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EFFECT OF A SLIGHT NON-UNIFORMITY
OF THE MAGNETIC FIELD ON MHD CONVECTION

A. K. Hoi6pand, K.-1I. Kaparda, P. Mopo, T. An6yccvep

BJIMATHHUE CJIABOM HEOJTHOPOJTHOCTH MAT'HUTHOT'O ITOJIA
HA MATHUTOTHAPOJUHAMUYECKYIO KOHBERITHIO

Usyuena uyscrBurespHocTs MI'I] KOHBEKIIMHM II0 OTHOIIEHUIO K ciIaboy HeoJHOPOH-
HOCTM Mar"gurTHoro IoJis. Pabora mpexpcraBnsier cofoi JasibHelimiee pasBUTHE
ACUMIITOTUYECKOTO aHaJM3a ITPOIIECCOB MpH GOJBIIUX uHciaax ['aprManHa, IpoBeleH-
Horo B [1] 1A ciIyyasi OZHOPOMHOTO ITOCTOSTHHOTO BEPTHKAJIBHOTO MATHHTHOIO IIOJIA.
HeomgHopoAHOCTh MATHUTHOTO IOJIA b IIpeAmosaraeTcs HAMHOTO MEHBIIIe OZHOPOLHOIO
MATHUTHOIO TOJIS HyJeBoro ropsimka Bo, A = b/B, << 1. [lanee c HoIylIeHWeM, UTO
00yCJIOBIEHHbBIE 3TOM -HEOSHOPONHOCTHIO M3MEHEHMS CKODOCTM TaKMKe MaJbl IO
CPaBHEHHUIO C pelleHWeM IIpM OLHOPOAHOM IIoJie, IIPOBeleH aHaJIM3 BO3MYIIEeHHI
repBoro mopsiaika. Heau paGouuit o6beM MMeeT WIeasbHO IIPOBOSIIME CTeHKH, TO
M3MeHEeHHe CKOPOCTH OKa3bIBAeTCs TOTO ¥Ke IOPAAKA MHTeHCHUBHOCTH, UTO K y MarHMT-
HOTO IIOJIs, T.e. B OTHOCHTE/NbHBIX €JUHUIIAX PaBHBIM A. Ho IIpH HENIpOBOAAIIMX CTeH-
xax caabasi HEOZHOPOAHOCTh MATHHUTHOI'O II0JIS MOXKET BbI3BaTh BO3MYyILIEHUE CKOPOCTH
nopanxa AHa. Tor pesysbpTaT MOMKET MMETh Cepbe3Hble IOCNeACTBHSA [JIs IIPUIIOMNKe-
HUI; HaIpuMep, B OTHOIIEHHWM TOPH30OHTAJIBHOIO BBIPAINMBAHMA KPHCTAJUIOB IIO
Bpunxmery Tpe6oBaHHA K pasMepaM, KOHCTPYKIIMM ¥ COBePUISHCTBY MATrHHTa MOTYT
0Ka3aThCs HaMHOTO CTPOXKe, UeM IIpeTiosarajioch K0 CHX IIop.

1. Introduction. Convection is an important phenomenon in crystal
growth from the melt, as it is responsible for most of the crystal defects, such
as macrosegregations and striations [2]. Two methods exist in order to reduce
these liquid motions: the microgravity environment that reduces the buoy-
ancy driving force, or the use of a steady magnetic field that damps the fluid
flow via the electromagnetic force [3 — 5]. In all cases, it is important to un-
derstand and to predict how the applied magnetic field changes the fluid flow
and affects the solute transport through the fluid and across the solid-liquid
interface. The transport phenomenon can be handled with numerical as well
as an order of magnitude analysis (for an application in non-MHD flows, see
for instance [6]). In two former papers, a first analysis of such convective
MHD flows is proposed where the magnetic field is uniform. An analytical
exact solution has been obtained [7] for an idealized two-dimensionnal prob-
lem. The asymptotic analysis in [1] limited to conditions where the Hart-
mann number is much larger than unit, takes into account the cross-section
shape and shows that the crucible geometry has a great influence on the ve-
locity distribution: the velocity scales with GrHa® (Gr and Ha are respec-
tively the Grashof and Hartmann numbers) when the cross-section shape is
symmetric with respect to the horizontal mid plane, but may be of the order
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of GrHa™' when the cross-section does not meet this symmetry requirement.
This means that the flow is extremely sensitive to the experimental condi-
tions and one can wonder about the required accuracy for other parameters
such as the thermal gradient or the magnetic field uniformity. In this paper,
we propose a first answer to this important question from an analysis of the
influence of a weak non-uniformity of the magnetic field.

