanium. On the bottom wall, xenon is heated by a duraluminium plate under which
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FIG. 1. Value of αs (from the CoolProp library) for our experiments. The dashed lines are the isentropic
curves. The red lines delimit the area in which αs variations are less than 1% from its value at 300 K and 2 MPa.
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FIG. 2. (a) Picture of the centrifuge rotor in which the cell is placed. (b) Polycarbonate cell with aerogel
layer on the wall. The nine thermistors are the orange points aligned in the center of a wall; see Fig. 3.

a square heating resistor is placed. This plate is held in place by a piece of PEEK plastic under
which there is another layer of aerogel for thermal insulation. Properties of these materials are listed
in Table II.

Temperatures are measured by nine NTC thermistors aligned in the center of an Ekman wall.
These thermistors are glass-encapsulated sensors with a head of 0.8 mm of diameter and a resistance
of 10 k� at 25 ◦C. Moreover another thermistor is added on the opposite side. The hot and cold
temperatures are measured using a thermistor placed in a hole at the center of the duraluminium
plate, and another is fixed to the rotor. Two piezoelectric pressure probes allow us to measure
dynamical pressure p − pa. They measure the differential pressure between the cavity and the
thin layer of gas, supposed to be at rest (i.e., without dynamical pressure), contained between the
polycarbonate and the titanium lid.

The connection with the probes inside the centrifuge during the experiments is made through
a slip-ring (Michigan Scientific S10) with 10 channels. Due to the high number of signals to be
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FIG. 3. (a) Sketch of the cavity of the experimental setup with heating resistor and thermal and pressure
probe positions. (b) Three-dimensional view of the rectangular cavity containing xenon gas. Small black circles
are the thermistors positions. Big ones are the pressure probes positions. Dashed lines are the isogravity contour.
Labels B, T , E , and S correspond, respectively, to bottom wall, top wall, Ekman walls, and Stewartson walls.

measured, the signals are multiplexed using an electronic card fixed to the centrifuge’s rotor. To
simplify the electronic circuit, we only multiplex signals from the thermistors. We add a reference
resistor of a known constant value, and we link this resistor and thermistors together in a series
circuit. The multiplexer is wired to return the voltage of each thermistor cyclically. There are
11 cycles of measurements per second. Because we use a 16 channels multiplexer, we measure
the voltage of each thermistor every 91 ms on a window of 5.7 ms. The principle of temperature
measurement is that the intensity passing through the thermistors is the same. We determine the
value of the intensity by measuring the voltage of the reference resistor, then we measure the voltage
of each thermistor to evaluate their resistance. Finally, we deduce the corresponding temperature
from an analytical expression representative of the relationship between temperature and resistance

R = R0e−β0( 1
T0

− 1
T )

, (7)
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TABLE II. Thermal properties of materials in the setup.

Thermal Specific
conductivity heat capacity Density

Materials (W m−1 K−1) (J K−1 kg−1) (kg m−3)

Aerogel 0.029 680 to 730 200
Polycarbonate 0.19 to 0.22 1200 to 1300 1200
PEEK 0.25 320 1320
Duraluminium 134 920 2700
Titanium 21.9 522 4510

where R is the resistance of the thermistor and R0 = 10 k�, T0 = 25 ◦C, β0 = 3492 K are given in
the data sheet provided by the maker. The calibration of the thermistors is done in an isothermal
environment, the value R0 of each thermistor is slightly adjusted to match the imposed temperature.

B. Heat losses and heat capacity

The setup is heated by the square heating resistor which dissipates a power 	T with a maximum
value of 9.33 W. However, this power is not entirely transmitted to the xenon, a fraction of it is lost
to the walls of the setup. Two quantities are important to describe this phenomenon, the setup’s heat
capacity C which controls how the setup warms up during an experiment and its thermal resistance
Rth which quantifies the power lost by conduction 	lost. The power effectively transmitted to the
xenon 	, in the steady state, is written

	 = 	T − 	lost, (8)

where

	lost = Thot − Text

Rth
. (9)

Thot is the temperature of the duraluminium plate, and Text is the temperature of titanium outside the
cell.

To evaluate these two quantities, we made a thermal numerical simulation of the setup using the
finite element solver FreeFem++ [20]. Since the main part of the setup is cylindrical, we use an
axisymmetric simulation and solve the corresponding 2D problem (see Fig. 4). In our simulation,
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FIG. 4. Thermal simulation of the setup. We impose a temperature difference of 10 K between the
duraluminium plate and the exterior. The gray part is the xenon cavity assumed to be at the mean temperature
between the duraluminium plate and the exterior.
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we replace the xenon cubic cavity by a cylindrical one such that the heating resistor and the
duraluminium plate have the same surface area. In each simulation, we solve on the whole setup
the heat equation

ρmcp,m
∂T

∂t
= ∇(km∇T ), (10)

where ρm, cp,m, and km are the density, the specific heat capacity, and the thermal conductivity of
materials done in Table II. Moreover, we consider, as external boundary conditions, that the titanium
lid stays at a constant temperature that we arbitrarily take as T = 0.

The first simulation is static (∂T/∂t = 0) and determines the thermal resistance Rth. We imposed
a known temperature difference 
T = 10 K between the duraluminium plate and the outside, and
a uniform intermediate temperature 
T/2 in the xenon region. By calculating the heat flux 	lost

which leaves the duraluminium plate through the faces not in contact with xenon, we estimate Rth

as

Rth = 
T

	lost
. (11)

We find a value of Rth = 40 K W−1. However, this simulation cannot reproduce all the details of the
setup. This is the reason for including an uncertainty of 25% on this value in the following. Since
	T is well known, the uncertainty on 	 the effective power transmitted to xenon is caused by this
uncertainty of 25% on 	lost. In this way, when the heating 	T is low, the uncertainty on 	 makes it
difficult to know the effective flux transmitted to the xenon.

