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Weakly nonlinear stability of Hartmann boundary layers
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Abstract

By means of a weakly nonlinear stability analysis it is shown that the Hartmann boundary layer presents subcritical in
in the proximity of the minimum linear critical Reynolds number. This gives further support to earlier speculations tha
amplitude effects account for the discrepancies between the results of the linear stability analysis and experimental ev
laminarisation.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Magnetic fields are used in many engineering applications that involve electrically conducting fluids. They are em
for example, to drive flows, induce stirring, levitation or to suppress turbulence. Applications are found in the casting o
and the growth of semiconductor crystals [1]. In many of those magnetohydrodynamic flows the balance of Lorentz and
forces along boundaries non-tangential to the magnetic field gives rise to Hartmann boundary layers. These layer
channel for the electric currents and determine the velocity in the core of the flow in the laminar regime [2].

A linear stability analysis of the Hartmann layer was first carried out by Lock [3] neglecting the Lorentz force te
the disturbance equations. The complete equations were later solved by Lingwood and Alboussière [4] who found
Reynolds number (based on the Hartmann layer thickness) ofRc ≈ 48250. On the other hand, the laminarisation of magnetic
driven flows in ducts of rectangular cross section is experimentally observed to occur in the range 150< Rc < 250 [5]. If
transition in the Hartmann layers is to account for these observations, a plausible explanation for the discrepancy
predictions of the linear theory is that it is the result of nonlinear effects. While for these values of the Reynolds num
linear analysis predicts stability to infinitesimal disturbances, the flow may be unstable to small but finite size distu
(subcritical instability). In this case, there will be a lower bound in the amplitude of the disturbance for the instab
develop. Recent studies [6] have shown that even if the norm of the perturbations is below this threshold value, if t
stability operator is non-normal, they may still be amplified in the subcritical region of parameter space. Although this
is only transient, it may be strong enough for the amplitude of the perturbations to reach this critical value and trigger n
effects.

Information on the first stages of the evolution of the perturbed flow can be obtained with a weakly nonlinear s
analysis. As described by Stuart [7], an amplifying disturbance in a laminar flow may reach such a magnitude as to d
basic flow and hence alter the exchange of energy between it and the perturbation. By energy arguments he showed
the linear critical points, the evolution in time of the amplitudeA of a finite size disturbance can be described by

dA

dt
= a0A+ a1A

3, (1)
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an equation also proposed by Landau [8]. The coefficienta0 corresponds to the growth rate predicted by the linear theory and
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a1 is the first correction (Landau constant) induced by the physical processes arising from nonlinearity. Beside the eq
solution of the linear case(A→ 0), this nonlinear equation presents finite amplitude equilibrium solutions(Ae) given by

A2
e = −a0

a1
, provided

a0

a1
< 0. (2)

A new unstable equilibrium solution then exists in the subcritical region,a0 < 0, whena1 > 0. While the linear analysis implie
that an infinitesimal disturbance will decay, if the amplitude of the disturbance is larger thanAe it will diverge. In other words,
at first order the nonlinear effects are destabilising, which is known as subcritical instability, a phenomenon found to oc
in plane Poiseuille flow [9]. For the supercritical region,a0 > 0, a finite amplitude equilibrium solution will exist ifa1 < 0, and
in that case it will be stable. In consequence infinitesimal disturbances will initially grow exponentially according to th
theory, but they will eventually saturate toAe. In the supercritical region then, nonlinear effects can have a stabilising e
called a supercritical stability, as it is the case of the Taylor vortices that develop in circular Couette flow.

Watson [10] extended Stuart’s work and established the scheme called the amplitude expansion method app
arbitrary order. Based on the assumption that the disturbance equations are separable and the Landau equation
proposed a perturbation expansion where the amplitude of the disturbance is the small parameter. In this work we
method to determine the value of the Landau constanta1 along the linear neutral curve. At that point the linear amplificat
ratea0 is zero and the stability is determined bya1. This method has been applied to a variety of flows and the details o
implementation vary. We follow the description of the method by Herbert [11] and Reynolds and Potter [12]. Althoug
have been proposed several extensions of the procedure to points in the subcritical and supercritical regions, the vali
expansions away from the linear neutral curve was shown to be very limited [13]. Nevertheless, this type of analys
to predict accurately the local bifurcation behaviour, in particular whether the bifurcation is supercritical or subcritical,
confirmed experimentally in the case of plane Poiseuille flow by Nishioka et al. [14].