MHD pressure-driven flows in the presence of a non-uniform magnetic
field have been studied in many papers (see for instance [8. — P. 150 - 164]).
Kulikovskii [9] generalizes some results on flows in a uniform magnetic field
to non-uniform magnetic field. In his core solution, singularities are put in
evidence, associated with discontinuities of the quantities specifying the
boundary conditions at the walls. Focusing on fully established flows at high
Hartmann numbers, Todd’s paper [10] is limited to circular ducts with non-
uniform transverse magnetic field, and Alemany and Moreau [11] further
restrict the probiem to the case of a transverse multipolar magnetic field,
whose axis of symmetry coincides with the duct axis. Todd shows that, in
some particular cases, the strong non-uniformity of the electromagnetic re-
sistance to the flow may yield negative velocity in part of the core. Alemany
and Moreau find similar results and show that, when the number of pole
pairs is larger than one, high positive velocities are located in the shear layers
(where the magnetic field and the current density become parallel) or in axial
jets (since the magnetic field is zero along the axis). Concerning buoyancy
driven or rotational flows with non-uniform magnetic field, the studies are
much rarer and only concern Czochralsky crystal growth. The effects of the
so-called “cusped” magnetic field (a quadripole field) are outlined by Series
and Hurle [12] and Hirata and Hoshikawa [13, 14] with the purpose to match
the magnetic field to the streamlines in the melt so as to damp the convective
turbulence and retain beneficial flow patterns. For application purposes, the
expected role of such a magnetic field is only to suppress the solute stria-
tions.

In a Bridgman furnace, the first role assigned to the applied magnetic
field is to slow down the convective mean flow (it is expected that turbulence
would be damped out a fortior:) and to force an almost purely diffusive mass
transport regime. Then, a uniform magnetic field seems to be the best candi-
date. This magnetic field could be generated by either a permanent magnet
or an electromagnet whose polar pieces should be plane and parallel. The
whole Bridgman furnace, which surrounds the crucible and the sample,
should be located in the gap between these pole pieces. It is then clear that
the necessary uniformity degree of the magnetic field is one of the main re-
quirements for the magnet design, as it determines its volume and weight.
Addressing this question is very different from studying the flow in the pres-
ence of a strongly non-uniform magnetic field and suggests to use a regular
perturbation technique. To the zeroth order, the magnetic field By is per-
fectly uniform and the fluid flow is already known. We develop a first order
analysis and predict the amplitude and the distribution of the disturbance of
each quantity, namely the fluid velocity and current density, due to a weak
magnetic field non-uniformity b superposed to B,. This greatly simplifies the
problem since no discontinuities or singularities appear in the study which
therefore only considers the core flow and the Hartmann layers (side layers
are not taken into account). It is important to notice that this non-uniformity
has nothing to do with the induced magnetic field, often called b too, which
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is assumed to be negligible here: Rm << A << 1, where Rm is the magnetic
Reynolds number and A = b/B; is the non-uniformity order of magnitude.

In section 2, we approach the problem in a general way: we assume that
the unperturbed velocity and current density are known and derive the gov-
erning perturbation equations. We use the modified Elsasser variables for the
perturbed quantities: m* =rotu +Haj (u and j being the velocity field
and current density perturbations), and we obtain a system of equations
similar to that derived in [1] but with a more complex source term. The gen-
eral form of the solution in the core and in the Hartmann layers is presented
in sect. 3. Finally, in sect. 4, we apply it to the particular case of a horizontal
Bridgman configuration with a symmetric crucible; an interesting symmetry
property of the magnetic field non-uniformity is emphasized.

2. Governing equations. We consider an electrically conducting fluid
contained in a cavity of a typical length-scale H in the presence of a uniform
steady vertical magnetic field B;. We assume that;:

- the physical properties of the fluid are uniform,

- the magnetic Reynolds number Rm = pouH is very small compared to
unit, so that the magnetic field is not perturbed by the flow (here, u stands
for the velocity scale and p, o for the magnetic permeability and the electric
conductivity),

- the fluid flow is steady,

- inertia is negligible,

- body forces, other than electromagnetic, are known in the whole cavity
and independent of the velocity field,

- the Hartmann number Ha=(c/pv)"?B,H is large compared to unit, so
that the viscous stresses are negligible in the core (p and v are the density
and the kinematic viscosity).

We consider that the flow in the presence of the uniform magnetic field
has been determined, Uy being the velocity and Jy the current density, and
we now superpose to By a slightly non-uniform disturbance b: B =By + b
with A = /By << 1 (divb = 0; rot b = 0). Our purpose is to determine u and
j, the velocity and current density perturbations due to the slight non-
uniformity of the magnetic field, writing U =Up +u, J =dp +j and as-
suming u/Up << land j/Jg << 1.

The problem is governed by the following equations (conservation of
mass and electric charge, Navier — Stokes equation and Ohm’s law):

divU =0, divd =0, (1),(2)

—gradP+pf+dJ xB+pvAU =0, J = c(-grad®+U x B) (3),(4)

where P = P+ p and ® =®p+ ¢ are pressure and electric potential and
J x B denotes the density of electromagnetic force and pf of other body

forces.
The undisturbed flow is governed by the same equations with By instead

of B. Therefore, by taking their differences, we get equations for the pertur-
bhations u, j, p and ¢ of the order A:

diva =0, divj =0, (1a),(2a)

—grad p+dyxb+jxB,+pvAu=0, (3a)

j=o(-grado+U, xb+uxB,). (4a)




Since we focus on u and j, we eliminate p and ¢ by taking rot of (3a) and
(4a). Of course, p and ¢ could be found using the divergence of (3a) and (4a)
once u and j have been determined.