The second simulation determines the heat capacity C of the walls of the setup. We start from an
isothermal state at T0 then, for t > 0, we heat with a power 	T the area where the heating resistor
is placed. In this simulation, we consider that the xenon is thermally inert, i.e., its heat capacity and
thermal conductivity are zero. By considering the mean temperature Thot (t ) of the duraluminium
plate, we estimate C as

C(t ) = 	T
∂Thot
∂t

. (12)

In the first 30 s, we find a value of C which goes quasilinearly from 5 J/K to 9 J/K. We do not need
more precision here. Due to the complexity of the setup geometry, we are essentially looking for its
order of magnitude.

IV. RESULTS

A. Protocol

We ran experiments at three different rotation speeds 5000, 7000, and 9990 rpm. During an
experiment, we set a constant rotation speed, and we set different values of heat power in the heating
resistor. For each value of the heat flux, we wait approximatively 3 minutes to reach an equilibrium
state before changing its value. In order to avoid heating the whole setup above 80 ◦C (to preserve
the aerogel insulating material), we start with the highest heat power and decrease it step by step
(Fig. 5). The experiments done are listed in Table III.

B. Adiabatic gradient

When the heating is strong enough, we observe that the temperature profile in the cell is no longer
isothermal. It is instead close to an adiabatic profile: by adjusting the reference temperature T0 (not
imposed in our setup) in Eq. (6) via a least-square method on T1 to T8 (excluding Thot and Text),
we obtain a very good agreement between the theoretical and experimental curves [Fig. 6(a)]. As
expected, the profile shape depends only on gravity (i.e., rotation rate) outside of the boundary
layer for high enough heating power. We measure an average adiabatic gradient of order 3.5
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FIG. 5. Measured temperatures and pressures during an experiment at 9990 rpm. The blue numbers at the
top indicate the heat power 	T in watts. The gold line is the temperature T5G from the thermistor opposite T5,
the black line is the temperature of the heating plate Thot, and the gray line is the titanium temperature outside
the cell Text . P1 corresponds to the pressure from the closest probe to the heating plate, P2 to the farthest.

K/cm. In Table IV we compute the maximum acceleration in the setup near the heating plate
rmax = 0.072 m. From this value, we determine the maximum adiabatic temperature gradient and
maximum value of the dissipation number defined in Eq. (1), with the maximum gravity g, the
height of the cavity L = 0.039 m and an arbitrary representative value of the thermal expansion
coefficient α = 4.73×10−3 K−1 (see Table I). We also introduce another dimensionless number, the
Ekman number E, characterizing the magnitude of viscous forces compared to Coriolis apparent
acceleration

E = ν

�H2
, (13)

where ν = η/ρ0 is the kinematic viscosity, and the width of the cavity H = 23 mm is used instead
of its length L = 39 mm.

When the heating is low, the temperature profile is not adiabatic but nearly isothermal. The
threshold appears to be when the effective heating is close to zero. Actually, no adiabatic gradient
is detected when 0 W is in the confident interval of heating. The uncertainty on the effective
heating flux makes it difficult to estimate precisely this threshold. In Fig. 6(b) we plot the difference
between the temperature profile and the adiabatic profile from Eq. (4) at 9990 rpm for various

TABLE III. Range of the experiments, in terms of rotation rate and heating power injected in the resistor.

	T (W) 0 0.07 0.15 0.3 0.58 1.2 2.3 3 4.8 5.8 6.9 9.3

5000 rpm • • • •
7000 rpm • • • • • • • • • • •
9990 rpm • • • • • • • • • • •

033502-9



RÉMI MENAUT et al.

T8 T7 T6

T5G
T5 T4 T3 T2 T1 T0 Thot

4 5 6 7
300

305

310

315

320

325

Δ
T

S
A

(a)

Radial distance r (cm)

T
em

p
er

a
tu

re
T

(K
)

5000 rpm; Φ = 0.90 ± 0.07 W

7000 rpm; Φ = 0.82 ± 0.09 W

9990 rpm; Φ = 0.7 ± 0.1 W

4 5 6 7

−4

−2

0

2

4
(b)

Radial distance r (cm)

T
−

T
a

(K
)

Heat power Φ

5.8 ± 0.3 W

4.8 ± 0.2 W

3.9 ± 0.2 W

2.3 ± 0.2 W

1.7 ± 0.2 W

0.7 ± 0.1 W

0.21 ± 0.09 W

0.04 ± 0.06 W

−0.01 ± 0.04 W

−0.07 ± 0.02 W

FIG. 6. (a) Temperature profiles averaged over 30 s for � = 5000, 7000, 9990 rpm for an electric power
dissipated in the heating resistor of 	T = 1.19 W. The dashed lines are theoretical profiles defined by Eq. (6)
where T max

a is adjusted by a least-square method. The vertical black line is the bottom boundary of the xenon
cavity. (b) Differences between temperature profile T and theoretical profiles Ta for different values of 	 at
� = 9990 rpm.

heat fluxes. It seems that there is an optimum heat flux corresponding to the best fit of the
average temperature profile with the adiabatic profile. At � = 9990 rpm, this optimum flux is
	 = 0.7 W, (corresponding to the total flux 	T = 1.19 W, in Fig. 5). At lower heat fluxes, the

TABLE IV. Apparent gravity (centripetal acceleration) calculated near the heating plate (r = 7.2 cm),
adiabatic gradient, dissipation number αgL/cp, and Ekman number ν/(�H2).