2. Governing equations

We consider the Hartmann layer that arises in an electrically conducting flow over an infinite flat surface, perpendic
uniform magnetic fieldB (Fig. 1). The free stream velocityU0 is in thex direction. The Hartmann layer on the surface can
shown to have thickness O(Ha−1L) [2], where the Hartmann number is given by

Ha =LB

√
σ

ρν
, (3)

with σ, ρ, ν the electrical conductivity, density and kinematic viscosity of the fluid, respectively, andL a typical length scale
of the flow. We will assumeHa � 1, which is characteristic of most industrial applications.

Under the usual approximations in magnetohydrodynamics [15], and for small magnetic Reynolds numbers, i.e., a
that the external magnetic field is unperturbed by the induced magnetic field, the flow is described by

∂v∗
∂t

+ v∗∇v∗ = 1

ρ

(
j∗ × B∗) − 1

ρ
∇p∗ + ν∇2v∗, (4)

∇ · v∗ = 0, (5)

j∗ = σ
(−∇ϕ∗ + v∗ × B∗)

, (6)

∇ · j∗ = 0, (7)

Fig. 1. Model of the flow studied.
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wherev∗ = (u∗, v∗,w∗) is the velocity vector,j∗ is the current density vector field,p∗ the pressure,t the time andϕ∗ the
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electric potential field. Following the common approach in stability theory, all the variables are decomposed into a mea
part (capital letters) and a superimposed disturbance (unstarred variables). In the steady case, the equations cont
basic quantities reduce to (cf. [2])

U ′′ − σB2

ρν
U = −σB2

ρν
U0, (8)

where the primes denote derivatives with respect toz and the boundary conditions correspond to zero velocity at the wal
U0 far from it. TakingU0 as the characteristic velocity and the boundary layer thickness(δ) as the characteristic length, th
solution of (8) corresponds to an exponential velocity profile,

V = (U,V,W)= (
1− e−z,0,0

)
. (9)

In the case of a solid boundary which is a perfect electrical insulator, the electric currents are restricted or close their pat
the Hartmann layers, andU0 is directly proportional to the total electric current flowing through the layers [2], a characte
that differentiates them from other boundary layers in classical hydrodynamics and makes their stability properties e
important.

For the perturbations quantities, Eqs. (4), (5) take the form,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (10)

∂u

∂t
+U

∂u

∂x
+ ∂U

∂z
w + v∇u= −∂p

∂x
+ ν∇2u− σ

ρ
uB2 − σ

ρ

∂ϕ

∂y
B, (11)

∂v

∂t
+U

∂v

∂x
+ v∇v = −∂p

∂y
+ ν∇2v − σ

ρ
vB2 + σ

ρ

∂ϕ

∂x
B, (12)

∂w

∂t
+U

∂w

∂x
+ v∇w = −∂p

∂z
+ ν∇2w, (13)

and Eqs. (6), (7) give

∇2ϕ = ∂v

∂x
− ∂u

∂y
, (14)

with the boundary conditions that all the perturbations quantities vanish at the wall and asz→ ∞. In the linear approximation
the solution of this set of homogeneous equations can be obtained in the form of a superposition of normal modes, tha
waves periodic in thex andy directions and of constant frequency,

[u,v,w,p, j,ϕ]T = [
û(z), v̂(z), ŵ(z), p̂(z), ĵ (z), ϕ̂(z)

]T ei(αx+βy−ω0t ) ea0t , (15)

whereα andβ are the streamwise and transverse wavenumbers, andω0 anda0 are the frequency and amplification rate th
arise as eigenvalues of the linear problem. The sign ofa0 determines whether the amplitude of a mode grows(a0 > 0) or decays
(a0 < 0) with time.

By making the change of variables

θ = αx + βy, (16)

it is possible to adopt a stream functionψ(θ, z, t) satisfying

∂ψ

∂z
= αu+ βv,

∂ψ

∂θ
= −w, (17)

so that Eqs. (10)–(14) become partially decoupled and an equation for the stream function only is obtained, which
dimensional form is

∂∇2ψ

∂t
+ αU

∂∇2ψ

∂θ
− ∂2U

∂z2
∂ψ

∂θ
+ 1

R
∇2∇2ψ − 1

R

∂2ψ

∂z2
= ∂ψ

∂θ

∂∇2ψ

∂z
− ∂ψ

∂z

∂∇2ψ

∂θ
, (18)

where

∇2 = ∂2

∂z2
+ k2 ∂2

∂θ2
and k2 = α2 + β2, (19)

andR is the Reynolds number based on the boundary layer thickness(δ),

R = Re

Ha
, with Re = U0L

ν
. (20)
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The characteristic time, pressure, magnetic field and electric current density scales used areδ/U0, ρU2
0 , B and σU0B,
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respectively. The minimum critical Reynolds numberRc corresponds to the minimum value ofR for which one of the
eigenmodes of the linear problem is unstable (fundamental) and all the rest are damped, for all the values ofα andβ.