Let us now use the following non-dimensional variables:

x=Hx ,u=uv/H,j=jvoB,/H, =9 vB,, b=B,b", B, =Be,
where the asterisk denotes a non-dimensional variable; in the following, all
quantities are non-dimensional, and the asterisk is omitted. Then the set of
equations (la) — (4a) becomes:
diva =0, divj=0, (5),(6)
Ha®(e,V)j + A(rot u) = ~Ha” rot(J ; x b), )
rot j=rot(U, xb)+(e;V)u, j=—-grade+U; xb+uxez. (8),9)

The modified Elsasser variables,

m =rotu+Haj, m =rotu-Haj, (10),(11)
are now introduced. Taking the rot of (8), we get:
(epV)rotu+Aj=—rotrot(Uy x b), (12)

so that the equations for m'and m~ are easily derived from the combina-
tions (7) = (12) the latter being multiplied by Ha:

Am" +Ha(e,V)m" = Hafrot[U ,;b]+ Ha[d ;; b]}, (13)
Am™ - Ha(e,V)m~ = —Ha{rot[Up; b] - Ha[d ;;b]} . (14)
In equations (13) and (14), we used a notation
[a; b] =-rot(a x b)=(aV)b - (bV)a
since div a = divb = 0. The system of equations still needs to be completed
by relations (15), (16) which allow to come back to velocity and current den-

sity, and by the conservation equations for m* and m":
j=(m* -m")/2Ha, rotu=(m'+m)/2, (15),(16)

divm'=divm =0. (17)

The modified Elsasser variables m* and m~ have the property, previ-
ously found by Shercliff [15] for the non-modified Elsasser variables in pres-
sure-driven duct flows, that each variable has no Hartmann layer on one
side. The only difference between equations (13) and (14) and the equations

for the unperturbed variables M"' and M arises from the expression in the
right-hand side, which in [1] is reduced to C, the rot of the given body forces.
In our case, the right-hand side is again a given source term since Up and Jp
are known and b is @ priori given, but it is more complex. Indeed, this source
term contains two parts whose characteristic effects and properties are worth
being distinguished. The second part Ha? [J; b] is the driving torque density
due to the electromagnetic force Jpx b, and the first part +Ha rot[Ug; b]
comes from the induced current density which interacts with the uniform
magnetic field to give the electromagnetic force ~(b ep)Up, but the main
point is that in the core regions where the derivatives are of the order of unit,
this term is negligible with respect to Ha? [Jp; b], if we assume that Up and
dp are of the same order of magnitude. In the Hartmann layers, however,
both terms are of the same order of magnitude.

3. General form of the asymptotic solutions. In the high Hartmann
. number limit, it is useful to distinguish different regions where the general
system can be simplified: inviscid core regions where the typical length-scale
is unit; and the boundary layers where it is much smaller. These layers are of
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two kinds: 1) Hartmann layers that develop along the walls which are not
parallel to the magnetic field By and of characteristic thickness Ha ',
and 2) parallel layers that develop near walls parallel to By or between two
cores which cannot be matched together; these have a characteristic thick-
ness Ha "2

The study of Hartmann layers is required to derive the core solution.
Conversely, in many cases of symmetry such as a fully established condition
[8. - P. 138 - 146], the parallel layers are passive and can be disregarded
since they have no influence on the core flow.

3.1.The core flow solution. In the core (subscript c), neglecting both the
Laplacean term and the rot in the right-hand side, equations (13) and (14)
become:

(e,V)m; = Ha[JBc;b]{l 2 O(Ha--l)} , (18)
(e,V)m; = -Hald ,,; b]{1+ o(Ha)}. (19)

Let us use a cartesian frame of reference with the z-coordinate in the
uniform magnetic field direction (the coordinates x and iy will be defined later
on). The solutions to equations (18) and (19) are:

m; =Ha[[d;,;b]dz +mi(x,y), (20)
0
m; = —Haj' [ 5e; bldz +m5(x,5) (21)
0

where m{ are arbitrary functions independent of z.

It is necessary to return to u, and j. because the boundary conditions
cannot be expressed in terms of m* and m~ but in terms of u and j Equa-
tion (15) gives the current density and equation (8) yields the velocity field:

§. =deo i@ ), u,=u, +z-rot(j,(x, ) +uylx,y),  (22),(23)

where we denote j, = j'[JBc;b] dz and u,, = j'{[UBc;b]+rot jco} dz, two
0 0

known vector fields depending only on the unperturbed core solution
U, and J,, and on the non-uniformity of the magnetic field b; and where uy

and j, are arbitrary functions independent of z. Continuity equations for u
and j (equations (5) and (6)) impose that:
divj, = divj,, divu,=—(e,rotj, +divu,). (24),(25)
3.2. The Hartmann layers. In these regions whose characteristic thick-
ness is of order Ha™!, the variations in the normal direction are dominant and
ezn # 0 (we denote by n the normal vector directed into the fluid and » the
coordinate in this direction). We extend the core solution to the whole cavity
and take the difference between the equations for the actual solution and
those for the core solution:
Am' -m})-Ha(e,V)(m" -m;) =

