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Abstract

The linear stability of the cotsined Hartmann and Bddewadt boundary laywes studied for a wide range of values of
the Elsasser numbet (the ratio between the Lorentz figs and inertial effects). It wa®und that the insability modes
originating from rotational effects present the lowest critical Reynolds numbers even at hgjtowing the importance that
three-dimensional effects can have in the stability of the Hartmann layer. The results are discussed in the light of previous
studies of energetic stability and transient growth.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

In numerous engineering applications magnetic fields are used to drive flows, induce stirring, levitation or to suppress
turbulence in electrically conducting fluids. Examples can be found in the casting of metals and the growth of semiconductor
crystals [1]. In those magnetohydrodynamic (MHD) flows the balance of Lorentz and viscous forces along boundaries non-
tangential to the magnetic field gives rise to Hartmann boundary layers. These layers are peculiar in the sense that they act
as channels for the electric currents, determining the characteristics of the velocity in the core of the flow. Their thickness is
O(HaflL), whereL is a characteristic length and the Hartmann number is giveteby: L B./o/pv, with o, p, v the electrical
conductivity, density and kinematic viscosity of the fluid, respectively, Arlde intensity of the magnetic field. Information on
the parameter ranges for which the layer is laminar or turbulent is crucial in any activity where a detailed control of the flow is
required.

The velocity profile of the unperturbed two-dimensional Hartmann layer shows an exponential dependence on the distance
to the boundary, similar to the asyotic suction profile [2], ands in that case it presents ghicritical Reynolds number [3].

The inclusion of the Lorentz forces term in the stability equations leaves this value almost unchaRged4&250 [4], where

R is the ratio of the Reynolds to the Hartmann number, equivalent to a Reynolds number based on the thickness of the Hartmann
layer. This shows that, due to the lack of inflection points in the basic flow velocity profile, the most unstable mode has a viscous
origin and is a two-dimensional Tollmien—Schlichting wave in the direction of the basic flow, as implied by Squire’s theorem.

From the experimental point of view, the laminarisation of magnetically driven flows in ducts of rectangular cross section
was found to occur in the range 150R. < 250 [5], depending on the aspect ratio of the ducts. Lingwood and Alboussiére [4]
speculated that the transition observed in those flows quornels to a laminarisation of the Hartmann layers along the walls
perpendicular to the magnetic field, and that the finite-amplitude disturbances in the turbulent flow induce nonlinear effects
that are responsible for the discrepanegvieen the critical Reynoldsumber for transition, as pdicted by the linear stability
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analysis, and the value measured for laminarisation. This idea received further support by the results of a weakly-nonlinear
stability study which éund that the Hartmann layer presesibcritical instability, i.e. smalbut finite-amplitude perturbations

can grow for subcritical values of the Reynolds number [6]. Lingwood and Alboussiére [4] used an energetic analysis [7] and

found that the minimum Reynolds number for which the basic flow is able to transfer energy to a disturbance of any size is

R ~ 26. At lower values ofR all disturbances decay monotonically.

While the theoretical stability studies mentioned above focused on the isolated two-dimensional Hartmann layer, for certain
configurations, like in the use of rotating magnetic fieldshea metallurgical industry, or in geophysics when considering the
flow in the Earth’s liquid inner core, three-dimensional effects cannot be neglected. The presence of magnetic fields and the
associated Lorentz forces indicates that these layers waleshome of the characteristics of the Hartmann layer. Here we
studied the combination of the layer that arises in a flow in solid-body rotation over a steady solid plane, generally known as
Boddewadt flow, when a magnetic field perpendicular to the plane is also present. As shown by Davidson [8] this type of layers
will control the swirling flow that arises in some configurations for the casting of metals.