We take the set of eigenfunctions of the linear equations as a basis for expanding the solution of the nonlinear prob
criticality, all the eigenmodes are damped except for the fundamental which becomes unstable. In the weakly nonlinear
it is assumed that the solution of the nonlinear problem near the bifurcation point can be approximated by a per
expansion around this mode. This is in the same spirit of the centre manifold approach [16], which was compared in d
the amplitude expansion method by Fujimura [17,18].

Due to the nonlinear terms, the fundamental interacts with itself and its complex conjugate, and with the basic
first order, this generates a harmonic, a distortion of the basic flow and of the fundamental. We take as the small par
the expansion the magnitude of the fundamental which we now describe as a general function of timeA(t), and propose the
expansion

ψ(θ, z, t)=
∞∑

n=−∞
A|n| ein(θ−γ (t))ψn(z, t), (21)

whereω0 is now replaced by a real functionγ (t) to allow for changes in the frequency with the amplitude. Since our inte
centres on the real part of the solution, without loss of generality it is possible to set

ψ−n(z, t)= ψ̃n(z, t), (22)

where the tildes denote complex conjugates. Watson [10] showed that, because the nonlinear terms in (18) are qu
A→ 0 theψn(z, t) must be either O(1), for n > 0, or O(A2), for n= 0, and we can consider an expansion of the form

ψn(z, t)=
∞∑
m=0

A2mφnm(z). (23)

By the same arguments it is necessary to introduce a Poincaré stretching of the eigenvalues

1

A

dA

dt
=

∞∑
ν=0

aνA
2ν,

dγ

dt
=

∞∑
ν=0

ωνA
2ν. (24)

Substituting expansions (21), (23) and (24) into (18) and equating terms with equal powers ofA, a hierarchy of ordinary
differential equations for the functionsφnm is obtained, which are of the form

Lnφnm −
m∑
ν=0

[[
n+ 2(m− ν)

]
aν − inων

]
Snφnm−ν =Nnm, (25)

whereLn is the linear operator

Ln = 1

R

[
S2
n − ∂2

∂z2

]
− inα

[
USn −U ′′], (26)

with primes denoting derivatives with respect toz and with

Sn = ∂2

∂z2
− n2k2. (27)

The nonlinear termsNnm involve functions obtained from previous equations in the hierarchy,

Nnm =
∞∑

p,q=−∞
r,s=0

N(φpr ,φqs), (28)

with

N(φpr ,φqs)= [
k2pq2φprφ

′
qs + pφprφ

′′′
qs − k2q3φ′

prφqs − qφ′
prφ

′′
qs

]
, (29)

and the constraints in the indices

p+ q = n,
|p| + |q| − (p+ q)

2
+ r + s =m. (30)
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In the present notationφ00 corresponds to the stream function of the steady basic state which is function only of thez coordinate.
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Forn > 0 the boundary conditions are

φnm(0)= φ′
nm(0)= φnm(∞)= φ′

nm(∞)= 0. (31)

At O(A), (25) reduces to a Orr–Sommerfeld type equation with solutionsφ10 in the form of normal modes. Since th
equations and boundary conditions are homogeneous, the solution is determined apart from an arbitrary multiplicative f
has to be made definite by imposing a normalisation condition. We chose this to be‖φ10‖max= 1. This arbitrary normalisation
determines the value ofa1 but not its sign, and in consequence it does not affect the character of the bifurcation.

At O(A2), the interaction of the fundamental with its complex conjugate results in the first correction to the basic floφ01,
and the interaction of the fundamental with itself produces the first harmonicφ20.

The first correction to the fundamental appears at O(A3) where the forcing term in (25) now has contributions from
interaction of the fundamental with the first harmonic and with the correction to the basic flow, and from the first nonline
in expansions (24). For the points on the linear neutral curve witha0 = 0 the value ofa1 can be determined by making use o
solvability condition. Denoting byφ†

10 the eigenfunction of the adjoint operator ofL1,

L
†
1 = 1

R

[
S2

1 − ∂2

∂z2

]
− iα

[
US1 + 2U ′ ∂2

∂z2

]
, (32)

and defining the inner product〈 , 〉 as

〈f,g〉 =
∞∫

0

f̃1(z)g1(z)dz, (33)

it is readily obtained using the properties of the adjoint operator:

a1 − iω1 = 〈φ†
10,N11〉

〈φ†
10, S1φ10〉

. (34)