Rotation Apparent Adiabatic
rate gravity gradient Dissipation Ekman
(rpm) (m s−2) (K m−1) number number

0 9.81 0.068 8.8×10−6 ∞
5000 19 700 137 0.018 7.5×10−7

7000 38 700 268 0.035 5.4×10−7

9990 78 800 547 0.071 3.8×10−7
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FIG. 7. (a) Best fitted quadratic coefficient of the temperature profile αfit
s from Eq. (14) as a function of the

effective heat flux 	. The horizontal line corresponds to the adiabatic profile αfit
s = αs = 6.94×10−3 K kg J−1.

Each symbol color and shape corresponds to a series of measurements in which the heat flux is decreased from
its highest to its lowest value. (b) Differences between temperature profile T and fitted profiles Tfit for different
values of 	 at � = 9990 rpm.

intensity of convection is probably not strong enough to impose an adiabatic profile (the curve
with effective heat flux −70 ± 20 mW is isothermal), while at higher fluxes the superadiabatic
temperature contributions become large enough to alter the adiabatic profile. It can be seen in Fig. 5
that the superadiabatic temperature difference becomes progressively larger than the total adiabatic
temperature drop across the cavity when the flux increases above 	T = 1.19 W.

Instead of using the theoretical value of αs, we have also tried to determine a value αfit
s to fit the

experimental temperatures data in the bulk of the fluid with a quadratic radial function of the form

Tfit (r) = T max
fit + αfit

s

�2

2

(
r2 − r2

max

)
. (14)

Using a least-square method, we determine the two parameters T max
fit and αfit

s . Values of αfit
s are

plotted in Fig. 7(a) as a function of the effective heat flux for different rotation rates. For the smallest
heat fluxes (tens of mW) the temperature profile is nearly isothermal corresponding to a vanishing
αfit

s . Below a heat flux of 100 mW, the value of αfit
s is significantly lower than the adiabatic value αs.

Above 100 mW, increasing the heat flux brings αfit
s closer to αs. In Fig. 7(b) we plot the difference

between the temperature profile and the expression (14) using αfit
s for values of heat fluxes above

200 mW. Figure 7(b) is analogous to Fig. 6(b) with reference to Eq. (14) instead of the adiabatic
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profile (4). We observe in Fig. 7(b) that the departure from the quadratic fit (14) increases as the
heat flux increases.

The temperature drop across the hot thermal boundary layer is estimated as follows: the quadratic
curve fitting the experimentally measured temperatures is extrapolated at the radius of the hot
surface; we then take the difference between the temperature measured within the hot plate and that
extrapolation. Unfortunately, the boundary conditions are not well defined for the top cold plate due
to the geometry of the setup. This is the reason why we will only consider the jump of temperature
across the bottom hot boundary layer and call it the superadiabatic thermal difference 
TSA. It is
defined, as shown in Fig. 6(a), by


TSA = Thot − T max
a . (15)

Experimentally, we find 
TSA of order 10 K.

C. Turbulent heat transfer

From 
TSA in Eq. (15), we wish to introduce a superadiabatic Rayleigh number RaSA and a
Nusselt number Nu. Because only the bottom boundary conditions are well established in our setup,
it is natural to build these numbers with parameters pertaining to the bottom boundary layer. We
define the superadiabatic Rayleigh number as

RaSA = ρ2
Bc2

p,Bαs,Brmax�
2L3
TSA

TBkη
, (16)

where TB, ρB, cp,B, and αs,B are the characteristic temperature, density, specific heat capacity, and
entropy expansion coefficient inside the bottom boundary layer. These quantities are evaluated
numerically via the following algorithm.

Experimentally, we measure T max
a and 
TSA with a best fit of the profile (6). Using the

CoolProp library, we solve numerically Eqs. (4) and (3) with the conditions that Ta(rmax) = T max
a

and the conservation of the entire xenon mass. This results in the adiabatic pressure and density
profiles Pa(r) and ρa(r) inside the cell. We note Pmax

a and ρmax
a their values at r = rmax. Due to

the small thickness of the boundary layer, we assume that the pressure stays constant across it.
The characteristic pressure inside the boundary layer is thus PB = Pmax

a . The characteristic temper-
ature inside the boundary layer TB is estimated as TB = T max

a + 1
2
TSA. Finally, from TB and PB, the

CoolProp library allows us to estimate all other quantities in the boundary layer ρB, cp,B, and αs,B.
Table V gives estimates of these parameters for different values of �, T max

a , and 
TSA.
The Nusselt number is defined as

Nu = 	L

k
TSAS
, (17)

where S = H2 = 530 mm2 is the cross-sectional area. We could have defined the Nusselt number
with 	 − 	a instead of 	 where 	a is the power conducted along the adiabat. This conduction
heat flux is evaluated as 	a = k∇TaS ∼ kr0�

2

cp
S ∼ 10−3 W. This value is smaller than typical values

of 	 by three orders of magnitude, so we neglect it. An important point is that these estimates of
Rayleigh and Nusselt numbers are valid only when the convection is established because it uses the
adiabatic temperature fit (6) to obtain 
TSA.