Being part of the family of rotating flows together with the Ekman and the von Karman (rotating disk) layers, the Bédewadt
layer shares many of their stability propies, and it was found by Faller [9] to be the most unstable of the three. As in the
von Karman and Ekman layers, he identified two types of instabilities: spiral steady and travelling vortices, also known as type
I and Il instability modes, which first become amplifying Bt ~ 25 andR. ~ 15 respectively, withR a Reynolds number
based on the thickness of the Bddewadt layer. The first type of instability is known to have an inviscid origin and to result from
the inflection points in the basic velocity profile, as was proved by Gregory et al. [10] for the rotating disk flow. The second
type of instability originates from the effects of viscosity and the curvature of the streamlines and presents the lowest critical
Reynolds number, although its growth rate is smaller than tratype | instability. These mallts are in good agreement with
the experiments by Sasdl1].

Far from the boundary in the Bddewadt layer, there is anlibgum between the centrifgal forces and the axially
independent radial pressure gradient, but near the solid boundary the centrifugal forces are reduced by the action of viscosity and
the pressure gradient causes a predominantly inward radial flow, and to satisfy continuity, an upwards axial flow. The interplay
between Coriolis and Lorentz forces in the Bodewadt—Hartmann layer was studied by King and Lewellen [12] and Davidson
and Pothérat [13]. The relative importance of the two effects can be measured by the Elsasser number

A=—" (1)

where 2 is the angular velocity of the flow far from the solid boundary. The Lorentz forces will act both by modifying the
basic velocity profile in the boundary layer and by damping the disturbances. Gilman [14] studied these effects in the case
of the combined Ekman—Hartmann boundary layer and fouatiltbth type | and Il istabilities in the Ekan layer remain

for the mixed layer, but the critical Reynolds number increases witshowing the stabilising effect of the magnetic field.
Similar behaviour was found for the Ekman—Hartmann layer on a spherical boundary by Desjardins et al. [15] for the range of
parameters relevant to the Earth’s core.

In Section 2 of the paper we define the configuration and deduce the equations describing the basic flow and the linear
stability problem for the Bodewadt—Hartmann layer. The numerical results of these equations for a wide range of values of
are presented and discussed in Section 3. In the final part of the paper especial attention is given tathediigk as it can
shed some light on the mechanisms that initiate transition in the two-dimensional Hartmann layer.

2. Basic flow and stability equations

We considered the ideal problem of an electrically conducting fluid rotating with uniform angular velocity over an infinite,
flat plane. We assumed the fluid to be homogeneous and incompressible and to have constant physical properties, and the
existence of an imposed uniform magnetic figlaligned with the axis of rotation, perpendicular to the plane.

Under the usual approximations in magnetohydrodynamics [16], and for small magnetic Reynolds numbers, i.e. assuming
that the external magnetic field is unperturbed by the induced magnetic field, the flow is described by

v 1. ~ 1
@+v.v\7=—(jxa)——v15+vv2v, @
ot 0 P

V.-¥=0, (3)
j=0(-Vg+VxB), (4)

V=0, (5)
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where¥ = (i, 3, ) is the velocity vectorj is the current density vector fielgh, the pressurey, the time andg the electric
potential field. We adopted cylindrical polar coordinate® and z, with z = 0 being the plane of the solid boundary, and
assumed the fluid to be contained in the half-spase0.

In the steady case, axisymmetric solutions to (2)—(5) can be found of the von Karman similarity typejiveimeté are
proportional tor andw is proportional to a length scade

i=QrF@z), 1=2rG), B=R0H{Z), p=pR2%°P(2), (6)

with F, G, H and P dimensionless basic flow variables. Assuming that the wall is electrically insulating and that there are no
radial currents outside the boundary layer, it can be shown [17] that the electric potential field must satisfy

B
() =% (7)
Adopting /v/52 and$2~1 as the characteristic length and time respectively, the equations of motion reduce to
F24+ HF —G?+1—F' +2AF =0, (8)
2FG+HG' —G" +2A(G - 1) =0, 9)
2F + H' =0, (10)

where the primes denote differentiation with respect émd the value of the pressuPgr, z) was obtained using the azimuthal
component of (2) and the fact thatas> oo the flow is purely azimuthal and — 1, which gives