= Ha{rot[UB - UBC;b] + Ha[JB - JBc;b]}, 20)
A(m~ -m)-Ha(e,V)(m™ -m_) = @7

= -Hafrot[U, - U,,;b] - Ha[d; — I 5; b},
divim® -m;) =divim™ -m_)=0. (28)




Using the approximations A= & and (e;V)=(eyn)0, and writing that
rot[UB - UBc;b] =—(bV)(rot(U; - Uy,.))
and
[JB —JBc;b]z —(bV)(d;-d,,),

equations (26) and (27) become:
(0 +Hacos09,) (m" -m})=— Ha(bV)(M} - Mj,) (29)
(9 —Hacos00,) (m™ -m_)=HabV)(M} - M3.), (30)
where cosO = egn characterizes the vector angle between the direction
of the uniform magnetic field ez and the normal direction n, and
M =rotU, +Had; denote the known modified Elsasser variables for the
unperturbed flow. In the following, we shall term S a surface where
epn = cosd < 0 and S* a surface where egn = cosd > 0. As observed at the
begining of this section, it appears that m* has no Hartmann layer along sur-

faces S~ and m~ has no Hartmann layer along surfaces S".
Solutions of (29) and (30) are of the form:

m° -m=a exp(—Ha!cos(—){n) + P.S. (31)
where p.s. is a particular solution, a is a vector field independent of n,
|cosO| = —cosd on S and |cosd| = cos® on S*. We lock for simple particu-
lar solutions in exp(~ Ha|cos8|n). Taking (bn) = (bm)|,-, and supposing fur-
ther that (bn)|,-o# 0, we obtain:

m” - m? = (a* - nHa(bn)M})exp(-Halcos6|n), (32)

m -m_, =(a + nHa(bn)Ma)exp(—Hakos G\n) , (33)
where M? is the tangential component of Mj —Mj, .
Denoting by mot the tangential part of a*, we get from the equation (15):
(G- o), = 1/2{Ha™ (mj - mg) - n(bm)(M; + M)} exp(-Halcos6|n) . (34)
Using the continuity equation for m* - m_, we can relate their normal

and tangential components; the derivation, carried out in the appendix,
yields:

R § iy dg—dg)_ 5 [dg_—daj
( Jc),l—z{Ha dlv[ icosel nHa _———\cosé)\ grad!cos9|+
+(Mj grad(bn) exp(—-Halcos Gln) - (85)
]cos@‘

~1/2n(bn)|(M}, -Mj,), + M5 -M3.), |

where we denote d;, =m; —SEE—)—M* and d; =m; +—(—lll—l—>M‘ . It is notice-
0 ¢ ]cos@l P 3 ’ lcose| :

able that mot and doi , like Moi, are independent of n, equal to zero on s*

and tangential to S*.
From Ohm's law (8), we then get for the tangential part of (u-u,):
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1 d; +d,
o =—J{Ha™? 0 -0
(u-u,), 2{ a nx( |cos6| J

+ -

—n(bn)n x [Mﬁ;égl{_@} } exp(—Ha!cos 9{ n).

(36)

Finally, from the continuity equation for (u-u.) we find the normal

component:

-2 + - o =
(u-wu,), = it div| m x [M‘l} - (bm)m x (—M(—)——Nzl(l} +
2 lcos e[ ‘cos@l

-1 ey -
+n H; (bn)[n X [M—‘)I—W—OD grad|cos 6| -

|cos 9[3

-1 ( + - -1 + - A
Ha Ln x (d‘) L dOUg‘radfcosG‘ L div[a)n)n X [E‘M}J .

2 Icos 6!2 2 cos BiQ

@37

=14

/

JL(bD)[n x{%l%;—l}l[z-g’-ﬁ grad|cos6)| exp(-—Ha[cos 6\71,).

We have now obtained the general form of the current density and velocity in
the core ((22) and (23)) and in the Hartmann layers ((34) — (37)). These solu-
tions are expressed in terms of four unknown two-dimensional vectors: uy, j,,

m; and m,, and still have to satisfy: the boundary conditions for u and j,

equations (24) and (25) concerning the variables uy and j, and the tangency
conditions concerning the variables m/ and m,. These conditions, whose

expressions can only be explicited for a given particular configuration, lead to
a system of partial differential equations for the four two-dimensional vec-
tors. In the following section, we propose a derivation of the solution in the
case of a horizontal symmetric Bridgman configuration with simple electrical
conditions.

4. Solution for a horizontal symmetric Bridgman configuration.
Let us now focus on buoyancy-driven convection in a horizontal symmetric
Bridgman configuration with a vertical magnetic field. The crucible is a finite
length cylinder whose endwalls are maintained at fixed temperature (see
Fig. 1). Because the Prandtl number is much smaller than unit, the tempera-
ture field may be expressed assuming pure conduction, thus the temperature
gradient is uniform: grad T = G e,. The cold wall (T' = T\)) represents the so-
lidification front that we assume at rest. We consider that the melt is a very
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Fig. 2. Scheme of cross-section of the working
volume. Curves Z(y) and - Z(y) forming the sur-
faces S” and S* are indicated.

