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Abstract

The linear stability of the combined Hartmann and Bödewadt boundary layerswas studied for a wide range of values
the Elsasser numberΛ (the ratio between the Lorentz forces and inertial effects). It wasfound that the instability modes
originating from rotational effects present the lowest critical Reynolds numbers even at highΛ, showing the importance tha
three-dimensional effects can have in the stability of the Hartmann layer. The results are discussed in the light of
studies of energetic stability and transient growth.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

In numerous engineering applications magnetic fields are used to drive flows, induce stirring, levitation or to s
turbulence in electrically conducting fluids. Examples can be found in the casting of metals and the growth of semico
crystals [1]. In those magnetohydrodynamic (MHD) flows the balance of Lorentz and viscous forces along boundar
tangential to the magnetic field gives rise to Hartmann boundary layers. These layers are peculiar in the sense tha
as channels for the electric currents, determining the characteristics of the velocity in the core of the flow. Their thic
O(Ha−1L), whereL is a characteristic length and the Hartmann number is given byHa = LB

√
σ/ρν, with σ , ρ, ν the electrical

conductivity, density and kinematic viscosity of the fluid, respectively, andB the intensity of the magnetic field. Information o
the parameter ranges for which the layer is laminar or turbulent is crucial in any activity where a detailed control of the
required.

The velocity profile of the unperturbed two-dimensional Hartmann layer shows an exponential dependence on the
to the boundary, similar to the asymptotic suction profile [2], andas in that case it presents a high critical Reynolds number [3]
The inclusion of the Lorentz forces term in the stability equations leaves this value almost unchanged atRc ≈ 48250 [4], where
R is the ratio of the Reynolds to the Hartmann number, equivalent to a Reynolds number based on the thickness of the
layer. This shows that, due to the lack of inflection points in the basic flow velocity profile, the most unstable mode has a
origin and is a two-dimensional Tollmien–Schlichting wave in the direction of the basic flow, as implied by Squire’s the

From the experimental point of view, the laminarisation of magnetically driven flows in ducts of rectangular cross
was found to occur in the range 150< Rc < 250 [5], depending on the aspect ratio of the ducts. Lingwood and Alboussiè
speculated that the transition observed in those flows corresponds to a laminarisation of the Hartmann layers along the w
perpendicular to the magnetic field, and that the finite-amplitude disturbances in the turbulent flow induce nonlinea
that are responsible for the discrepancy between the critical Reynoldsnumber for transition, as predicted by the linear stability
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analysis, and the value measured for laminarisation. This idea received further support by the results of a weakly-nonlinear
s
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stability study which found that the Hartmann layer presentssubcritical instability, i.e. smallbut finite-amplitude perturbation
can grow for subcritical values of the Reynolds number [6]. Lingwood and Alboussière [4] used an energetic analysis
found that the minimum Reynolds number for which the basic flow is able to transfer energy to a disturbance of an
R ≈ 26. At lower values ofR all disturbances decay monotonically.

While the theoretical stability studies mentioned above focused on the isolated two-dimensional Hartmann layer, fo
configurations, like in the use of rotating magnetic fields in the metallurgical industry, or in geophysics when considering
flow in the Earth’s liquid inner core, three-dimensional effects cannot be neglected. The presence of magnetic field
associated Lorentz forces indicates that these layers will share some of the characteristics of the Hartmann layer. Here
studied the combination of the layer that arises in a flow in solid-body rotation over a steady solid plane, generally k
Bödewadt flow, when a magnetic field perpendicular to the plane is also present. As shown by Davidson [8] this type
will control the swirling flow that arises in some configurations for the casting of metals.

Being part of the family of rotating flows together with the Ekman and the von Karman (rotating disk) layers, the Bö
layer shares many of their stability properties, and it was found by Faller [9] to be the most unstable of the three. As i
von Karman and Ekman layers, he identified two types of instabilities: spiral steady and travelling vortices, also known
I and II instability modes, which first become amplifying atRc ≈ 25 andRc ≈ 15 respectively, withR a Reynolds numbe
based on the thickness of the Bödewadt layer. The first type of instability is known to have an inviscid origin and to res
the inflection points in the basic velocity profile, as was proved by Gregory et al. [10] for the rotating disk flow. The
type of instability originates from the effects of viscosity and the curvature of the streamlines and presents the lowes
Reynolds number, although its growth rate is smaller than that for type I instability. These results are in good agreement wi
the experiments by Sava¸s [11].