2
P(r,z)= % + P(z) + const (11)

The boundary conditions for (8)—(10) are,
FO=G0)=H(0) =0, F(00) =0, G(oc0) =1. (12)

Analytical expressions fo¥ exist in the limits corresponding to the Bodewadt layigf)(and Hartmann layers;), and both
are related to the Elsasser numbeby

v vp 3%
Sp=./— (Bodewadt, éy=./—— (Hartmann, —=-=2A. (13)
2 o B2 52,

For the Bédewadt—Hartmann layer, the value ¢6r eachA was defined numerically as the smallest value @dr which the
asymptotic conditions were satisfied within two significant figures. To simplify the notation we defing?/52, which as
A — oo satisfiess — 1/2A.

A linear stability analysis was applied at a radiysby imposing infinitesimally small disturbances on the mean flow. In
order to make the linearised equations separabtedrand:, it was necessary to ignore variations in the characteristic velocity
with the radius. This is usually called the parallel flow approximation, although in this case the boundary layer thickness is
constant, and allows for the variabtethat appears in the coefficients of the linearised equations to be replaced by a local
Reynolds numbeR. This approximation has been shown to introduce an error(@ ) in the stability equations [18] and
can then be expected to be valid only #®rs> 1. It has been found that the parallel flow approximation gives results in good
agreement with experiments on rotating fluids [19,20].

The time was scaled b2 —1 and the characteristic velocity, current density, pressure and local Reynolds were defined as

Ucd
Uc=r1ef2, je=0UB, PC=UC2,0, R= : . (14)

All the variables were decomposed into a mean steady part (capital letters) and a superimposed small disturbance. In
nondimensional form the insttaneous nondimensional velocities, pressund electric potential were given by

u*(r,@,z,t):%F(z)—{—u(r,@,z,t), (15)

v*(r,@,z,t):%G(z)—l—v(r,@,z,t), (16)

w*(r,@,z,t):%H(z)—{—w(r,@,z,t), a7)
%-2

p*(r,@,z,t):ﬁP(z)—I—p(r,G,z,t), (18)

2
¢*(r,9,z,t)=%rz—{—(p(r,@,z,t). (19)
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We further assumed the perturbations to be in the form of normal modes

. R
(u,v,w, p,d) = (f(2),8(2), h(2), (2), ¢(2)) exp[l (ar +/3§9 — a)t)], (20)

whose real parts correspond to the physigadntities. The@mponents of the wave vector in thedial and azimuthal directions

area and BR/&, andw is the angular frequency, which is taken to be complex with real and imaginary qyardsd w;
respectively. The sign ab; then determines if the normal mode is amplifying or decaying with time. To satisfy azimuthal
periodicity, BR/& has to be an integer but, as it will be seen, the values relevant to transition are much greater th@ 1 and

B and¢ will be treated as real numbers. The perturbation equations were obtained by substituting (15)—(19) into the equations
of motion (2)—(5) and subtracting the basic flow quantities. After linearising with respect to the perturbation variables and
neglecting terms of ordek —2 and smaller, the resulting equations are

[%(Dz—yz)(Dz—?z)+ia)(D2—;72) 248 —i(aF + BG)(D? - 7?)
- m _ HE _ H'g _ Fé 2iG¢ 2iG'g
+i(@F" +BG )—TD(DZ—VZ) (02 72) - = Dz}h—[TD—i— I ]n=o, (21)
[%(DZ )+|a)—|(aF+,BG)—2AT§—HTF —F%} [G BF' +2'GE }h:O, (22)

whereD and the primes denote derivatives with respect and

1[0
&=<a—i5>, y2=a?+ B2 j?=aa+p>, r/=5tg=—[ (’”)—3—”],

R R|[ or a0
i.e.n is proportional to the component of the vorticity in thelirection. The corrggonding boundary conditions are,
h(0) =h"(0) = (0) =0, h(c0) = h'(00) = n(c0) =0. (23)