We show in Fig. 8 the evolution of RaSA and Nu with time. When the heat flux is changed, the
system reaches a new steady state where RaSA and Nu become constant in approximatively 1 min.
We shall use those steady-state values to plot the Nusselt number in terms of the superadiabatic
Rayleigh number in Fig. 9. In Fig. 8, for the total heat flux 	T = 0.58 W and below, we are in the
range where the net heat flux 	 entering the gas volume is so weak that the adiabatic profile is
not maintained in the cavity. Hence, the determination of the superadiabatic temperature difference
becomes negative, which is meaningless. So, from 	T = 0.58 W and below, both the superadiabatic
Rayleigh number and the Nusselt number are not properly defined, because 
TSA is not properly
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TABLE V. Calculated parameters in the boundary layer for different values of �, T max
a , and 
TSA. The

units for temperature, pressure, density, heat capacity, and entropy expansion coefficient are K, MPa, kg m−3,
J kg−1 K−1, and mK kg J−1, respectively.

� = 5000 rpm

T max
a 300 305 310 315 320 325 330

ρmax
a 120 120 120 120 120 120 120


TSA Pmax
a = PB 2.02 2.06 2.10 2.14 2.18 2.23 2.27

5 TB 302.5 307.5 312.5 317.5 322.5 327.5 332.5
ρB 118 118 118 118 118 118 118
cp,B 203 202 200 198 197 196 194
αs,B 6.93 6.92 6.90 6.89 6.87 6.86 6.85

10 TB 305.0 310.0 315.0 320.0 325.0 330.0 335.0
ρB 117 117 117 117 117 117 117
cp,B 202 200 199 197 196 194 193
αs,B 6.92 6.90 6.89 6.88 6.86 6.85 6.84

15 TB 307.5 312.5 317.5 322.5 327.5 332.5 337.5
ρB 116 116 116 116 116 116 116
cp,B 200 199 197 196 195 193 192
αs,B 6.90 6.89 6.88 6.86 6.85 6.84 6.83

� = 7000 rpm

T max
a 300 305 310 315 320 325 330

ρmax
a 121 121 121 121 121 121 121


TSA Pmax
a = PB 2.04 2.08 2.12 2.16 2.20 2.24 2.29

5 TB 302.5 307.5 312.5 317.5 322.5 327.5 332.5
ρB 120 119 119 119 119 119 119
cp,B 204 202 200 199 197 196 195
αs,B 6.94 6.92 6.91 6.89 6.88 6.87 6.85

10 TB 305.0 310.0 315.0 320.0 325.0 330.0 335.0
ρB 118 118 118 118 118 118 118
cp,B 202 201 199 198 196 195 194
αs,B 6.92 6.91 6.89 6.88 6.87 6.85 6.84

15 TB 307.5 312.5 317.5 322.5 327.5 332.5 337.5
ρB 117 117 117 117 117 117 117
cp,B 201 199 198 196 195 194 193
αs,B 6.91 6.89 6.88 6.87 6.86 6.84 6.83

� = 9990 rpm

T max
a 300 305 310 315 320 325 330

ρmax
a 124 124 123 123 123 123 123


TSA Pmax
a = PB 2.08 2.12 2.16 2.20 2.24 2.29 2.33

5 TB 302.5 307.5 312.5 317.5 322.5 327.5 332.5
ρB 122 122 122 122 122 122 122
cp,B 205 203 201 200 198 197 195
αs,B 6.95 6.93 6.92 6.91 6.89 6.88 6.86

10 TB 305.0 310.0 315.0 320.0 325.0 330.0 335.0
ρB 121 121 121 121 121 121 121
cp,B 204 202 200 199 197 196 194
αs,B 6.94 6.92 6.91 6.89 6.88 6.87 6.85

15 TB 307.5 312.5 317.5 322.5 327.5 332.5 337.5
ρB 119 119 119 119 119 119 119
cp,B 202 200 199 197 196 195 193
αs,B 6.92 6.91 6.89 6.88 6.87 6.85 6.84
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FIG. 8. Evolution of superadiabatic Rayleigh number RaSA and Nusselt number Nu during the same
experiment as in Fig. 5 at 9990 rpm. The blue numbers at the top indicate the heat power 	T in watts.

defined and because the net heat flux 	 is not well known. We can nevertheless notice that these
ill-defined quantities are governed by slow diffusive processes (heat conduction) since they do not
reach a steady value within 3 minutes.

Nusselt numbers obtained as described above are plotted as a function of the superadiabatic
Rayleigh number in Fig. 9. In order to model the Nu-RaSA relationship, we look for a power law of
the form

Nu ∝ (RaSA)β. (18)

Our data are mostly consistent with a 1/3 power law (Fig. 9). Nevertheless, some data do not follow
the same power law. When we run an experiment, we decrease the heating, and so RaSA, step by
step. Sometimes for low RaSA, the heat transfer seems to follow another branch with a steeper power
law and lower values. If we consider only points on the main branch we find the power law

Nu = (0.44 ± 0.02) × (RaSA)0.30±0.04. (19)

The fact that some points are not on the main branch is surprising because, by reproducing
the experiment at the same rotation speed, we observe sometimes the classic branch (exponent
0.3 ± 0.04) and some other times the steeper branch (exponent around 1). It may be the signature of
an hysteresis in the system. Guervilly and Cardin [21] showed that hysteresis is possible in rotating
convection in a sphere in a quasigeostrophic approximation. The geometry is not the same here, but
we expect that a similar phenomenon could explain this behavior.

