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The formation and differentiation of planetary bodies are thought to involve magma oceans stages. We 
study the case of a planetary mantle crystallizing upwards from a global magma ocean. In this scenario, it 
is often considered that the magma ocean crystallizes more rapidly than the time required for convection 
to develop in the solid cumulate. This assumption is appealing since the temperature and composition 
profiles resulting from the crystallization of the magma ocean can be used as an initial condition for 
convection in the solid part. We test here this assumption with a linear stability analysis of the density 
profile in the solid cumulate as crystallization proceeds. The interface between the magma ocean and 
the solid is a phase change interface. Convecting matter arriving near the interface can therefore cross 
this boundary via melting or freezing. We use a semi-permeable condition at the boundary between 
the magma ocean and the solid to account for that phenomenon. The timescale with which convection 
develops in the solid is found to be several orders of magnitude smaller than the time needed to 
crystallize the magma ocean as soon as a few hundreds kilometers of cumulate are formed on a Mars-
to Earth-size planet. The phase change boundary condition is found to decrease this timescale by several 
orders of magnitude. For a Moon-size object, the possibility of melting and freezing at the top of the 
cumulate allows the overturn to happen before complete crystallization. The convective patterns are 
also affected by melting and freezing at the boundary: the linearly most-unstable mode is a degree-
1 translation mode instead of the approximately aspect-ratio-one convection rolls found with classical 
non-penetrative boundary conditions. The first overturn of the crystallizing cumulate on Mars and the 
Moon could therefore be at the origin of their observed degree-1 features.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

A common scenario considered for the formation of terrestrial 
planets is the crystallization of a global magma ocean from the 
bottom-up, because the liquidus of silicate magmas increases with 
pressure more steeply than the isentropic temperature, at least at 
low to moderate mantle pressure (Andrault et al., 2011; Fiquet et 
al., 2010; Thomas and Asimow, 2013; Boukaré et al., 2015). The 
crystallization of the surface magma ocean is expected to be rapid, 
around 1 Myr (e.g. Abe, 1997; Lebrun et al., 2013). This has led 
several authors to assume convection in the solid part of the crys-
tallizing mantle does not start until the mantle is entirely crystal-
lized (e.g. Hess and Parmentier, 1995; Abe, 1997; Parmentier et al., 
2002; Elkins-Tanton et al., 2003, 2005; Zhang et al., 2013). How-
ever, this assumption deserves scrutiny since the compositional 
and thermal structure of the mantle after complete crystallization 
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could be widely different if solid-state convection does set in dur-
ing its crystallization.

Two processes might lead to the destabilization of the solid 
mantle during its crystallization. First, assuming fractional crys-
tallization, the surface magma ocean gets enriched in incompati-
ble elements. As a secondary result, the new solid formed at the 
solid/liquid boundary gets richer and richer in these elements as 
crystallization progresses. Iron is such an element and its abun-
dance is such that it affects significantly the density of both the 
solid and the liquid. The solid formed at the end of the crystalliza-
tion is richer in iron than the solid formed at the beginning of the 
crystallization, leading to an unstable setup with material denser 
at the top than at the bottom of the solid mantle.

The second process that can further destabilize the solid mantle 
is the temperature gradient in the solid. The solidus temperature 
increases with pressure, and is steeper than the isentropic tem-
perature profile. Assuming the temperature in the solid stays close 
to the solidus, the resulting profile is hence unstable. This effect 
is enhanced by fractional crystallization and the associated enrich-
ment of the solid in incompatible elements: their presence further 
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Fig. 1. Temperature and composition reference profiles. Solid lines are the profiles at time t , dashed lines the profiles at time t + δt . The green area is the solid mantle at time 
t . The yellow area represents the part of the surface magma ocean (SMO, in red) that has crystallized during δt . All the annotations on the axes are written at time t (see 
Table 1 for the meaning of symbols). Notice how the melting temperature decreases between the two instants owing to the enrichment in iron of the surface magma ocean. 
The slopes of the curves are exaggerated for readability purpose. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
decreases the solidus temperature and the compositional gradient 
discussed above induces an even steeper solidus.

Numerical simulations including these processes suggest it is 
possible for solid-state convection to set in prior to the entire crys-
tallization of the surface magma ocean (e.g. Maurice et al., 2017; 
Boukaré et al., 2018). Whether convection in the mantle starts dur-
ing or after the crystallization of the surface magma ocean is found 
to have profound implications on the preservation of compositional 
heterogeneities as well as the dynamics of the mantle (Ballmer et 
al., 2017; Tosi et al., 2013). These results further confirm the need 
to assess the parameters controlling the onset of convection in the 
primitive mantle.

A dynamical feature of the solid cumulate in contact with a 
magma ocean that has not been accounted for in the past studies 
is the possibility of exchange of matter at the boundary between 
the solid and the ocean via melting and freezing. We use a bound-
ary condition developed for the inner core boundary (Deguen et 
al., 2013) to take this effect into account. This boundary condition 
is expected to have important effects on the convection pattern 
and heat flux as well as the timescale with which convection sets 
in (Deguen, 2013; Labrosse et al., 2018).

Our aim is to assess how the timescale at which convection 
starts in the solid cumulate compares with the time needed to 
crystallize a surface magma ocean. Different scenarios are explored 
to determine the parameters controlling the onset of convection 
in the magma ocean cumulate. We consider the case where frac-
tional crystallization happens during the entire cooling history of 
the magma oceans as well as the case where no compositional 
fractionation occurs. We explore the classical case for which no 
matter crosses the boundary between the magma ocean and the 
solid cumulate, and also the case with a boundary that allows mat-
ter transfer across it. The study is applied to the Earth, Mars, and 
the Moon.

2. Methods

We consider a mantle that is initially fully molten and crys-
tallizes from the bottom or some intermediate depth upward. The 
goal of the present study is to determine the timescale for convec-
tion to start in the solid part of the mantle as the magma ocean 
crystallizes.

For the sake of simplicity, we assume the compaction length to 
be small and neglect the thickness of a mush layer at the phase 
change interface. Matter on one side of the boundary is entirely 
liquid while matter on the other side is entirely solid. We nonethe-
less allow for compositional fractionation to occur as the mantle 
crystallizes. The temperature at the solid/liquid boundary is de-
noted Tm and referred to as the melting temperature.