3. Numerical results and discussion

Given the extensive numerical calculations involved in obtaining the values ofa1, and to prevent a dramatic err
propagation, an accurate numerical method had to be used. The hierarchy of ordinary differential equations des
Section 2 were discretised using the Tau spectral method [19] and expansions in Chebyshev polynomials. The resul
algebra problems were solved using routines from the LAPACK numerical library [20]. The transformation of the semi-
domain into the domain of definition of the Chebyshev polynomials[−1,1] was achieved by means of an algebraic mapp
and the integrals arising from the inner products in the equation for the Landau constant (34) were approximated nu
with the Clenshaw and Curtis method [21].

We restricted the analysis to two dimensional perturbations because Squire’s theorem [22] applies to this problem
minimum critical Reynolds number corresponds to the caseβ = 0. The neutral curve for this mode is shown in Fig. 2. O
calculations yielded a critical Reynolds number of 48257 forα = 0.16 andω0 = 0.025. Lingwood and Alboussière [4] studie
the linear stability of the Hartmann layer when the magnetic field is not strictly perpendicular to the solid boundary. The
that for a constant magnitude of the field in theẑ direction, a nonzero component in thex̂ direction (the direction of the flow) ha
a very small stabilising effect, while no differences in the stability were found when theŷ component ofB is changed. Given
that the weakly nonlinear analysis is built around the most unstable mode from the linear analysis, and because this
have little dependence on thex̂ and ŷ components ofB, here we restricted the analysis to the case when the magnetic fi
exactly perpendicular to the solid boundary.

At the critical point the weakly nonlinear analysis givesa1 = 52.08 andω1 = −28.17, indicating subcritical instability. In
Figs. 3–6 are shown the functions involved in obtaining these values. The distribution in sign ofa1 along the neutral curve i
shown in Fig. 2, where it can be seen that the bifurcation remains subcritical along the upper branch and a part of
branch close to the critical point. This different behaviour in the upper and lower branches was also found in the para
cases of plane Poiseuille and Blasius flow [23,24]. The variations in magnitude ofa1 andω1 along the neutral curve are show
in Fig. 7. According to (2) the larger the value ofa1 the smaller the magnitude ofAe necessary for a disturbance to gro
in the subcritical region. This indicates that perturbations of small amplitude can trigger nonlinear effects at an ea
and consequently laminarisation and transition should occur in the subcritical region. In the proximity of the minimum
Reynolds number it was found thata0 ≈ 1.7× 10−8(48257−R). Assuming that the value ofa1 varies slowly in the proximity
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Fig. 2. Sign distribution ofa1 along the linear stability neutral curve. The continuous and dashed lines correspond to supercritical and su
instability respectively.

Fig. 3. Real and imaginary parts of the eigenfunction of the linear problem (fundamental).

of Rc and taking into account the normalisation criterion previously introduced, an estimate is obtained for a lower boun
intensity of the perturbation (at the point where‖φ10‖max) corresponding to the finite amplitude unstable equilibrium solu
in the subcritical region:

(
w2

)1/2 ≈ 2× 10−5(48257−R)1/2, (35)

which shows that very weak disturbances relative toU0 can trigger nonlinear effects in the subcritical region.
By means of an energetic analysis, which involves the fully nonlinear equations, Lingwood and Alboussière [4] show

the transfer of energy from the basic flow into the disturbance is possible forR > 26. According to Reddy et al. [25] this implie
that infinitesimal disturbances can be amplified for a finite period of time in the linearly stable region, before being ev
damped. This transient growth, although not exponential but algebraic, has been verified in numerical simulations by
Varet [26], who showed that the amplification factor can be as high as 500 forR = 1000 and oblique waves. The possibil
of such an important growth shows that disturbances of even smaller size thanAe can eventually reach such an amplitu
as to activate nonlinear effects and instability. This is compatible with the experimental results that found laminaris
magnetically driven flows atR � Rc, giving further support to the thesis that stability in these flows is determined b
Hartmann layers and nonlinear effects. It is also to be expected that transition from the laminar to a turbulent stat
initiated at subcritical values ofR, although no experimental results are available at present for comparison.
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Fig. 4. Real and imaginary parts of the eigenfunction of the adjoint linear operator.

Fig. 5. First correction to the basic flow (u= φ′
01).

Fig. 6. Real and imaginary parts of the first harmonic.
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Fig. 7. Distribution ofa1 (a) andω1 (b) along the neutral curve.
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