Here we would like to draw the attention to what has been observed in another context, where
a dual power law has been seen, while we think the underlying physics has no relationship with
our experiments. In the case when rotation axis and gravity are parallel, two exponents have been
found for the Ra-Nu relationship [22], a steep law Nu ∼ Ra6/5 followed by the nonrotating usual
law Nu ∼ Ra0.3. This is understood as the transition between a regime where the flow structures
extend over the whole height of the cavity for moderate Ra, followed by a 3D (yet anisotropic)
dynamics at large Ra. However, there is no hysteresis in this configuration, the heat transfer is
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FIG. 9. (a) Nusselt number values plotted as a function of the Rayleigh number, for different rotation rates.
Each symbol color and shape corresponds to a series of measurements in which the heat flux is decreased from
its highest to its lowest value. The solid line has a slope of 0.3, and the dashed line a slope of 1. (b) Same plot
using the normalizing factor 0.44 Ra0.30

SA for the Nusselt number.

determined by the value of the input parameters, the Rayleigh and Ekman numbers. On the contrary,
our experiments show some hysteresis between two quasigeostrophic configurations of seemingly
different heat transfer power laws.

D. Temperature measurements

In fully convective cases, temperature signals can be seen as the sum of three contributions: the
adiabatic profile, a stationary deviation from the adiabatic profile, and finally, temporal fluctuations

T = Ta + Ts + T ′. (20)

At large rotation rate and heat flux, a typical amplitude of these contributions is 310 K for Ta (with
a 10 K increase from the top to the bottom), 1 K for Ts, and 0.05 K for T ′. The profile of Ta is
given in Eq. (6), and Ts can be seen in Fig. 6(b) where the adiabatic profile has been subtracted
to the time-averaged temperature profile. The stationary departure Ts from the adiabatic profile is
interpreted as the signature of a stationary convective flow contribution.

We have access to temperature fluctuations by eliminating the long-term variations of tempera-
ture signals below 0.2 Hz. However, the study of temperature fluctuations is difficult due to the high
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FIG. 10. Standard deviation of temperature fluctuations σ (T ′) as a function of the heating power 	 at
9990 rpm. The color code is the same as in Fig. 5.

level of electronic noise on the signals caused by the multiplexing electronic card and the slip ring.
We show in Fig. 10 the standard deviation of temperature fluctuations as a function of the heating
power. We see that temperature fluctuations are large enough to exceed the noise only for large
heat fluxes (	 > 3 W). The amplitude of fluctuations increases with the heating flux. The order of
magnitude of temperature fluctuations we measure in our setup is σ (T ′) ∼ 0.05 K, for the maximum
heat flux 	 = 5.8 W. For smaller heat fluxes (	 < 3 W), the signals are dominated by the electronic
noise with a constant apparent standard deviation of 0.02 K. For large heat fluxes (	 > 3 W), we
show the calculated power spectral density of the temperature signals in Fig. 11, which shows a
good fit to a −5/3 slope.

We cross-correlate fluctuation signals from the different thermistors in the experiment
[Fig. 12(a)]. Thermistors can be separated into two groups. The first three thermistors close to
the heating plate are mutually correlated, and the same holds for the farthest thermistors. These
two groups of thermistors are anticorrelated. This shows that the flow has a large-scale structure
inside the cell. This fact is confirmed by a proper orthogonal decomposition (POD) of the signals,
providing the main temperature modes in the cell [Fig. 12(b)]. The first mode which represents
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FIG. 11. Power spectral density of temperature fluctuations at 7000 rpm and 	 = 4.0 ± 0.2 W. The color
code of temperature signals is the same as in Fig. 5. The black dashed line shows a −5/3 slope.
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FIG. 12. (a) Correlation matrix between temperature fluctuations signal at 7000 rpm and 	 = 4.0 ± 0.2 W.
The signal T5G corresponds to the thermistor opposite T5. The high correlation between T5G and T5 validates the
geostrophic hypothesis. (b) Plots of the first three temperatures fluctuation modes inside the cell obtained by
a POD analysis. The number in brackets corresponds to the fraction of energy (norm L2) associated with the
mode.

the majority of the signal energy has the same shape as described above: the first three thermistors
evolve together in phase opposition with the others.

In addition, the cross-correlation between the signals from the two thermistors facing each other
on Ekman walls, T5 and T5G, is a good way to test the flow geostrophy. There are two opposite effects
which influence the geostrophy. The high rotation rate favors a geostrophic flow in the cell, whereas
convection tends to destroy it by creating a turbulent flow when the heating is strong enough. Since
the normalized correlation between these two signals has a high value (>0.5) for all the heating
fluxes tested, we conclude that the flow in the cell is geostrophic in all our experiments.

E. Pressure measurements

In a statistically stationary state, similarly to temperatures, the total pressure p is split into three
terms

p = pa + ps + p′, (21)

where pa is the adiabatic pressure profile as defined in Eq. (3), ps is the stationary pressure caused
by the large-scale stationary flow in the cell. As can be seen in Fig. 5, pressure signals have a
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FIG. 13. Stationary pressure ps and standard deviation of pressure fluctuations σ (p′) as a function of the
heating power 	 at 9990 rpm.

large stationary component that depends only on the heat flux (we will see that it also depends on
the rotation rate). At last, p′ is the time-dependent pressure fluctuation. The differential pressure
probes give us measurements of the dynamical pressure p − pa = ps + p′. To separate ps and
p′ in our analysis, we consider that fluctuations p′ correspond to the part of the signal above
1 Hz. The part below 1 Hz has a constant value during stationary states which corresponds to
ps. This decomposition of the pressure leads us to consider three terms with very different order
of magnitude: pa is of order of 2 MPa, ps is of order of 10 kPa, and p′ is of order of 100 Pa
(see Fig. 13).