Far from the boundary in the Bödewadt layer, there is an equilibrium between the centrifugal forces and the axiall
independent radial pressure gradient, but near the solid boundary the centrifugal forces are reduced by the action of vis
the pressure gradient causes a predominantly inward radial flow, and to satisfy continuity, an upwards axial flow. The
between Coriolis and Lorentz forces in the Bödewadt–Hartmann layer was studied by King and Lewellen [12] and D
and Pothérat [13]. The relative importance of the two effects can be measured by the Elsasser number

Λ = B2σ

2Ωρ
, (1)

whereΩ is the angular velocity of the flow far from the solid boundary. The Lorentz forces will act both by modifyin
basic velocity profile in the boundary layer and by damping the disturbances. Gilman [14] studied these effects in
of the combined Ekman–Hartmann boundary layer and found that both type I and II instabilities in the Ekman layer remain
for the mixed layer, but the critical Reynolds number increases withΛ, showing the stabilising effect of the magnetic fie
Similar behaviour was found for the Ekman–Hartmann layer on a spherical boundary by Desjardins et al. [15] for the
parameters relevant to the Earth’s core.

In Section 2 of the paper we define the configuration and deduce the equations describing the basic flow and
stability problem for the Bödewadt–Hartmann layer. The numerical results of these equations for a wide range of valΛ

are presented and discussed in Section 3. In the final part of the paper especial attention is given to the highΛ regime as it can
shed some light on the mechanisms that initiate transition in the two-dimensional Hartmann layer.

2. Basic flow and stability equations

We considered the ideal problem of an electrically conducting fluid rotating with uniform angular velocity over an in
flat plane. We assumed the fluid to be homogeneous and incompressible and to have constant physical propertie
existence of an imposed uniform magnetic fieldB aligned with the axis of rotation, perpendicular to the plane.

Under the usual approximations in magnetohydrodynamics [16], and for small magnetic Reynolds numbers, i.e. a
that the external magnetic field is unperturbed by the induced magnetic field, the flow is described by

∂ ṽ
∂t

+ ṽ · ∇ṽ = 1

ρ

(
j̃ × B̃

) − 1

ρ
∇p̃ + ν∇2ṽ, (2)

∇ · ṽ = 0, (3)

j̃ = σ
(−∇ϕ̃ + ṽ × B̃

)
, (4)

∇ · j̃ = 0, (5)
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where ṽ = (ũ, ṽ, w̃) is the velocity vector,̃j is the current density vector field,̃p the pressure,t the time andϕ̃ the electric
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potential field. We adopted cylindrical polar coordinatesr , θ and z, with z = 0 being the plane of the solid boundary, a
assumed the fluid to be contained in the half-spacez > 0.

In the steady case, axisymmetric solutions to (2)–(5) can be found of the von Karman similarity type, whereũ and ṽ are
proportional tor andw̃ is proportional to a length scaleδ,

ũ = ΩrF(z), ṽ = ΩrG(z), w̃ = ΩδH(z), p̃ = ρΩ2δ2P(r, z), (6)

with F , G, H andP dimensionless basic flow variables. Assuming that the wall is electrically insulating and that there
radial currents outside the boundary layer, it can be shown [17] that the electric potential field must satisfy

ϕ̃(r) = B

2
Ωr2. (7)

Adopting
√

ν/Ω andΩ−1 as the characteristic length and time respectively, the equations of motion reduce to

F2 + HF ′ − G2 + 1− F ′′ + 2ΛF = 0, (8)

2FG + HG′ − G′′ + 2Λ(G − 1) = 0, (9)

2F + H ′ = 0, (10)

where the primes denote differentiation with respect toz and the value of the pressureP(r, z) was obtained using the azimuth
component of (2) and the fact that asz → ∞ the flow is purely azimuthal andG → 1, which gives