3. Numerical resultsand discussion
3.1. Neutral stability curves

The solutions of the basic flow equations (8)—(10) were obtained numerically using a shooting method with Runge—Kutta
integration. In Fig. 1 are shown the three components of the velocity for different values of the Elsasser number, where the
spatial coordinate was nondimensionalised usidg. For A = 0 (Bodewadt layer) the conditions of constant angular velocity
far from the boundary and decay of the tangential velocity to zero at the wall induce a radial inflow and a local overshoot of the
tangential velocity. As the strength of the magnetic interaction growi¢§reases), the oscillations & are damped and the
boundary-layer thickness decreasés+ 0), while the azimuthal velocity profile approaches that of the Hartmann layer. The
magnetic field damps the components of the vorticity perpendicular to it, and goed W components of the velocity tend
to zero with growingA. In Table 1 are given some values&for different A obtained numerically as described in Section 2.

Fig. 1 also reveals that the transition from the Bédewadt to the Hartmann regimes takes place within a rather small range of the
Elsasser number.

The stability equations (21), (22) were solved using a spectral Tau method based on expansions in Chebyshev
polynomials [21], and the solution of thestgting algebraic equations was obtainathg routines from the LAPACK numerical
library [22]. In Fig. 2 are shown the neutral curves; & 0) of the most unstable mode also present in the Hartmann layer.
This mode corresponds to two-dimensional Tollmien—Schlichting waves in the azimuthal directi®@)(which become
increasingly unstable when the rotational effects become more important, but its critical Reynolds number remains high even at
low values of the Elsasser numbdt,(~ 20000 forA = 0.5). Fig. 3 shows the neutral cusveorresponding ttype | instability
in the Bédewadt layer. The inviscid character of this mode makes it dependent on the presence and position of inflection points
in the basic velocity profile. In the Bodewadt layer the thremponents of the velocity posseasfiection points, resulting in a
very low critical Reynolds number. With increasingthe inflection points become less pronounced and finally disappear from
the basic flow, which is reflected in an increasiRg Also to be noticed is thag# and the azimuthal component of the wave
vector, and the angle of these stationary vortices with respect to the radius, decrease with

The effect of varyingA on the type Il instability mode of the Bodewadt layer is shown in Fig. 4, where each neutral
curve corresponds to a fixed value @f equal to that at the corresponding critigalint. As shown by Faller [9], this mode
is maintained by a transfer of energy from the basic flow inthrough the Reynolds stresses induceddy which is then
distributed to the othrecomponents of the velocity by the centrifugalres; i.e. this instability is due to viscosity and the
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Fig. 1. Radial(F), azimuthal(G) and axial(H) components of the basic flow velocity field for different valuestofdifferent line types).
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Table 1
Numerical values of = 82/8% and critical R, « and g for different values of the Elsasser number The superscripts identify type | and Il
instabilities

A £ R} oy Bl R! ol 5
0 1 29 051 012 21 03 -0.15
0.3 0.86 74 039 86 x 102 63 029 —79x10°2
1 037 247 030 42x10°2 224 Q22 —15x10°2
2 0.23 560 028 19 x 1072 509 Q21 —11x 1072
5 0.08 1370 027 75x 1073 1221 02 —24x10°3
024 t Hartmann - .
10 —
022 + 1.0 ——~ .
0.5 ------e
0.2 ]
0.18 ’
=016 |
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0.12
0.1 f
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R

Fig. 2. Neutral curve for the Hartann mode for different values of. The curve labelled Hartmann corresponds to the two-dimensional
Hartmann layer.

curvature of streamlines. Both positive and negatives values dfecome unstable, showing that this mode has the form of
vortices travelling both upstream and downstream. This is the most unstable mode in the Bddewadt layer and remains so for
A # 0. Nevertheless, its amplification rate is lower than that of the type | mode at thersahseA is increased and thé and
W components of the velocity tend to zero this mode becomes rtadvkesAs with the type | instality it is found that, at high
values ofA, the azimuthal component of the wave vector apdend to zero, which means that the instability takes the form
of stationary streamwise vortices. In Table 1 are given the valué&s afand g for the critical points for modes | and Il and
different values ofA. The small difference with previous results for the Bodewadt layer [9] is probably due to the difference in
numerical techniques.