From the stationary pressure ps, we estimate the order of magnitude of the velocity v in the cell.
Assuming geostrophic equilibrium in the fluid, we expect the pressure gradient −∇ps to balance
the Coriolis acceleration 2ρa� × v. With the typical length scale L, we find an estimate for v:

v ∼ ps

2ρ0�L
∼ 1 m s−1. (22)

This estimate leads to a Rossby number of Ro ∼ 10−2, which is consistent with the initial
assumption of geostrophic balance. Alternatively, assuming that the pressure gradient is balanced
by 3D inertial terms ρa(v · ∇)v, we then obtain the following velocity estimate

v ∼
√

ps

2ρ0
∼ 10 m s−1, (23)

leading to a Rossby number of 0.1, which seems too small to justify a 3D balance. Moreover, the
excellent correlation of the temperature signals of the probes T5 and T5G gives further credential to
the quasigeostrophic dynamics. To conclude, the estimate provided by Eq. (22) is most probably
correct.

At this point, we have determined the order of magnitude of the pressure and temperature
departures from their hydrostatic and adiabatic profiles: Ts ∼ 1 K and ps ∼ 10 kPa. This can be
used to evaluate their relative contribution to the departure of entropy from a uniform value. Gibbs

033502-18



EXPERIMENTAL STUDY OF CONVECTION …

equation T ds = cpdT − αT/ρdp allows us to determine the ratio of the pressure contribution to the
temperature contribution in the entropy variations

αT

ρcp

ps

Ts
� αs

ρ0

ps

Ts
∼ 0.6, (24)

while Anufriev et al. [5] give an estimate (αT )D = 0.06 for the same ratio; see their Eq. (2.17). This
ratio is crucial to decide whether the so-called anelastic liquid approximation can be used, whereby
entropy departures are expressed in terms of temperature departures only. From our experiments
it seems that pressure departures are underestimated in Ref. [5]. They use a balance between
buoyancy forces and pressure gradient to derive pressure departures from hydrostatics as a function
of temperature departures from the adiabatic profile [their Eq. (2.17)a in a different form]:

ps ∼ ρ0αgLTs. (25)

This balance does not apply to our data: with Ts ∼ 1 K, Eq. (25) leads to ps ∼ 1000 Pa whereas the
measured value is of order ps ∼ 10 kPa; see Fig. 13.

To correctly evaluate the pressure fluctuations p′ we eliminate the long-term variations of the
signal below 1 Hz and short-term variations above the rotation frequency. At higher frequency, the
signal is dominated by peaks of harmonics of the rotation frequency and electronic noise, while
the hydrodynamic part of the signal is already nearly at the level of noise measurement, as we will
see later in Fig. 15. The amplitude of the fluctuations depends strongly on the heat dissipated in
the heating resistor. This amplitude goes to zero when the convection stops due to a insufficient
heating. We estimate the amplitudes of fluctuations by taking the standard deviation of the filtered
signal (Fig. 13). We calculate the probability density function (PDF) of pressure fluctuations for
each heating power tested. The PDF of the signal from probe 1 is nearly Gaussian (Fig. 14, top),
while the PDF of the signal from probe 2 shows a distinct asymmetry with a longer tail on the
positive fluctuations side (Fig. 14, bottom).

From the temperature and pressure fluctuations, we can test Eq. (25) originating from the
dynamical balance between buoyancy and pressure gradient. At 9990 rpm and for large heat
fluxes, using σ (T ′) ∼ 0.05 K, Eq. (25) leads to pressure fluctuations of order 50 Pa, whereas we
measure σ (p′) ∼ 100 Pa. Contrary to the stationary departures ps and Ts, pressure and temperature
fluctuations p′ and T ′ seem to obey rather well the balance between buoyancy forces and pressure
gradient.

We calculate the power Fourier spectra of p′ (Fig. 15). The spectra are dominated by very
localized peaks corresponding to the rotation rate and harmonics. Moreover, there are some other
very localized peaks above 200 Hz which are probably created by the electronics and not relevant to
our study. If we look at the general behavior of these spectra, there are two kinds of spectra. For low
heating fluxes, the spectra have a constant value, corresponding to the noise level of the acquisition.
It is characteristic of the piezoelectric sensor we use since a similar spectrum is obtained outside the
cell without any load. For higher heating fluxes, the spectra have three parts. The first part, below
13 Hz, has an approximatively constant value. The second one, between 13 Hz and 20–40 Hz,
decreases with a slope close to −7/3 (in log-log coordinates) which is the expected power law for
pressure fluctuations in homogeneous turbulence [23]. And the third part, above 40 Hz, is constant
and corresponds to the noise level.

The threshold between these two kinds of spectra is the same as the threshold evaluated in
Sec. IV B with the temperature profile. When the heat flux value is too low, there is no convection
and we only measure the sensor response. For higher fluxes, the convection is established and we
measure the convection spectrum.