Depending on how the temperature profile in the magma ocean 
compares with the profile of the melting temperature, two situa-
tions can occur. Either the solidification of the ocean progresses 
from the bottom up, or the solidification starts from an intermedi-
ate depth leading to a setup in which the solid part of the mantle 
is surrounded by two magma oceans. In this second scenario, the 
crystallization of the surface magma ocean (SMO) is thought to 
be a lot faster than the crystallization of the basal magma ocean 
(BMO) (Labrosse et al., 2007).

We assume the solid mantle is a spherical shell of internal ra-
dius R− and external radius R+ . Since the crystallization of the 
BMO is much slower than the crystallization of the SMO, we as-
sume R− to be constant even for the case where the solid shell is 
surrounded by two magma oceans. The presence or absence of a 
BMO however affects the boundary condition applied at the bot-
tom boundary of the solid mantle (see section 2.4).

As the magma ocean cools down, R+ increases to reach the to-
tal radius of the planetary body, denoted by RT . The temperature 
at the top boundary of the solid follows the melting temperature. 
The composition of the solid changes as well with the radius if 
we assume fractional crystallization occurs. For the sake of sim-
plicity, we only consider fractionation of iron. The mass fraction of 
FeO, denoted by C , varies between 0 (e.g. Forsterite) and 1 (e.g. 
Fayalite). Although simplistic, such a model allows us to study the 
effect of the density gradient due to fractional crystallization on 
the dynamics of the solid. Fig. 1 shows the composition and tem-
perature profiles at two different times. We assume the velocity 
of the freezing front Ṙ+ does not vary laterally and that the SMO 
is well mixed, the temperature and compositional fields in the re-
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Table 1
Symbols used in this paper. All quantities with a + superscript are evaluated at the top boundary (R+), while quantities with a − superscript are evaluated at the bottom 
boundary (R−).

Symbol Description Earth Moon Mars

Input parameters
R− Internal radius of the solid shell 3871 kmb 737 km 2090 km
RT Total radius of the planet 6371 km 1737 km 3390 km
T − Temperature at the bottom boundaryc 4500 K 1500 K 2400 K
T∞ Black body equilibrium temperature 255 K 255 K 212 K
ε Emissivitya 10−4 1 10−3

g Gravity acceleration 9.81 m/s2 1.62 m/s2 3.71 m/s2

RaS Rayleigh number of SMO 1030 1028 5 × 1028

α Thermal expansion coefficient 10−5 K−1

C p Heat capacity 103 J K−1

κ Thermal diffusivity 10−6 m2/s
Lh Latent heat 4 × 105 J kg−1

σ Stefan-Boltzmann constant 5.67 × 10−8 W m−2 K−4

ρ Reference density 4 × 103 kg m−3

�ρm Solid/liquid density contrast 2 × 102 kg m−3

η Viscosity in the solid 1018 Pa s
Cl0 Iron content of the primitive SMOc 0.1
D Solid/liquid partition coefficient of irond 0.6
β Compositional expansion coefficient −0.33

∂Tm/∂ P Clapeyron slope 2 × 10−8 K Pa−1

∂Tm/∂C Dependence of Tm on iron content −700 K

Computed dimensional variables
LM Final thickness of solid mantle RT − R− 2500 km 1000 km 1300 km
Tm Melting temperature Tm(P , C) described by eq. (2.4)
T + Temperature at the top boundary T +(t) with eq. (2.5)
Tp Potential temperature at the surface Tp(t) with eq. (2.8)
Ts Temperature at the surface of the planet Ts(t) with eq. (2.9)
R+ External radius of the solid shell R+(t) with eq. (2.10)
L Thickness of the solid shell L = R+ − R−

C0 Iron content of the first solid K Cl0 = 0.06
Cl Iron content of the SMO K Cl(t) = C+(t) with eq. (2.2)

τStokes Stokes time ηL2/(�ρgL3
M )

Dimensionless numbers
Ra(t) Thermal Rayleigh number ρgα�T L3/(ηκ)

Rc(t) Compositional Rayleigh number ρgβL3/(ηκ)

W (t) Freezing front velocity (Peclet number) L Ṙ+/κ

(t) Thickness of the solid part L/LM

S (t) Thickness of the SMO (RT − R+)/LM

�± Phase change numbere 10−2; ∞
a The emissivity values for the Earth and Mars are chosen so that the crystallization time scale of the SMO is of the order of 1 Myr (Lebrun et al., 2013). For the Moon, 

we neglect the effects of the atmosphere and assume a black body cooling.
b This choice assumes a 400 km thick basal magma ocean. Using R− = 3471 km does not change significantly the results.
c From Andrault et al. (2011).
d From Andrault et al. (2012).
e 10−2: flow-through, ∞: non-penetrative. For the Moon and Mars, the possibility of a BMO is not considered and �− = ∞ (see section 2.4 for details).
sulting solid hence only vary with the radial position (as long as 
no solid-state convection operates).

In this section, we introduce the simple phase diagram we use 
to compute the resulting temperature and composition profiles in 
the solid under the assumption that no convection occurs in the 
solid (section 2.1). This serves as base state which stability against 
overturning motion is studied. We don’t treat the full dynamics 
of the overturn but compute, using a linear stability analysis, the 
growth rate of an overturning instability to compare it to the crys-
tallization rate of the magma ocean. The latter is computed using a 
magma ocean cooling model which gives R+ as a function of time, 
as described in section 2.2.

2.1. Composition and temperature reference profiles

Under the assumption that no convection occurs during crystal-
lization, one can determine the resulting temperature and compo-
sitional profiles in the cumulate. These profiles are used as ref-
erence profiles in order to perform the linear stability analysis 
(section 2.5).

We consider a magma ocean crystallizing from some depth R−
up to its top radius RT . The mass fraction of the heavy compo-
nent (FeO) is C(r) in the solid and Cl(t) in the liquid, assuming 
that no diffusion (nor convection) operates in the solid (therefore 
C does not depend on time) and convection mixes the liquid effi-
ciently (therefore Cl depends only on time). At the freezing front, 
the phase relation is

C(R+(t)) = DCl(t) (2.1)

with D the partition coefficient (considered constant) and R+(t)
the time-evolving radius of the freezing interface.