Ymin Ymax  Puc. 2. Dexus TIoIrepedHoro cedeHns pabogero
t+ obrema. Ilokasamsl kpusbie Z(y) m —Z(y),

C-Z(y); S obpasyromme rmosepxsoctn ST m S' coor-
i BECTBEHHO.

dilute mixture and that only thermal buoyancy acts as a driving force. We
assume the cylinder aspect ratio H/L to be small enough for a fully estab-
lished flow to exist in the middle.

The reference frame (e, e,, ,), where e,, has been defined in section 2, is
shown in Figs 1 and 2. We assume that the cylinder is symmetric with respect
to e, , its cross-section shape being defined by the function Z(y) representing
its outer contour; this function Z(y) corresponds to a surface S
(egn = cos® < 0) and the function -Z(y) corresponds to a surface S*
(egn = cosd > 0) (Fig. 2). And we also assume that the magnetic field distur-
bance b is independent of x and has its magnetic flux lines symmetric with
respect to e, This assumption leads to distinguish two classes of non-
uniformities: those with horizontal and vertical pole lines (Fig. 3a) and those
with pole lines inclined at 45° (Fig. 3b). The first class non- -uniformity (b;)
satisfies the conditions b,(y, 2) = b,(y, —2) and b,(y, 2) = - b.(y, —z), while the
second class non-uniformity (by) satisfies the conditions b,(y, 2) = ~ b,(y ,—2)
and b,(y, 2) = b,(y, —2z). These rot-free non-uniform fields b, and b, sketched
in Fig. 3 have a linear dependence on y and z.

The vectors uy, and j, are expressed in the (e,, e, e,) frame of reference
while the vectors my," and d," are expressed in the local frame (e, n™, t*)
where the vector n (resp.t) denotes the unit vector normal (resp tangentlal)
to the wall. The coordinate transformation from (e,, e,) into (m*, t) is the
same as in [1]. Now, the unperturbed solution (Ug and Jp) corresponds to the
solution derived in [1], and thus the vectors uy and jyo are known. The
boundary conditions for u and j are: 1) zero-velocity at the walls for the ve-
locity field, and 2) perfectly insulating or perfectly conducting walls for the
electrical conditions.

4.1. Electrically perfectly insulating walls. 4.1.1.Derivation of the
solution. Expressing u=u.+(u-u,) and j=j.+(j-j.), as given by equations
(22), (23) and (34) to (37), which have to satisfy the boundary conditions, we
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Ifig. 3. Horizontal symmetric rot-free non-uniformities of the magnetic field: a — first class,
b — second class.
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we obtain the system of equations (38) to (43), where prims denote the 4, de-
rivatives and where we used the condition of a fully established flow (. a.=0).

1) (88") and (38") express that S* and S are electrically insulating walls
(n=0 atn =0):

!

2oy + ooy D]+ e + o~ 2) - 12 Ha[dg V1 +zf2} =0, (38"

2oy + iy D] e~ Juoe @ -1/2Ha (o 14 27| <0 (38

2) (39%), (897) and (40™), (40") express the zero tangential velocity con-
dition along e, and t (ue, = 0 and ut = 0 at n = 0);

(= 2) = ZjL, +1/2 Ha‘l[dgtw/l N ZZJ = 0; 39"
Uy, +1eo (Z) +Zjs, +1/2 Ha‘l[dg,\/l +z'2] -0, 397)
{/ 14 12
o A u23—1/2Ha‘1[d0*x(1+Z ”:o, (40+)
' ’ 12
L TR Ha‘l{dgx(l +Z H =0, (407)

3) (417) and (417) express the non-penetrability condition for the walls
S*and S (un =0 atn = 0):

’

1 I2
G Z i, +1/2Ha‘2[dgx\/1 ez J =0, (41%)

! 12
Ly, B2 0 — U, —1/2Ha'2{d5x\/1 +Z J =0 (417)

4) (42) and (43) express (24) and (25) in terms of vector components:
¥
Ja, ==div j, or, equivalently, jy, = [~divj, dy+4k,,, (42)
0
u, = ji.. (43)
We still have to write the conditions of zero mass and electric current
fluxes in the x and y directions; since the ends of the cavity are closed with
insulating and impermeable walls, we have:

Imex Z G
j j ue_dzdy =0 ; j j je_dzdy = 0.
Ymin =2 Yenin =2

And since there are no line of sources or sinks of mass or electric current
along the walls, we also have:

Z Z
J"I.leyd2=0 3 jjeydz:o Vy E[ymin;ymax]'
S -Z

In terms of vector components, these equations can be written as:

Ymax z 2
£ {2Zu2: + [u,dz+1/2 Ha"z[dgt - dgt](l +Z )} dy =0, (44)
-Z

Ymin

2Zu,, +1/2 Ha‘z[dgx - dgx]\ll + Z’2 =0 VY €[Ymins Y ) (45)