F. Convection pattern and heat flux

Using the results obtained above, we can make an attempt to characterize the structure of the
quasigeostrophic convective flow in our experiment. The pressure signals indicate that the stationary
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FIG. 14. Probability density function of pressure fluctuations for both pressure sensors (pressure probe 1
is the closest to the heating plate) at 9990 rpm for several heating powers. Colors are the same as in Fig. 6(b).

part of the convective flow is much more vigorous than its fluctuations, by a factor 100. We can
get an idea of the magnitude of stationary temperature deviations from the adiabat when looking at
Figs. 6(b) and 7(b). As we already pointed out, the temperature profile is very close to the theoretical
adiabatic profile when the heat flux is just exceeding the heat losses. Increasing the heat flux further
causes the temperature measurements to depart from the adiabatic profile. The amplitude of the
deviations is of the order of 1 K for the maximum heat flux (about 5 W). We believe that these
deviations are linked to the stationary part of the convective flow: this is indeed in accordance with
the estimate for the convective heat flux. The convective heat flux is estimated as

	 ∼ ρ0cpSvδT . (26)

For the highest rotation rate (9990 rpm) and highest heat flux (about 5 W), we have estimated
v ∼ 1 m s−1 and δT ∼ 1 K. With a cross section area S = 530 mm2, density ρ0 ∼ 100 kg m−3, and
heat capacity cp = 204 J K−1kg−1, the estimate (26) gives 	 ∼ 13 W, which is of the same order of
magnitude as the actual heat flux (about 5 W), given that we do not have sufficient spatial coverage
to extract the shape of that stationary flow and associated thermal signature. In any case, the velocity
fluctuations (100 times smaller than the stationary flow) together with the temperature fluctuations
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FIG. 15. Power spectral density of pressure fluctuations for the same experiment at 9990 rpm (166.5 Hz)
and for three different heating fluxes: (a) 	 = (4.8 ± 0.2) W, (b) 	 = (0.7 ± 0.1) W, (c) 	 = 0 W. The black
line is a −7/3 slope. The peak at 11 Hz corresponds to signal cross-talking with the cycle measurement rate
for temperatures.

(less than 0.05 K; see Fig. 5) would by no means generate a convective heat flux close to the imposed
heat flux. The large-scale stationary flow and its small fluctuations are also in good agreement with
the POD analysis of temperature fluctuations, showing a large-scale pattern [see Fig. 12(b)].

The global picture of the convective flow is that of a two-dimensional turbulent flow in which
the inverse energy cascade has given rise to an intense stationary large-scale flow dominating
small-scale fluctuations. This process is also known as the condensation of small scale vortices in a
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large-scale steady flow and was observed for two-dimensional flows due to rotation, stratification,
or the effect of an imposed magnetic field on an electrically conducting fluid [24–26].

Within the frame of this global picture, we can re-examine some of the results presented above.
Concerning the spectrum of temperature fluctuations in Fig. 11, the signal above 2 or 3 Hz is
dominated by measurement noise. With a global flow of 1 m s−1 and a cavity height of 0.039 m,
we expect that the turnover frequency of large vortices is of order 20 Hz. Hence the temperature
spectrum corresponds to very low frequencies which are probably representative of the long-term
evolution of the main large-scale circulation and does not give information on the small-scale
structure of turbulence. On the contrary, pressure spectra shown in Fig. 15 allow us to determine
the frequency of the large flow structures, corresponding to the kink point between a flat part at
low frequency to a steep part at higher frequency. That steep part contains probably information
on the small scale turbulence of the flow. The low-frequency nature of the temperature fluctuations
is also probably the reason why the POD analysis (see Fig. 12) produces large-scale modes which
correspond to the slow evolution modes of the large-scale circulation.

G. Initial transient

The temperature signals allow us to study how convection is established in the cell at the
beginning of an experiment. The initial isothermal state corresponds to a strongly stratified
stable configuration (entropy increases with height). When we start to heat from below, we see
the temperature signals starting to increase one after another [Fig. 16(a)] indicating that a convective
region develops. If we plot the starting time of each signal versus the position of the corresponding
thermistor, we track the front of convection in the cell. We can also track the front of convection
by looking at the beginning of pressure fluctuations on both pressure probes. This corresponds to a
case of penetrative convection, as a growing convective region erodes an initially stagnant region.

We propose here a simple model to describe the front propagation. We assume that all the setup
(xenon and walls) is initially at a constant temperature Ti. At time t = 0, the heating starts at a
constant power flux 	T . The bottom plate, where the front of convection starts, is at r = rmax. For
t > 0, the position of the front of convection is denoted by rc(t ). During the onset of convection,
rc(t ) goes from rmax to rmin. At a given time t , the temperature profile in the cell has to follow the
adiabatic profile in the convective area and stays at Ti outside. Thus, it has the form

T (r, t ) =
{

Ti + �2

2cp
(r2 − rc(t )2) for r � rc(t ),

Ti for r < rc(t ).
(27)

The total heat capacity of xenon is negligible compared to that of the walls. Thus, the majority
of energy is used to heat the walls. A simple model is to consider that the internal energy of the
walls is proportional to the bottom plate temperature T (rmax, t ). The proportionality constant C is
an effective heat capacity. The energy balance is then

	T t = C[T (rmax, t ) − Ti]. (28)

By inverting this equation, we find

rc(t ) = rmax

√
1 − 2cp	T t

C�2r2
max

. (29)

The shape given by this expression is in accordance with our data, where we see an acceleration
of the front of convection. We adjust in Fig. 16(c) the value of C in Eq. (29) to obtain the best
fit of our data points. According to the experimental data, we find C between 9 J/K and 14 J/K.
However with the same conditions, we find the same value of C. The results show that C depends
on the heat flux 	T and the rotation rate �. These values of C have the same order of magnitude as
the heat capacity of the whole setup evaluated in Sec. III B, although this simplified model ignores
convection (and rotation effects). Nevertheless, we see on the experimental temperature curve that
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FIG. 16. (a), (b) Temperature signals and pressure fluctuations versus time since the beginning of heating.
The color code is the same as in Fig. 5. The dashed yellow line corresponds to T5G. (c) Position of the convective
front rc versus time. Solid lines are theoretical evolutions from Eq. (29) with the adjusted value of C.