Assuming the magma ocean undergoes fractional crystallization, 
the composition profile in the cumulate is exponential. At the ra-
dial position r it is

C(r) =
⎧⎨
⎩C0

(
RT

3−(R−)3

RT
3−r3

)1−D
if r < Rs

1 if r > Rs,
(2.2)

with

Rs =
(

(R−)3C
1

1−D
0 + RT

3
(

1 − C
1

1−D
0

))1/3

(2.3)

the value of R+ at which Cl reaches 1 (see Appendix A for more 
details).
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Since the diffusion timescale is much larger than the other 
time scales considered here, we assume the temperature profile 
in the cumulate stays close to the melting temperature. We take 
into account variations of the melting temperature Tm due to both 
the pressure and the composition. A higher concentration in iron 
leading to a lower melting temperature, the resulting temperature 
profile in the solid is steeper than a constant-concentration solidus 
when fractional crystallization is accounted for (Fig. 1). The melt-
ing temperature Tm verifies:

dTm

dr
= ∂Tm

∂ P

∂ P

∂r
+ ∂Tm

∂C

∂ C

∂r
. (2.4)

With 
∂ P

∂r
= −ρg and eq. (2.2), one obtains

dTm

dr
= −ρg

∂Tm

∂ P
+ 3C(1 − D)

r2

RT
3 − r3

∂Tm

∂C
. (2.5)

For the sake of simplicity, we assume 
∂Tm

∂ P
and 

∂Tm

∂C
to be con-

stant (see Table 1 for values).
We denote T = T −Tisen the superisentropic temperature in the 

solid, with

Tisen = T − exp

(
αg(R− − r)

C p

)
(2.6)

the isentropic temperature profile in the solid, with α the coeffi-
cient of thermal expansion, g the acceleration of gravity and C p

the heat capacity. We assume the variations of α, C p and g with 
depth to be negligible. The reference superisentropic temperature 
(denoted T̄ ) gradient is then:

d T̄

dr
= −ρg

∂Tm

∂ P
+ 3C(1 − D)

r2

RT
3 − r3

∂Tm

∂C

+ αg

C p
T − exp

(
αg(R− − r)

C p

)
. (2.7)

2.2. Crystallization time scale

Assuming the temperature profile in the SMO to be isentropic 
and neglecting variations of α, g and C p with depth, the potential 
temperature at the surface is:

Tp = T + exp

(−αg(RT − R+)

C p

)
. (2.8)

Note that we are neglecting the temperature drop across the 
boundary layer at the bottom of the magma ocean. This is justified 
by the very small viscosity of the magma and the main buoyancy 
force coming from cooling to the atmosphere at the top surface.

King et al. (2012) showed that the scaling law for the heat flux 
in a rotating fluid (such as the surface magma ocean) depends on 

how the quantity RaS E3/2
S = αg�Tν1/2

κ(2�)3/2
compares to 1, with ES the 

Ekman number and RaS the Rayleigh number in the SMO. A con-
servative lower bound with the thermal expansivity α ∼ 10−5 K−1, 
the gravity g ∼ 10 m/s2, the super-isentropic temperature differ-
ence �T ∼ 1 K, the kinematic viscosity ν ∼ 10−5 m2/s, the ther-
mal diffusivity κ ∼ 10−6 m2/s and the rotation rate � ∼ 10−4 s−1

is RaS E3/2
S ∼ 105 � 1. We then consider the heat flux is not con-

trolled by rotation and scales as Nu = 0.16Ra2/7
S 


6/7
S with 
S =

(RT − R+)/L the dimensionless thickness of the SMO (King et 
al., 2012). Note that this scaling does not depend on the Prandtl 
number in the range of values explored by King et al. (2012), i.e. 
1 � Pr � 100. Since Pr ∼ 10 is a reasonable value for a magma 
ocean, we assume this scaling holds for our study. We neglect vari-
ations of RaS with time and assume the magma ocean behaves like 
a gray body at its upper surface. Heat flow conservation at the sur-
face gives the following equation for the surface temperature Ts:

k(Tp − Ts)

LM
0.16Ra2/7

S 

−1/7
S = εσ (T 4

s − T 4∞) (2.9)

where T∞ is the black body equilibrium temperature, σ is the 
Stefan-Boltzmann constant and ε the emissivity. The emissivity 
should depend on the atmosphere dynamics and composition (par-
ticularly its water content) and vary with time. Taking this effect
into account would require an atmosphere model (e.g. Abe, 1997; 
Lebrun et al., 2013). For the sake of simplicity, we assume the 
emissivity to be constant, tuning its value to obtain a crystalliza-
tion timescale that matches the ones of Lebrun et al. (2013) (see 
Table 1 for values).

As the SMO crystallizes (i.e. R+ increases with time), we as-
sume the temperature at the top of the solid mantle T + follows 
the solidus (eq. (2.5)), and the temperature profile in the SMO fol-
lows an isentropic profile. As R+ grows, two phenomena produce 
heat that should be evacuated: the crystallization itself with an 
associated latent heat Lh , and the cooling of the magma ocean. 
Assuming this heat is entirely evacuated through radiation in the 
atmosphere modeled as a gray body, one obtains the following 
equation:

εσ R2
T (T 4

s − T 4∞)

= ρLh R+2 dR+

dt
− ρC p

d

dt

⎛
⎝ RT∫

R+
T + exp

(
αg(R+ − r)

C p

)
r2dr

⎞
⎠ .

(2.10)

The last term of this equation can be developed (keeping in mind 
that the lower bound of the integral R+ depends on time). This 
yields the time derivative of T + , which is written as a derivative 
with respect to R+ using the chain rule. One obtains an ordinary 
differential equation on R+(t) whose numerical integration gives 
the position of the interface between the solid and the surface 
magma ocean as a function of time.

2.3. Set of dimensionless equations

L = R+ − R− , L2
M/κ , κ/L, ηL3/κ , �T = T − − T + are used as 

scales for length, time, velocity, mass and temperature respectively. 
Note that R+ and T + vary with time as the surface magma ocean 
crystallizes. LM = RT − R− is the thickness of the solid mantle once 
the SMO is entirely crystallized. Note that all scales depend on 
time except the one for time itself, which is why 
 = L/LM ap-
pears in the following equations. The dimensionless radial position 
is built as 1 + (r − R−)/L so that it is between 1 and 2 at all times. 
Similarly, the dimensionless temperature is chosen as (T −T +)/�T
so that it is between 0 and 1 at all times.