Ymax 12
| {2Zj2x +1/2 Ha"z[dgx - dgx]\/l 7 }dy =0, (46)
zZ ' 2
J.(-.jc()y + ij)dz - 1/2 Ha_2[d& - dO_t] 1 i Z = 0’ Vy E[ymin; ymax] N (47)
'z
The system of equations (38) - (47) is similar to the system obtained in
[1] and can be solved in the same way. The subsystem (40), (41), (43), (45)
and (46) yields the partial solution:
gxzdax:u2y2u2z:j2x20‘ i (48)
Let us substitute dj, and d; in (38) from (39). The combination
(88™)—(387) yields
oo = Y2Z ()@ = iy D)= i D)= . -D} (49)
Let us substitute dg, and dg, in (47) from (39); we get an integral form
of the combination (38") and (88") that leads to

. 1%,
u,, = Ha{—ZJZy o | Jcoydz}. (50)
. -Z

Then, substituing u,  in (42) from (50), with (44), we get

Y Ymax Z L Ymax :
Jay = [ ~divjdy+ | Z{— { Juoydz +2Z divjcodn}dy / [2z%dy. (51)
0 Ymin -Z 0 Ymin

The core solution is now complete. The solution in the Hartmann layers
can be easily derived from (39): velocity and normal component of the cur-
rent density both decrease exponentially in order to reach zero values at the
walls.

Table 1

The way how the class of symmetry of the magnetic non-uniformity b determines the
order of magnitude of the perturbations in the core

b 1st class of symmetry 2nd class of symmetry
(horizontal and vertical pole lines) (45° 1inclined pole lines)
order of class of symmetry order of | classof symmetry
variable | magnitude _or parity magnitude _or parity
with respect to z with respect to 2z
Jg Gr/Ha* 2nd class Gr/Ha® 2nd class
U, Gr/Ha® odd Gr/Ha® odd
[Js; b] | MGr/Ha’ 2nd class 1Gr/Ha 1st class
[Us; b] | AGr/Ha® odd 2.Gr/Ha’ even
Joo AGr/Ha? 1st class )Gr/Ha® 2nd class
div jeo AGr/Ha® -0
o AGr/Ha® even AGr/Ha® odd
Jou =0 LGr/Ha*
i» AGr/Ha® =.0,
Uy, AGr/Ha =0
je AGr/Ha* 1st class AGr/Ha® 2nd class
W AGr/Ha even AGr/Ha® odd




From equations (50) and (51), we deduce that it is not only the order of
magnitude of the vector jyo that determines the order of magnitude of the-
variable u,,, but also its class of symmetry. The non-uniformity b does not

appear directly in the solution but is included in the definition of
Jeo = [[d 5o B] dz = —[ rot(d 5, x b) dz,
0 0

that appears in the expressions of the variables. Thus, knowing that the un-
perturbed current density in the core Jp, has the same symmetry as by, it is
finally the class of symmetry of the non-uniformity b which determines the
order of magnitude of the velocity perturbation in the core. The Table 1 gives
the order of magnitude, class of symmetry or parity with respect to z of the
different variables, and illustrates how the class of symmetry of b determines
the order of magnitude of the perturbations: 1) if b has inclined pole lines,
the velocity perturbation in the core is of order AGrHa?, 2) if b has horlzon-
tal and vertical pole lines, the velocity perturbation is of order AGrHa™,
and 3) in all cases, the perturbation of the current density in the core is of the
order AGrHa™.

4.1.2. Some illustrations. In order to illustrate the results of the
previous paragraph, let us focus on the two particular linear non-
uniformities b; and by introduced at the begining of this section. Figs 4 — 6
present the core solutions for three cross-sectional shapes.

Some characteristic features are noticeable:

1) For a circular cross-section (Fig. 4) and the second-class magnetlc field
non-uniformity by, the core velocity perturbation is of order AGrHa™?, varies
in the y- and z-directions, and has the same symmetry as by. The e}ectrlc cur-
rent is mainly in the z-direction. The electric current lines close naturally in
the fluid, so that the Hartmann layers are passive. With the first class non-
uniformity by, the current flux is mainly in the y-direction. The y-component
of the current density in the core, j,,, is an even function of z and for most
values of y, the y-component of the electric current flux is non-zero and scales
with AGrHa % An opposite current flux must then flow in the Hartmann lay-
ers. Furthermore, we know that the current in the Hartmann layers is pro-
portional to the core velocity [8.— P. 150-164]. The characteristic thickness of

osF: 5|2
) a q / \ b 0,05 I
0 0 y
-05 W 05
y . Y
-05 0 05 -05 0 05

Fig. 4. Perturbations in the core for the circular cross-section with insulating walls. Electric
current lines with the 1st class non-uniformity by (), with the 2nd class non-niformity bg (b);
velocity profile (u, ~ AGr/Ha) along the axis z=0 at the 1st class non-uniformity b (c).

Puc. 4. BosMyIieHus B Spe TeIeHUA IPY KPYTJIOM II0IIepeYHOM cedeHuH pabodero obbema 1
HeITpOBOJAINMX CTEHKAaX: JMHHM IUIOTHOCTH 3JIEKTPHIEeCKOro TOKa IPH HeOXHOPOZHOCTAX
mepaoro (by; a) u BToporo (by; b) K1accoB; IPodIBL CKOPOCTH i, ~ LGr/Ha Brons ocn z = 0 mpu
HeOHOPOAHOCTHY M2PBOTo KJacca by (e).




the Hartmann layers being Ha and the current flux in this layers scaling
with KGrHa‘2, the current scales with AGrHa™ , and so does the velocity per-
turbation.