there is a small cooling of some tenth of Kelvin just before the front of convection reaches the
thermistor and the temperature increase significantly. This phenomenon is more and more important
during the front propagation and is even visible on the thermistor on the opposite wall. This is
typically a compressible effect and could never be envisaged in the Boussinesq approximation. We
temporarily observe temperature levels lower than the initial uniform temperature, while the bottom
boundary gets heated: this is a manifestation of compressible penetrative convection. A fluid parcel
initially at rest can be cooled adiabatically when it is suddenly entrained into convection as the
convective region reaches its position.
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V. CONCLUSION

In the reported experiments, we show that compressible convection can be studied in the
laboratory. A substantial adiabatic temperature gradient (about 3.5 K cm−1) has been measured.
The Nusselt-Rayleigh relationship, once the adiabatic gradient has been taken into account, follows
the expected 1/3 power law. Adiabatic decompression effects are observed during the transient
heating of the fluid from an initial isothermal state. However, the dimensionless dissipation number
reaches only modest values, around 0.06. This probably means that compressible effects are
moderate and that the experiments are within what we might call a “Jeffreys” regime: Ref. [15]
has shown that the stability criterion derived by Rayleigh for the onset of convection was still
applicable, provided the superadiabatic temperature difference is considered instead of the total
imposed temperature difference. It can indeed be seen [9] that Jeffreys’ result holds for a dissipation
number as small as 0.06. Away from the stability threshold, numerical results from the literature
also suggest that compressible results are very close to those obtained using the Boussinesq
approximation [10,27,28]. Our experiments nevertheless open the way to further attempts and
further progress into experimental compressible convection. We are still working on the possibility
to make measurements with twice the maximal rotation rate reported here, i.e., 20 000 rpm. This
would increase gravity levels by a factor of 4, leading to a dissipation number around 0.24. Next,
using another centrifuge or other dedicated experiments, it is conceivable to obtain dissipation
numbers of order 1 or more, and even to run compressible convection experiments with other fluids.

During our experiments, we have shown that temperature measurements were possible in a
hostile environment of apparent high gravity. We have been using small thermistors probes for
two reasons: first, small parts have a relatively larger resistance to stress and can sustain better
high gravity. Second, we wanted to measure fast temperature fluctuations in a gas with small heat
capacity and were looking for a probe with a small thermal diffusion time and small heat capacity. In
addition, we have also successfully used differential pressure probes (100 Pa), under large pressure
level (3×106 Pa) and under a large gravity (7×104 m s−2). Those signals were processed using
onboard home-designed electronics, essentially multiplexing signals, which worked satisfactorily
up to 9990 rpm, but did not allow us to obtain results at higher rotation rates, due to the failure of
an electronic component. It is difficult to assess whether electronic components will sustain high
gravity levels based on their data sheet. The method is simply to go for small components and test
them.

Since we aim for a large apparent gravity level, and since we are using a low-viscosity fluid,
our experiments have large values for the (superadiabatic) Rayleigh number and small values
for the Ekman number. In fact, Coriolis effects are so large that all our experimental runs
obey a quasigeostrophic dynamics. This is a difficulty as we would like to unravel the role of
compressibility and that of geostrophy: for instance, is the hysteresis behavior between branches
of a large heat flux and a small heat flux due to geostrophy, or compressibility, or both? Concerning
the value of the superadiabatic Rayleigh number, one could think that it would be made as small
as desired by just reducing the imposed heat flux (and associated superadiabatic temperature
difference). However, we have shown that our cavity has a significant amount of heat losses, despite
the use of an excellent insulating material (aerogel). This imposes a minimum level to the heat flux
that can effectively be studied. In our case, this limits our range of superadiabatic Rayleigh numbers
to 5×1011 from below. As a corollary, the study of the onset of convection seems hopeless in our
setup and similar ones. Busse [29] had anticipated that some aspect of compressible convection
could be studied from the oscillatory or stationary character of the first unstable mode of convection,
but large difficulties should be expected to observe this first mode.

Which of our measurements are due to compressibility effects and which are not? Typically,
the temperature gradient along the direction of the apparent gravity, i.e., the adiabatic gradient, is
certainly due to compressibility. Second, the negative overshoot of temperature during the initial
transient after heating the bottom plate can only be understood within the frame of compressible
convection. Concerning the heat flux results, we have obviously removed the effect of the adiabatic
gradient in our estimate of the effective driving temperature difference of convection. After
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this is done (and this is an important aspect of compressible convection), we obtain a classical
(incompressible) Nu-Ra relationship. Stated otherwise, the isolated bottom boundary layer behaves
like an incompressible convection boundary layer in terms of the heat flux going through it
as a function of the temperature difference across it. The whole initial transient is also due to
compressibility: the isothermal initial state corresponds to a strongly stably stratified situation (in
terms of entropy), whereas this initial state would be marginally stable in the incompressible case.
Geostrophy and the amplitude of pressure measurements are probably due to Coriolis forces and
independent of compressibility. The modes of temperature fluctuations (Fig. 12) are also probably
mostly due to Coriolis effects on convection. However, we do not know at this stage whether
compressibility has an effect on them.

Despite the difficulties, our experiment shows that it is indeed possible to study compressible
convection in the laboratory. This should provide future benchmarks and unravel new phenomena
to be compared to compressible convection models and to natural phenomena observed in stars and
planets.
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