Using the same symbols for dimensionless quantities, dimen-
sionless conservation equations of mass, momentum, heat and iron 
fraction are written as:

∇ · u = 0 (2.11)

0 = −∇p + ∇2u + Ra (� − 〈�〉) r̂ + Rc (c − 〈c〉) r̂ (2.12)


2 ∂�

∂t
+ u · ∇(� + T̄ ) − ∇2� = W

(
(r − 1)

∂�

∂r
+

(
∂ T̄

∂r

)+
�

)

(2.13)
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2 ∂ c

∂t
+ u · ∇(c + C̄) = W (r − 1)

∂ c

∂r
. (2.14)

u is the velocity field, p the dynamic pressure, � the tempera-
ture perturbation with respect to the reference profile T̄ and c
the composition perturbation with respect to the reference pro-
file C̄ . 〈x〉 denotes the lateral average of the quantity x. Ra is the 
thermal Rayleigh number, Rc is the compositional Rayleigh num-
ber. The terms on the right hand side of eqs. (2.13) and (2.14) are 
due to the time dependence of the scales L and �T , which brings 
new advection terms associated with the change of frame, with 
W = L Ṙ+/κ the dimensionless velocity of the freezing front. See 
Table 1 for the definition and values of the various symbols.

Note that these equations are written under the assumption 
that Ṙ− = 0. Other terms would appear on the right hand side of 
eqs. (2.13) and (2.14) in the general case involving the crystalliza-
tion of a basal magma ocean. For Earth’s case, we assume the basal 
ocean crystallizes much slower than the surface ocean, and as such 
we neglect Ṙ− (Labrosse et al., 2007). We assume the diffusion of 
the compositional field is negligible since the diffusion coefficient 
of composition is much smaller than that of heat. Moreover, dif-
fusion of T̄ is neglected while that of � is retained in order to 
ease the linear stability analysis. This is justified a posteriori by 
the fact that the diffusion timescale is much longer than the other 
timescales considered in this study.

2.4. Phase change boundary condition

In the classical Rayleigh-Bénard setup, convecting matter arriv-
ing near an horizontal boundary forms a topography whose height 
is limited by the weight viscous forces can sustain. This topogra-
phy is often neglected and a non-penetrative boundary condition 
is assumed at the interface (ur(R+) = 0). However, in the system 
studied here, the boundary between the magma ocean and the cu-
mulate is a phase change interface. A topography of the solid with 
respect to the equilibrium position of the solid/liquid interface can 
then be eroded by melting or freezing. Provided that the melt-
ing/freezing time is short compared to the time needed to build 
the topography by viscous forces, it is thus possible to have a non-
zero normal velocity across the interface. This is taken into account 
with the help of the boundary condition introduced for the in-
ner core by Deguen et al. (2013). This boundary condition, which 
translates the continuity of normal stress across the interface, is 
written in dimensional form as:

�ρm gτφur + 2η
∂ur

∂r
− p = 0, (2.15)

where �ρm is the density difference between the solid and liq-
uid phases and τφ is the phase change timescale. Note that our 
definition of the dynamic pressure (defined here as p = P − 〈P 〉) 
differs from that of p̂ used by Deguen et al. (2013). The laterally 
constant term �ρm gτφ Ṙ is thus included in p instead of explic-
itly appearing in the boundary condition. The dimensionless form 
of the boundary condition is

±�±ur + 2
∂ur

∂r
− p = 0 (2.16)

where � is the phase change number defined as:

�± = |�ρm|±gLτφ

η
(2.17)

(the superscript + denotes the interface between the SMO and 
the solid at R+ while the superscript − denotes the interface be-
tween the BMO and the solid at R−). Moreover, the continuity of 
tangential stress is simply written as a classic free-slip boundary 
condition.
The phase change timescale τφ is related to the time needed 
to transport latent heat in the magma ocean from the areas that 
freeze to the areas that melt (Deguen et al., 2013):

τφ = ρLh

(ρ − �ρm)2C p(∂PTm − ∂PTisen)gu′ (2.18)

where u′ is the velocity scale in the magma ocean. A reasonable 
value for the latter is u′ ∼ 1 m s−1 (Lebrun et al., 2013). Using 
nominal values for the other parameters, we find that τφ ∼ 104 s. 
Plugging this in the expression of the phase change parameter 
eq. (2.17) yields � ∼ 10−5.

The phase change number � compares the phase change 
timescale τφ (i.e. the time needed to erode topography via melt-
ing and freezing) to the viscous timescale (i.e. the time needed 
to build topography with viscous forces). The value of � allows 
to tune continuously the boundary condition between a non-
penetrative classical condition (� → ∞) and a fully permeable 
condition (� → 0). Although this number should depend on time 
since L depends on time and τφ depends also on time but in a 
non-trivial way, it is kept constant in this study. Two extreme val-
ues are tested for the SMO/solid interface: � = ∞ which leads 
to the classical non-penetrative boundary condition and � = 10−2

which leads to a flow-through boundary (we use this value rather 
than 10−5 because the resolution of radial modes is more compu-
tationally demanding as � decreases, while the overturn timescale 
is not affected as shown in the results). For the Earth, these two 
values are also considered at the bottom of the solid, accounting 
for the possible presence of a basal magma ocean (BMO, Labrosse 
et al., 2007). For Mars and the Moon, we do not consider the possi-
bility of a BMO and the bottom interface is hence non-penetrative, 
ur(R−) = 0. Rather than being realistic, these extreme constant 
values are used to study how the possibility of melting and freez-
ing at the interface affects the stability of the solid, both in terms 
of onset time of overturn and preferred mode of motion. The esti-
mated nominal value being � ∼ 10−5, we expect the real system 
should be closer to the flow-through case than to the classical 
non-penetrative case.

2.5. Determination of overturn timescale

We start from a completely molten primitive mantle (R+ = R−
and T + = T −). We numerically integrate eq. (2.10) to obtain R+
as a function of time (the potential surface temperature Tp and the 
surface temperature Ts are computed using eq. (2.8) and eq. (2.9)).