P(r, z) = r2

2
+ P(z) + const. (11)

The boundary conditions for (8)–(10) are,

F(0) = G(0) = H(0) = 0, F (∞) = 0, G(∞) = 1. (12)

Analytical expressions forδ exist in the limits corresponding to the Bödewadt layer (δB ) and Hartmann layer (δH ), and both
are related to the Elsasser numberΛ by

δB =
√

ν

Ω
(Bodewadt), δH =

√
νρ

σB2
(Hartmann),

δ2
B

δ2
H

= 2Λ. (13)

For the Bödewadt–Hartmann layer, the value ofδ for eachΛ was defined numerically as the smallest value ofz for which the
asymptotic conditions were satisfied within two significant figures. To simplify the notation we defineξ = δ2/δ2

B
, which as

Λ → ∞ satisfiesξ → 1/2Λ.
A linear stability analysis was applied at a radiusre by imposing infinitesimally small disturbances on the mean flow

order to make the linearised equations separable inr , θ andt , it was necessary to ignore variations in the characteristic velo
with the radius. This is usually called the parallel flow approximation, although in this case the boundary layer thic
constant, and allows for the variabler that appears in the coefficients of the linearised equations to be replaced by a
Reynolds numberR. This approximation has been shown to introduce an error of O(R−1) in the stability equations [18] an
can then be expected to be valid only forR � 1. It has been found that the parallel flow approximation gives results in
agreement with experiments on rotating fluids [19,20].

The time was scaled byΩ−1 and the characteristic velocity, current density, pressure and local Reynolds were defin

Uc = reΩ, jc = σUcB, pc = U2
c ρ, R = Ucδ

ν
. (14)

All the variables were decomposed into a mean steady part (capital letters) and a superimposed small distur
nondimensional form the instantaneous nondimensional velocities, pressure and electric potential were given by

u∗(r, θ, z, t) = ξr

R
F(z) + u(r, θ, z, t), (15)

v∗(r, θ, z, t) = ξr

R
G(z) + v(r, θ, z, t), (16)

w∗(r, θ, z, t) = ξ

R
H(z) + w(r, θ, z, t), (17)

p∗(r, θ, z, t) = ξ2

R2
P(z) + p(r, θ, z, t), (18)

φ∗(r, θ, z, t) = ξ2

2R2
r2 + φ(r, θ, z, t). (19)
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We further assumed the perturbations to be in the form of normal modes[ ( )]
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(u, v,w,p,φ) = (
f (z), g(z),h(z),π(z),ϕ(z)

)
exp i αr + β

R

ξ
θ − ωt , (20)

whose real parts correspond to the physicalquantities. The components of the wave vector in the radial and azimuthal direction
are α and βR/ξ , andω is the angular frequency, which is taken to be complex with real and imaginary partsωr and ωi

respectively. The sign ofωi then determines if the normal mode is amplifying or decaying with time. To satisfy azim
periodicity,βR/ξ has to be an integer but, as it will be seen, the values relevant to transition are much greater thanR,
β andξ will be treated as real numbers. The perturbation equations were obtained by substituting (15)–(19) into the e
of motion (2)–(5) and subtracting the basic flow quantities. After linearising with respect to the perturbation variab
neglecting terms of orderR−2 and smaller, the resulting equations are[

1

R

(
D2 − γ 2)(D2 − γ̄ 2) + iω

(
D2 − γ̄ 2) − 2Λξ

R
D2 − i(αF + βG)

(
D2 − γ̄ 2)

+ i
(
ᾱF ′′ + βG′′) − Hξ

R
D

(
D2 − γ̄ 2) − H ′ξ

R

(
D2 − γ̄ 2) − Fξ

R
D2

]
h −

[
2iGξ

R
D + 2iG′ξ

R

]
η = 0, (21)[

1

R

(
D2 − γ 2) + iω − i(αF + βG) − 2Λξ

R
− Hξ

R
D − Fξ

R

]
η −

[
αG′ − βF ′ + 2iGξ

R
D

]
h = 0, (22)

whereD and the primes denote derivatives with respect toz and

ᾱ =
(

α − i
ξ

R

)
, γ 2 = α2 + β2, γ̄ 2 = αᾱ + β2, η = ᾱg = 1

R

[
∂(rv)