2)For a square cross-section (Fig. 5) and by, the velocity field and electric
current lines behave like as at a circular cross-section. But for the case of by,
though j,, is an even function of z, for and y, the y-flux component is zero and
so the Hartmann layers are passive. The velocity could thus be expected to
scale with AGrHa™. ‘

3) Now, for the 45° inclined square cross-section (Fig. 6) and first class
non-uniformity b;, we observe the same behaviour as for the circular cross-
section, too. On the other hand, for the by, second class non-uniformity, we
find a zero velocity perturbation; it is interesting to recall that the zeroth
order velocity Uy, was zero, too.

4) There exist parallel layers for a square cross-section (on both sides
y = +0,5, see Fig. 5, and for a 45° inclined square cross-section (along the
line ¥ = 0, see Fig 6). These layers accomodate jumps in the electric current
and electric potential between the core and the wall or between the two cores.
Our study does not predict anything concerning these layers.

4.2. Perfectly conducting walls. 4.2.1. Derivation of the solution.
The only difference from the insulating case is the electrical condition at the
walls, jxm =0 at n =0 (instead of jn =0). In the system (38) - (43),
Eq. (38) is replaced by Eq. (52) and (53) which express the condition of zero
tangential part of the electric current along t and e, at the walls S* and S™:

53 b
0»5% » ;—’4/’/ SSSH
5 :
0 0 > <

1 N
£ S

SaWee=:1'

-05 0 05

Fig. 5. Perturbations in the core for the square cross-section with insulating walls. Electric
current lines with the ist class non-uniformity by (@), with the 2nd class non-uniformity b,
(b); velocity profile (u.~ A3r/Ha?) along y = 0 with the 1st class non-uniformity b, (¢}; velocity
(it~ AGr/Ha’) with the 2nd class non-uniformity b, (d).

Puc. 5. Boamylueruss B Agpe TedYeHNd [PH KBAJPATHOM I[OTEPETHOM CeTIeHIH pabogero
ofheMa 11 HeIpOBOASIIMX CTeHKax: JIMHWM IUIOTHOCTM 3JIEKTPHYECKOTo TOKa IIPX
HeoxHopogHocTsx nepsoro (by; a) u BTOpOro (by; b) KIACCOB; IPOPUIL CKOPOCTH U~ 2.Gr/Ha®
BrOME ocH y = 0 NpHU HeOZHOPOAHOCTH MepBOro kiacca by (c) U CKOpPOCTB U~ 2Gr/Ha® mpu
HeO[HOPOLHOCTII BTOPOTO KiIacca b, (d).
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Fig. 6. Perturbations in the core for the 45° inclined square cross-section with insulating walls.
Eelectric current lines with the 1st class non-uniformity by (a), with the 2nd class non-
uniformity by (b); velocity profile (e~ MGr/Ha) along the axis z =0 at the 1st class non-
uniformity b (c).

Puc. 6. Boamy1eHus B Sape TeIeHUs [IPY HAKJIOHHOM 07 yTJIOM 45° xBaApPATHOM TIONIEPEYHOM
ceueHym pabodero o6beMa M HEONHOPOTHOCTSX IIEPBOTO (by; @) w Broporo (by;b) Kaaccos;
ITpodIIh cKOpoCTH 4 ~ AGr/Ha Boo/Is OCH 2 = 0 mpy HEOTHOPORHOCTH MepBOTO Kiacca by (¢).

() 12
0 e A P V/ [jzz +_jc(,z(—Z)] ~-1/2Ha™ {mét\}l +Z } =0, (62%)

1 12
~Jay = Jeoy(ZV—Z [jZZ + ja,(Z)] -1/2 Ha“{m(‘,t\/l +Z jl =0, (527)

Jo, +1/2Halmy, =0,  j,, —~1/2Ha'm, =0.  (53%),(637)

The electric charge conservation equations (46) and (47) are not valid

here, because the electric current can freely circulate in the walls. Neverthe-

less, we must specify the way the two surfaces S* and S are electrically con-

nected. We here assume that they are in contact, so, they have the same elec-

tric potential. This condition is obtained projecting Ohm’s law (9) along e,
and integrating between — Z and Z (using equation (22)):

zZ V4
2Zjy. + [ Jeoedz+ [(Up x b)e,dz. (54)
-Z -Z

Like as for the insulating case, our system of equations is similar to the
one obtained in [1] and can be solved in the same manner. The subsystem of
equations (53), (40), (41), (43), (45) gives

dgx = ddx = u2_v =Ug, = J2x =0. (55)

Let us substitute m, and mg, in (52) with the help of (39), M;, and

M;, being known from [1]. The combination of (52%) and (527), and (54)

yields
z

; 1 . ‘
J?.z e EZ_Z{-JCOZ gh (UB x b)ez}dz (56>
The combination (52%) - (627) gives