At each timestep of this integration, we compute the reference 
temperature and composition profiles in the solid as shown in sec-
tion 2.1 as well as the dimensionless numbers Ra(t), Rc(t), W (t)
and 
(t). Using a Chebyshev-collocation approach (e.g. Guo et al., 
2012; Canuto et al., 1985), the set of linearized equations around 
the reference state is written as an eigenvalue problem (see Ap-
pendix B). Solving numerically this problem yields the growth rate 
and shape of the most unstable mode of overturn. The inverse of 
that growth rate is the timescale for convection to set in the solid 
shell. We compute this timescale at each timestep of the evolution 
of the SMO. By comparing this timescale with the corresponding 
time in the evolution of the SMO, we can assess whether con-
vection is able to take place before the entire magma ocean is 
crystallized. Three different models are considered for the bulk of 
the solid:

1. full model: compositional, thermal, and moving frame terms 
are taken into account;

2. thermal model: compositional terms are left out, modeling the 
ideal case where no fractional crystallization occurs and the 
sources of instability are purely thermal (eq. (2.14) and the 
corresponding buoyancy term in eq. (2.12) are ignored);
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Fig. 2. Growth time of the most unstable mode as a function of the crystallized mantle thickness for the Earth, Mars, and the Moon. The solid black line is the time necessary 
to crystallize the remaining surface magma ocean. Colors represent different boundary conditions: both horizontal boundaries non-penetrative (blue); flow-through boundary 
condition between the solid and the surface magma ocean to model the possibility of melting and freezing (see section 2.4 for details) (green); and flow-through boundary 
conditions for both horizontal boundaries assuming the presence of a basal magma ocean (red). Linestyles represent different approximations regarding compositional effects 
(fractional crystallization and effect on density) and moving frame contributions: both are taken into account (solid lines), compositional effects are neglected (dash-dotted 
lines), or moving frame terms are neglected (dotted lines). The black dashed line is the Stokes time for each thickness, given for comparison.
3. frozen-time model: moving frame terms (right-hand-side of 
eqs. (2.13) and (2.14)) are left out, resulting in a frozen-time 
approach where all long term evolution terms are ignored 
when studying the stability of the system at a given instant.

We also compare the timescale obtained by linear stability analy-
sis with the Stokes time τStokes = ηL2/(�ρgL3

M) computed at each 
time to check whether this time is a relevant proxy of the stability 
of the solid mantle.

3. Results

The destabilization timescales for the Earth, Mars, and the 
Moon with various boundary conditions along with the time 
needed to crystallize the remaining SMO are shown on Fig. 2. Com-
parison of the destabilization timescales obtained for various bulk 
setups and boundary conditions yields information regarding their 
contribution to the destabilization of the solid.

The simplest cases are the one neglecting the compositional ef-
fects on density. For such cases, the destabilization timescale tends 
to infinity for a given non-zero thickness of crystallized mantle. 
This thickness corresponds to the one needed for instabilities to 
overcome diffusion of perturbations of the reference state. In other 
words, it corresponds to the thickness above which the Rayleigh 
number in the solid part is above the critical Rayleigh number. 
For the Moon, this thickness is never reached and the Moon’s 
mantle stays stable with respect to purely thermal convection. For 
the Earth and Mars, this thickness is reached rather early, after 
∼ 500 km of solid mantle is formed. As crystallization progresses, 
the thickness and the temperature contrast between the top and 
the bottom of the solid mantle increase. The available buoyancy 
in the system therefore increases. This leads to a strong decrease 
of the destabilization timescale, which becomes much shorter than 
the time needed to crystallize the remaining surface magma ocean 
(up to 6 orders of magnitude, depending on which boundary con-
ditions are considered). This suggests that even in the purely ther-
mal case, solid-state convection sets in before the mantle is com-
pletely crystallized for planets larger than Mars.

The cases taking compositional effects on density into account 
are always unstable. This contrasts with the purely thermal cases 
and is due to the fact that diffusion of the composition field is 
neglected. There is no mechanism to damp perturbations around 
the reference state, the latter is hence always unstable. Simi-
larly to what is observed for the thermal cases, the destabiliza-
tion timescale drops dramatically as the solid mantle thickens. For 
the Earth and Mars, the destabilization timescale ends up being 
shorter than the crystallization time of the remaining SMO by sev-
eral orders of magnitude. The case where moving frame terms 
are neglected exhibits a shorter destabilization time scale at small 
thickness. The moving frame terms play a stabilizing role only at 
the beginning of mantle crystallization for the Earth and Mars 
but are significant through the entire Moon’s mantle crystalliza-
tion. The stabilizing effect of the moving terms can be understood 
from the energy conservation eq. (2.13). Taking a temperature per-
turbation θ > 0 and the associated velocity perturbation ur > 0, 
one can notice there is a competition between the advection term 
ur∂r T̄ < 0 and the moving frame term W (r − 1)∂rθ whose aver-
age is negative. The same reasoning can be made with a negative 
perturbation and on the iron conservation eq. (2.14).

For the Moon, the destabilization timescale is always greater 
than the time needed to crystallize the SMO. However, it should 
be noted that in this study the time to crystallize the SMO is com-
puted assuming a well-mixed SMO with a surface behaving like a 
black body. The formation of a light solid crust enriched in pla-
gioclase when around 80% of the SMO is crystallized is expected 
to slow down the solidification of the SMO by a few million years 
(e.g. Elkins-Tanton et al., 2011). This would leave enough time for 
convection to set in the solid since the destabilization timescale 
we find is much shorter than that.

The three boundary conditions exhibits different destabilization 
timescales. The case where both boundaries are non-penetrative 
(which is the case classically considered) needs more time to 
destabilize than the case where the boundary between the surface 
magma ocean and the solid allows melting and freezing. Convec-
tive patterns obtained with a flow-through boundary are substan-
tially different than the classical ones (Fig. 3). Aspect-ratio-1 rolls 
are obtained with classical boundary conditions. However, when 
the top boundary allows phase change, a spherical-harmonic-
degree-1 near-translation mode develops. Matter freezes on one 
side of the spherical shell, goes around the core or basal magma 
ocean, and melts on the other side. In the case with a basal magma 
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Fig. 3. Most unstable convection modes for the Earth when a 1700 km thick mantle has crystallized, for different boundary conditions represented by the values of the 
� parameters at the top and the bottom, as indicated. The dark zones represent negative temperature anomalies while the bright zones represent positive temperature 
anomalies. The streamlines are superimposed. Note that the linear stability analysis offers no constraint on the orientation and amplitude of these modes, only their harmonic 
degree and radial shape. (a) both boundaries non-penetrative, the convection rolls have an aspect ratio approximatively equal to 1; (b) flow-through top boundary, the flow 
pattern is of spherical harmonic degree one, the streamlines go through the top boundary but go around the central part; (c) flow-through conditions at both boundaries, 
the flow pattern is of spherical harmonic degree one, the streamlines go through both boundaries, resulting in a translation mode of convection. Similar behavior is obtained 
for the other bodies.