∂r
− ∂u

∂θ

]
,

i.e.η is proportional to the component of the vorticity in theẑ direction. The corresponding boundary conditions are,

h(0) = h′(0) = η(0) = 0, h(∞) = h′(∞) = η(∞) = 0. (23)

3. Numerical results and discussion

3.1. Neutral stability curves

The solutions of the basic flow equations (8)–(10) were obtained numerically using a shooting method with Rung
integration. In Fig. 1 are shown the three components of the velocity for different values of the Elsasser number, w
spatial coordinatez was nondimensionalised usingδB . ForΛ = 0 (Bödewadt layer) the conditions of constant angular velo
far from the boundary and decay of the tangential velocity to zero at the wall induce a radial inflow and a local oversho
tangential velocity. As the strength of the magnetic interaction grows (Λ increases), the oscillations inG are damped and th
boundary-layer thickness decreases (ξ → 0), while the azimuthal velocity profile approaches that of the Hartmann layer
magnetic field damps the components of the vorticity perpendicular to it, and theU andW components of the velocity ten
to zero with growingΛ. In Table 1 are given some values ofξ for differentΛ obtained numerically as described in Section
Fig. 1 also reveals that the transition from the Bödewadt to the Hartmann regimes takes place within a rather small ran
Elsasser number.

The stability equations (21), (22) were solved using a spectral Tau method based on expansions in Ch
polynomials [21], and the solution of the resulting algebraic equations was obtained using routines from the LAPACK numerica
library [22]. In Fig. 2 are shown the neutral curves (ωi = 0) of the most unstable mode also present in the Hartmann l
This mode corresponds to two-dimensional Tollmien–Schlichting waves in the azimuthal direction (α = 0) which become
increasingly unstable when the rotational effects become more important, but its critical Reynolds number remains hig
low values of the Elsasser number (Rc ≈ 20000 forΛ = 0.5). Fig. 3 shows the neutral curves corresponding totype I instability
in the Bödewadt layer. The inviscid character of this mode makes it dependent on the presence and position of inflect
in the basic velocity profile. In the Bödewadt layer the three components of the velocity possessinflection points, resulting in a
very low critical Reynolds number. With increasingΛ the inflection points become less pronounced and finally disappear
the basic flow, which is reflected in an increasingRc. Also to be noticed is thatβ and the azimuthal component of the wa
vector, and the angle of these stationary vortices with respect to the radius, decrease withΛ.

The effect of varyingΛ on the type II instability mode of the Bödewadt layer is shown in Fig. 4, where each n
curve corresponds to a fixed value ofα, equal to that at the corresponding criticalpoint. As shown by Faller [9], this mod
is maintained by a transfer of energy from the basic flow intou through the Reynolds stresses induced byG′, which is then
distributed to the other components of the velocity by the centrifugal terms; i.e. this instability is due to viscosity and th
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Fig. 1. Radial(F ), azimuthal(G) and axial(H) components of the basic flow velocity field for different values ofΛ (different line types).
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Table 1
Numerical values ofξ = δ2/δ2 and criticalR, α andβ for different values of the Elsasser numberΛ. The superscripts identify type I and II
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n (22),
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At
l
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B
instabilities

Λ ξ RI
c αI

c βI
c RII

c αII
c βII

c

0 1 29 0.51 0.12 21 0.3 −0.15
0.3 0.86 74 0.39 8.6× 10−2 63 0.29 −7.9× 10−2

1 0.37 247 0.30 4.2× 10−2 224 0.22 −1.5× 10−2

2 0.23 560 0.28 1.9× 10−2 509 0.21 −1.1× 10−2

5 0.08 1370 0.27 7.5× 10−3 1221 0.2 −2.4× 10−3

Fig. 2. Neutral curve for the Hartmann mode for different values ofΛ. The curve labelled Hartmann corresponds to the two-dimensi
Hartmann layer.