From these results, the scenario predicted by the linear stability analysis forfigibasists of a laminar region near the
centre of rotation (lowR) surrounded by a region where type Il vortices become unstable and another region where type |
instability appears. As the most unstable modes are inner propagating, they will grow until they reach the stable region and they
will then decay; in consequence it is to be expected that transition will occur at a tigltean the minimum.

3.2. High A limit

The stability equations (21), (22) differ from that for the purely two-dimensional Hartmann layer in the terms containing the
radial (F) and axial @) components of the velocity of the basic flow, and in the last two terms in (21) and the last term in (22),
which are due to the curvature of the streamlines and &rs®), so they do not persist in the inviscid limit at large In the
limit A — oo, the basic flow in the azimuthal direction approachesHlartmann layer profile and it can be seen from (8)-(10)
that(G — 1), F andH are q2-1A~1); so in the stability equations only the® 1 A~1) streamline curvature terms persist. At
high A the addition of these terms can be thought as a small petiminiia the stability problem fottte purely two-dimensional
Hartmann layer and ouralility calculations show #it they are responsible for the typerbtability mode, which presents a
much lower criticalR than the Hartmann mode, even for latge
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Fig. 3. Neutral curve of the type | instability mode for different valuestof

It is known in hydrodynamic shility theory that sgtems that are highly sensitive perturbations of the basic flow can
sustain growing disturbances in subcritical regions of parameter space [23]. Although this growth is transient and algebraic
instead of exponential, the disturbances can reach considerable size and trigger nonlinear effects. This mechanism was first
identified by Ellingsen and Palm [24] and Landahl [25], asdlue to the non-normality of ¢hlinear stability operator and
the fact that the associated eigenfunctions are nearly lineaplgndient. Gerard-Varet [26] showed this to be the case for the
Hartmann layer flow, where perturbations can be amplified by a factor of 2R fas low as 200. He also found that the
optimal perturbations, i.e. those experiencing the highest amplification rate, are stationary streamwise vortices, which are also
the perturbations that can achieve the highest transfer of energy from the basic flow [4]. Another way of understanding the
same phenomenon is that the solutions presenting transimtigcorrespond to unstable stns of an stattity problem that
differs from the original one in a small perturbation, due for example to changes in the basic velocity profile or the presence of
noise. If the linear stability operatés highly non-normal the peairtbed flow can have stability properties that are substantially
different from the original psvblem. The findings in this paper show a physiaaifiguration where this happens, as the addition
of small rotational effects to the Hartmann layer reduces the critical Reynolds number by an order of magnitude and gives rise
to unstable modes in the form of structures approximately aligned in the flow direction, in agreement with Gerard-Varet’s work.
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Fig. 4. Neutral curve of the type Il instability for different valuesfand for the values af at the critical points (indicated between brackets).

The linear stability analysis presented above shows that in the Bédewadt—Hartmann layer rotational effects are crucial in
determining the stability of the flow, even when electromagnetic effects are domithantlj. The most destabilising influence
is given by a combination of viscosity and the curvature of the streamlines, with a critical Reynolds number that differs by
more than one order of magnitude from that of the most unstable purely viscous mode. This suggests that in practical and
natural conditions where three-dimensional effects will be present most of the time, although their origin might be different
from rotation, the transition to turbulence in the Hartmann layer, as well as its laminarisation, will occur at valuegetf
below the critical according to the linear stability theory.
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