Fig. 4. Destabilization timescale of several harmonics degree (l = 1 to 15) as a function of the phase change number value for the Earth. The bottom boundary is non-
penetrative. Top: 833 km are crystallized (mid-radius r̄ ∼ 4288 km), bottom: 1667 km are crystallized (mid-radius r̄ ∼ 4704 km). The most unstable mode is the one with 
the shortest destabilization timescale. One can notice that in the non-penetrative case (�+ → ∞), the most unstable mode corresponds to aspect-ratio-1 rolls. The typical 
roll size of the most unstable mode (r̄π/l) is roughly 900 km for the top case (l = 15) and 1850 km for the bottom case (l = 8). However, with a flow-through boundary 
(�+ → 0), the most unstable mode is the near-translation mode for both cases.
ocean and its boundary with the solid of flow-through type, mat-
ter also crosses the inner boundary of the spherical shell, resulting 
in a true translation mode. These two translation modes involve 
very little or no deformation of the solid compared to the classical 
case, and therefore less viscous forces acting against convection. 
This explains the smaller destabilization timescale associated with 
these modes as well as the lower critical thickness in the purely 
thermal case.

Fig. 4 shows the transition between the non-penetrative and 
the flow-through regime occurs over a rather short range of val-
ues of the phase change number. �+ � 1 leads to near-translation 
while �+ � 100 leads to classical aspect-ratio-one rolls.
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Fig. 5. Ratio between the destabilization timescale obtained for the purely compositional case τC (thermal terms are left out) and the timescale obtained for the purely 
thermal case τT (compositional terms are left out). When this ratio is above one, it means the thermal reference profile is more unstable than the compositional reference 
profile. The Moon is not shown here since the purely thermal case is never unstable (τT → ∞). The colors are the same as in Fig. 2, blue: non-penetrative condition for both 
horizontal boundaries (�± = ∞); green: flow-through condition at the boundary between the solid and the surface magma ocean; and red: flow-through condition at both 
horizontal boundaries.

Fig. 6. Growth time of the most unstable mode versus the Stokes time for the Earth, Mars, and the Moon. The solid line is the destabilization timescale obtained with the 
linear stability analysis τLSA (case with all terms accounted for). The dashed lines correspond to τLSA ∝ τStokes . Composition, temperature and moving frame terms are all 
taken into account. The colors are the same as in Fig. 2, blue: non-penetrative condition for both horizontal boundaries (�± = ∞); green: flow-through condition at the 
boundary between the solid and the surface magma ocean; and red: flow-through condition at both horizontal boundaries.
A notable feature on Fig. 2 is the steep decrease of the desta-
bilization timescales at the end of the crystallization when com-
positional terms are taken into account. That decrease is due to 
the strong (i.e. very unstable) compositional gradient appearing at 
the end of the crystallization. It does not affect the destabilization 
timescale obtained with non-penetrative boundary conditions; this 
can be explained by the fact that the strong compositional gradi-
ent is in a very thin layer at the top of the domain where vertical 
velocities vanish, and therefore does not contribute to the driving 
of the down- and up-welling currents.

A comparison between the purely thermal and purely compo-
sitional cases for the Earth and Mars is shown on Fig. 5. The ratio 
between the destabilization timescales for these two cases is 0 be-
fore the critical thickness for the purely thermal case is reached. 
For Mars, the compositional profile is always more unstable than 
the thermal profile and controls the destabilization timescale of 
the system. For the Earth, however, the ratio between the two 
cases is fairly close to 1 for a large part of the crystallization his-
tory: neither the thermal nor the compositional profile dominates 
the destabilization timescale of the system.

Fig. 6 shows that the destabilization timescale τLSA is propor-
tional to the Stokes time τStokes = ηL2/(�ρgL3

M). Two effects alter 
this relation: moving frame terms whose effects are not included 
in the Stokes time, and the strong compositional gradient at the 
end of the crystallization whose effects depend on the boundary 
condition. It should be noted that the ratio τLSA/τStokes depends on 
the body and the boundary conditions considered. Notably, perme-
able boundary conditions lead to a decrease of τLSA.

4. Discussion

We showed for the Earth and Mars that the growth timescale 
of convective instabilities in a crystallizing mantle from the bottom 
up is several orders of magnitude smaller than the time needed to 
fully crystallize that mantle. This holds even without taking into 
account fractional crystallization and the unstable density gradient 
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it induces. This contrasts with the assumptions made in several 
studies (Hess and Parmentier, 1995; Elkins-Tanton et al., 2003; Tosi 
et al., 2013) where the overturn is assumed to take place because 
of the compositionally induced density gradient after the entire 
mantle is crystallized. The numerical simulations performed by 
Ballmer et al. (2017) for Earth-like objects lead to a destabilization 
of the solid after a few Myr, and those performed by Maurice et al. 
(2017) for Mars-like objects lead to a destabilization after roughly 
1 Myr. These times are not easily comparable to the timescales 
we compute via linear stability analysis since the physical prob-
lems are different in non-trivial ways: the simulations of Ballmer 
et al. (2017) are in a 2D aspect-ratio-1 cartesian box, those of 
Maurice et al. (2017) are in cylindrical geometry with a variable 
viscosity, a melt extraction mechanism and a solidus temperature 
that depends only on pressure. However, despite these differences, 
the destabilization time uncovered by these simulations are rather 
similar to the one we predict for the non-penetrative cases: of the 
order of 1 Myr for the Earth and 0.5 Myr for Mars. This confirms 
the linear growth rate of instabilities is a relevant proxy for the 
timescale at which convection sets in.