curvature of streamlines. Both positive and negatives values ofωr become unstable, showing that this mode has the form
vortices travelling both upstream and downstream. This is the most unstable mode in the Bödewadt layer and rema
Λ 	= 0. Nevertheless, its amplification rate is lower than that of the type I mode at the sameR. As Λ is increased and theU and
W components of the velocity tend to zero this mode becomes more stable. As with the type I instability it is found that, at high
values ofΛ, the azimuthal component of the wave vector andωr tend to zero, which means that the instability takes the f
of stationary streamwise vortices. In Table 1 are given the values ofR, α andβ for the critical points for modes I and II an
different values ofΛ. The small difference with previous results for the Bödewadt layer [9] is probably due to the differe
numerical techniques.

From these results, the scenario predicted by the linear stability analysis for finiteΛ consists of a laminar region near th
centre of rotation (lowR) surrounded by a region where type II vortices become unstable and another region where
instability appears. As the most unstable modes are inner propagating, they will grow until they reach the stable region
will then decay; in consequence it is to be expected that transition will occur at a higherRc than the minimum.

3.2. High Λ limit

The stability equations (21), (22) differ from that for the purely two-dimensional Hartmann layer in the terms contain
radial (F ) and axial (H ) components of the velocity of the basic flow, and in the last two terms in (21) and the last term i
which are due to the curvature of the streamlines and are O(R−1), so they do not persist in the inviscid limit at largere. In the
limit Λ → ∞, the basic flow in the azimuthal direction approaches the Hartmann layer profile and it can be seen from (8)–(
that(G−1), F andH are o(2−1Λ−1); so in the stability equations only the O(2−1Λ−1) streamline curvature terms persist.
highΛ the addition of these terms can be thought as a small perturbation to the stability problem for the purely two-dimensiona
Hartmann layer and our stability calculations show that they are responsible for the type IIinstability mode, which presents
much lower criticalR than the Hartmann mode, even for largeΛ.
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Fig. 3. Neutral curve of the type I instability mode for different values ofΛ.

It is known in hydrodynamic stability theory that systems that are highly sensitive toperturbations of the basic flow ca
sustain growing disturbances in subcritical regions of parameter space [23]. Although this growth is transient and a
instead of exponential, the disturbances can reach considerable size and trigger nonlinear effects. This mechanism
identified by Ellingsen and Palm [24] and Landahl [25], andis due to the non-normality of the linear stability operator an
the fact that the associated eigenfunctions are nearly linearly dependent. Gerard-Varet [26] showed this to be the case fo
Hartmann layer flow, where perturbations can be amplified by a factor of 23 forR as low as 200. He also found that t
optimal perturbations, i.e. those experiencing the highest amplification rate, are stationary streamwise vortices, whic
the perturbations that can achieve the highest transfer of energy from the basic flow [4]. Another way of understan
same phenomenon is that the solutions presenting transient growth correspond to unstable solutions of an stability problem that
differs from the original one in a small perturbation, due for example to changes in the basic velocity profile or the pre
noise. If the linear stability operator is highly non-normal the perturbed flow can have stability properties that are substant
different from the original problem. The findings in this paper show a physical configuration where this happens, as the addit
of small rotational effects to the Hartmann layer reduces the critical Reynolds number by an order of magnitude and g
to unstable modes in the form of structures approximately aligned in the flow direction, in agreement with Gerard-Vare
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Fig. 4. Neutral curve of the type II instability for different values ofΛ and for the values ofα at the critical points (indicated between bracket

The linear stability analysis presented above shows that in the Bödewadt–Hartmann layer rotational effects are
determining the stability of the flow, even when electromagnetic effects are dominant (Λ > 1). The most destabilising influenc
is given by a combination of viscosity and the curvature of the streamlines, with a critical Reynolds number that di
more than one order of magnitude from that of the most unstable purely viscous mode. This suggests that in prac
natural conditions where three-dimensional effects will be present most of the time, although their origin might be d
from rotation, the transition to turbulence in the Hartmann layer, as well as its laminarisation, will occur at values ofR well
below the critical according to the linear stability theory.
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