Moreover, allowing transfer of matter via melting and freezing 
at the interface between the solid and the surface magma ocean 
reduces dramatically the timescale with which solid-state convec-
tion can set in. It also changes the shape and harmonic degree of 
the most unstable mode: a degree-one translation mode is pre-
ferred. Therefore, the possibility of melting and freezing at the 
interface should be accounted for when studying the overturn of 
the primitive mantle of planetary bodies. For example, the case of 
the Moon is an interesting potential application. This body has a 
strong dichotomy: the near-side presents more mare basalts, more 
KREEP material, and a thinner crust than the far-side. Wasson and 
Warren (1980) already proposed that such features could be due 
to a slower cooling of the lunar magma ocean on the near side 
than on the far-side. A permeable boundary would allow the solid 
mantle to overturn with a dominant degree-one before the en-
tire crystallization of the mantle (keeping in mind that the end 
of the crystallization is much slower than what we predict with 
our simple model, see Elkins-Tanton et al. (2011)). The mechanisms 
proposed to build a degree 1 at the scale of the Moon involve the 
dynamics of an entirely crystallized lunar mantle (e.g. Parmentier 
et al., 2002; Zhong et al., 2000). The possibility to form a degree 
one while the crystallization of the magma ocean is still ongoing 
is therefore worth exploring with more complete models to test 
whether this dominant degree-one can be conserved after crys-
tallization of the magma ocean and/or helps the development of 
degree-one instabilities such as the ones predicted in the afore-
mentioned studies. It is also tempting to associate the degree-one 
feature of Mars (the Marsian dichotomy) to the same process but, 
as explained above, the first degree-one overturn of the solid man-
tle is expected to happen long before its complete crystallization. 
Secondary overturning instabilities are possible after the first one 
that we cannot investigate with the tools presented above. A more 
complete study investigating the finite amplitude dynamics is nec-
essary to understand the implications of this work to planets larger 
than the Moon.

It should be noted that several parameters involved in the prob-
lem are badly constrained. The viscosity of the solid mantle and 
even its rheology is such a parameter. It is highly dependent on 
how close the temperature in the solid is from the solidus and 
could easily vary by a few orders of magnitude (e.g. Solomatov, 
2015). Since the destabilization timescale scales as the Stokes time 
(Fig. 6), it is directly proportional to the viscosity and could there-
fore vary by a few orders of magnitude. The strong relation be-
tween the viscosity of the cumulate and the overturn scaling has 
been investigated by Ballmer et al. (2017): their numerical exper-
iments confirm the overturn onset scales as the Stokes time. It 
Fig. 7. Thickness of the solid cumulate at which the destabilization timescale equals 
the time needed to crystallize the rest of the SMO for several values of the partition 
coefficient, D ∈ [0.01, 0.99]. The Moon is not shown here since the destabilization 
timescale is greater than the time needed to crystallize the SMO. The colors are 
the same as in Fig. 2, blue: non-penetrative condition for both horizontal bound-
aries (�± = ∞); green: flow-through condition at the boundary between the solid 
and the surface magma ocean; and red: flow-through condition at both horizontal 
boundaries.

should be noted that our flow-through boundary conditions does 
not affect this result, it only reduces the proportionality factor be-
tween the Stokes time and the growth time of instabilities (Fig. 6). 
This validates the general approach proposed by Boukaré et al. 
(2018) to assess whether solid-state convection sets in before the 
magma ocean is entirely crystallized: they compare the Stokes 
time with the time needed to crystallize the magma ocean and 
their numerical experiments yields that syn-crystallization con-
vection is possible when the ratio between these two times ex-
ceeds ∼5 × 104. This value however was determined with non-
penetrative boundary conditions, the actual threshold should be a 
few orders of magnitude higher (meaning syn-crystallization con-
vection is allowed for shorter solidification timescales) since the 
flow-through boundary condition leads to a faster destabilization 
of the cumulate for the same Stokes time. Another aspect that de-
serves care is that for Earth-sized bodies, the Stokes time should 
incorporate both the thermal and compositional density contrasts. 
Boukaré et al. (2018) compare the “compositional” Stokes time 
with the solidification timescale; while this is perfectly valid for 
the Moon and Mars for which the thermal density contrast is 
much smaller than the compositional one, this does not hold for 
the Earth where both terms have similar magnitudes (Fig. 5). 
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The tremendous importance of the viscosity is why a viscosity of 
1018 Pa s is assumed in this study since it is a higher bound for the 
near-solidus viscosity (see Solomatov, 2015, and references therein) 
and gives the most conservative estimate for the destabilizing time. 
The viscosity could be significantly lower if the melt fraction is im-
portant in the cumulate, Solomatov (2015) suggests 1014 Pa s as a 
lower bound at 40% melt fraction (roughly the rheological tran-
sition). Another potential effect of viscosity that is neglected in 
the study is dynamical: since solid state convection occurs dur-
ing the crystallization of the magma ocean, the temperature in 
the solid departs from the solidus temperature profile and as a 
result the viscosity increases. Moreover, the compositional profile 
becomes gravitationally stable with iron-enriched heavy material 
being transported from the top to the bottom of the solid. These 
two effects combined may lead to the stopping of the solid state 
convection (Solomatov, 2015). Depending on the size of the magma 
ocean considered, it could then be possible either that the magma 
ocean crystallizes completely before convection may start again in 
the solid, or that convection sets in again in the solid before it is 
entirely crystallized. Studying this scenario requires a more com-
plex method that a simple linear stability analysis since it involves 
a non-linear feedback between the dynamics of the solid part and 
its viscosity, temperature, and compositional fields.

Another unconstrained parameter is the partition coefficient of 
iron between the solid and liquid. An exploration of this parameter 
shows that the effect of the partition coefficient is rather lim-
ited for the Earth, and slightly more important for Mars (Fig. 7). 
This is in agreement with Figs. 2 and 5 showing the difference 
between the purely thermal case (corresponding to the extreme 
value D = 1) and the purely compositional case is rather small for 
the Earth but more important for Mars.

Finally, our choice of a constant emissivity results in a roughly 
constant solidification rate, whereas more sophisticated cooling 
models including an atmosphere predict most of the mantle crys-
tallizes quickly, and the solidification slows down when only a 
shallow magma ocean remains. Although such effects are impor-
tant to build realistic solidification models, they should not affect 
dramatically our results. Indeed, a faster crystallization at the be-
ginning would lead to a destabilization of the solid mantle at a 
larger thickness, but we expect this difference to be small since 
the destabilization timescale is rapidly much lower than the solid-
ification timescale.

5. Conclusions

Upward crystallization of the silicate mantle of planets within 
a magma ocean is expected to produce a unstably stratified situa-
tion, because of both temperature and composition. In this study, 
we have addressed the question of whether the overturning in-
stability develops faster than the time it takes to crystallize the 
magma ocean. To that end, we have developed a linear stability 
analysis tool to compute the growth rate of the fastest overturning 
mode and studied systematically the effect of the most important 
parameters: the planet’s size (Moon to Earth size), the partition 
coefficient and the type of boundary condition between the solid 
and the liquid. In particular, we have introduced a boundary con-
dition that accounts for the possibility of melting and freezing at 
the interface between the solid mantle and the magma ocean.

This study shows convection is likely to start in the solid mantle 
of the Earth, Mars and the Moon before the entire crystallization of 
the surface magma ocean. Evolution models of the primitive man-
tle of planetary bodies should therefore account for convection and 
the associated mixing in the solid part of the crystallizing mantle.

This result holds for the Earth and Mars even without fractional 
crystallization and the unstable compositional gradient it creates in 
the cumulate. The value of the partition coefficient is found to have 
little impact on the timing of mantle overturn.

The timescale at which convection sets in scales as the Stokes 
time. Specifically, it is proportional to the viscosity of the solid. 
However, it should be kept in mind that these results are obtained 
assuming a Newtonian rheology and a constant viscosity in the 
solid mantle. Given the central role of viscosity in this problem, 
better knowledge of the viscosity and rheology of the primitive 
solid mantle is of primary importance to study its dynamics.

Finally, the possibility of exchange of matter between the solid 
mantle and the magma ocean(s) should be accounted for in dy-
namical models of the primitive mantle since it greatly alters the 
pattern of convection as well as the destabilization timescale. It 
could even be a way of producing degree-one structures such as 
the ones observed on the Moon and Mars.
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Appendix A. Composition profile resulting from the fractional 
crystallization of the surface magma ocean

Conservation of the heavy component implies that

d

dt

⎛
⎜⎝

R+∫
R−

C(r)r2dr + 1

3

(
RT

3 − R+3
)

Cl

⎞
⎟⎠ = 0, (A.1)

where no compressibility effect on density is considered, allowing 
the bulk density to drop out of the equation. Using eq. (2.1) and 

Ċl = Ṙ+ dCl

dR+ , assuming Ṙ+ > 0 at all time and R− constant:

1
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. (A.2)

Using eq. (2.1), eq. (A.2) can be written for C :
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RT
3 − R+3

. (A.3)

Since C(r) does not depend on time, this equation holds for any 
r � R+(t) (i.e. everywhere in the solid) and can be written as:

1

C

dC

dr
− 1

D

dD

dr
= 3(1 − D)

r2

RT
3 − r3

. (A.4)

Equation (A.4) is general and allows to take into account vari-
ations of D . However, it is useful to consider the limiting case of 
a constant partition coefficient D . In that case, a solution to this 
equation is

C = C0

(
RT

3 − R−3

RT
3 − r3

)1−D

, (A.5)

with C0 = DCl0 the mass fraction of FeO in the first solid formed.
Note that eq. (A.5) diverges when r → RT but is in fact only 

valid as long as C < 1 and Cl < 1. When Cl reaches 1, the solid 
formed has the same composition as the liquid. The complete so-
lution therefore is

C =
⎧⎨
⎩C0

(
RT

3−R−3

RT
3−r3

)1−D
if r < Rs

1 if r > Rs,
(A.6)
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with

Rs =
(

(R−)3C
1

1−D
0 + RT

3
(

1 − C
1

1−D
0

))1/3

(A.7)

the value of R+(t) such that Cl(t) = 1.

Appendix B. Linear stability

Since the solid is considered isoviscous and no source of 
toroidal flow is imposed at the boundaries, the velocity field can 
be expressed in terms of the scalar poloidal potential P : u =
∇ ×∇ × (Pr) (e.g. Ricard and Vigny, 1989; Ribe, 2007). Linearizing 
eqs. (2.11) to (2.14) around the reference state (u = 0; T̄ ; C̄) gives:

Q = ∇2P (B.1)

∇2Q = Ra
� − 〈�〉

r + λ
+ Rc

c − 〈c〉
r + λ

(B.2)
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The boundary conditions on the temperature and composition per-
turbations are trivial:

�± = 0, (B.5)

c± = 0. (B.6)

The boundary condition eq. (2.16) and the free-slip boundary con-
dition are written in term of the poloidal potential as:

±�± 1

r + λ
L2P + ∂

∂r

(
2

r + λ
L2P − (r + λ)Q

)
= 0 (B.7)

∂2P
∂r2

+ (L2 − 2)
P

(r + λ)2
= 0. (B.8)

λ = R−/L − 1 is a curvature term due to the definition of the di-
mensionless radius. L2 is the horizontal laplacian: L2• = ∂r((r +
λ)2∂r•) −(r +λ)2∇2•. The quantity Q is introduced to ease the for-
mulation of this system as an eigenvalue problem involving square 
matrices.

The perturbations P , Q, � and c are developed using spherical 
harmonics, e.g.

P =
∞∑

l=1

l∑
m=−l

Pl(r)Y m
l (θ,φ)eσlt (B.9)

where l and m are the spherical harmonics degree and order and 
σl is the growth rate associated to the harmonic degree l. The 
system is laterally degenerated and m does not affect the growth 
rate of the perturbation nor the shape of the radial modes Pl(r), 
Ql(r), �l(r) and cl(r). These radial modes are discretized using 
a Chebyshev collocation approach (e.g. Guo et al., 2012; Canuto 
et al., 1985). Each radial mode is expressed as a vector whose 
components are the values at the N + 1 Chebyshev nodal points 
(respectively denoted P, Q, T and C). Radial derivatives evaluated 
at the nodal points ri = 1

2

(
3 + cos iπ

N

)
can then be expressed with 

a differentiation matrix d, e.g. ∂rP(ri) = (dP)i . We formulate the 
system of linearized equations along with the associated boundary 
conditions as
LX = σlRX (B.10)

with
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where 1 is the identity matrix, ri j = ri1i j , rλ = r + λ1, l2 = l(l + 1)

and D2 = d2 +2r−1
λ d − l2r−2

λ The extra row and column on top and 
right of the matrices are respectively the column and row indices 
of each of the submatrices. For example, the top left submatrix 
of the matrix L is only the first row (hence the 0 on the extra 
column) of the matrix d2 + (l2 − 2)r−2

λ .
At a given instant during the crystallization, all the dimension-

less numbers W , λ, 
, Ra and Rc appearing in the matrices L and R
are known. For any harmonic degree l of the perturbation, finding 
its growth rate σl and associated vertical mode X is an eigenvalue 
problem. The largest eigenvalue is the growth rate, and the asso-
ciated eigenvector represent the vertical modes. At a given instant, 
we look for the harmonic degree l with the highest growth rate 
σl , which is then used to compute the dimensional destabilization 
time scale L2

M/(κσ ).
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