Uy, = ~Jo, = 1/2 {chy(Z) ooy D+ 2 (oo Do D) + (57)

0, (Z) Uy, (D)} +1/2[(bn7) + (bn*’)]GrHa‘Qz\h vz
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Finally, substituting u,, in (52) from (57), and with (44) and (42), we get

Jay = < [ {judz = Z ooy (Z) + Juoy(=2) + Z'(jooe(2) ~Joce(-2)) +

Ymin

i (Z) + 1t (- 2)] - [(bn-) P (bn*)]GrHa‘QZ\/l £ Z% p (58)

Y Ymax Y
+2Z [ div jcody}dy / j2Zdy> + [ —div joody-
0 Ymin 0

The core solution is complete, and the solution for the Hartmann layers
can be easily derived from (39); the velocity and the tangential component of
the current density both decrease exponentially in order to reach zero value
at the walls. From equations (56), (57) and (58), it appears that u,,, jo, and 2.
are of the same order of magnitude, AGrHa 2 For any non-uniformity b, the
velocity perturbation and current density in the core scale with AGrHa”.

5. Conclusions. In this work, the velocity and current density pertur-
bations u and j due to a slight non-uniformity of the magnetic field b super-
posed to the uniform magnetic field B, are determined. This result is applied
to get some answer about the required uniformity for the magnetic field in
the horizontal Bridgman process.

The formulation and solutions of the problem in sections 2 and 3 are
general, since we only assume that the flow in a uniform magnetic field has
been determined. The modified Flsasser variables, m" and m’, are useful to
solve the problem, but the solution in the Hartmann layers involved more
tedious algebra than in [1] because the right-hand sides of (24) and (25) con-
tain a source term related to the interaction of the zeroth order solution and
the non-uniformity. The return to the variables u and j is not simple either.
Then, in section 4, in order to complete the derivation of the solution, we fo-
cus on buoyancy-driven convection in a typical Bridgman process. We study a
symmetric configuration: cross-section and magnetic non-uniformity are
symmetric with respect to the horizontal direction. We also suppose that the
magnetic non-uniformity is independent of x. This assumption can seem un-
realistic but is necessary for a fully ostablished flow. Finally, the system for
the variables uy, jo, m, " “and my’, is similar to the one obtained in [1], thus, we
only give an outline of the solution and focus on the results.

The most striking result in section 4 concerns the case of electrically in-
sulating walls: it appears that the symmetry of the magnetic field non-
uniformity determines the order of magnitude of the velocity perturbation in
the core. For a non-uniformity with inclined pole lines, it scales with AGrHa >
while it scales with AGrHa! for a non-uniformity with horizontal and verti-
cal pole lines (of course, when the perturbation u, scales with AGrHa™', the
hypothesis z/U << 1 requires that AHa << 1). The electric current distribu-
tion helps to understand such a difference: in the first case the Hartmann
layers are passive and do not interact with the core, whereas in the other case
the Hartmann layers are active. There is a net current inside them, and
therefore a velocity proportional to this current is driven in the neighbouring
core. In the case of perfectly conducting walls, the velocity perturbation
scales with 7GrHa ? for any non-uniformity. But apart from symmetry con-
siderations, the key-result is that the existence of a magnetic non-uniformity
can entail an Ha-amplified modification of the velocity in the case of insulat-
ing crucibles.




Concerning applications to Bridgman crystal growth, this paper gives
the furnace designers the following choice. Either the magnetic field is
strongly uniform (AHa << 1); then, 1ts intensity has not to be very large
since the velocity is of the order AGrHa % or, the magnetic field does not fol-
low this requirement (Ha'!< % << 1), and its intensity has to be Ha times
larger to achieve the same braking effect.

Acknowledgement. The present work was conducted within the
framework of the GRAMME agreement between the CNES and the CEA.

Appendix. Solution for the Hartmann layers. We derive here the solu-
tion of the Eqgs (26) and (27). The treatment is similar for the two equations,
and we focus on Eq. (26). We showed that the solution of (26) is of the form:

m -m’=a exp(—HalcosG|n) - nHa(bn)(Mgexp(—Ha’cos6]n)). (32)

We write now the continuity equation for m* —m_ :
div,(m* -m;), +0,(m" -m), =0. (a-1)
This equation implies that the normal component of m* -m_ is Ha
times weaker than its tangential one. We separate the normal and tangential

component:
m -m; =k exp(*Hafcoseln) =

; (a-2)
2 (mg - nHa(bn)Ma) exp(~Hafcos6|n) + k,m exp(-Halcosbjn),

where 1)m},, is independent of 7, equal to zero on S™ and tangential to g
2) k,, the normal component, is independent of n, and 3) %, the tangential
component, is linear with 7.
Equation (a-1) becomes
div. k, — Ha(cosO)k, — nHa(ktgrad(cos 9)) =0 (a-3)
Since the different terms of Eq. (a-3) are of the same order of magnitude,
Eq. (a-1) cannot be verified when cost varies. Thus, the normal component
k, cannot be n-independent.
This occurs because we neglected the tangential derivatives in Eq. (26).
But the neglected terms may be linear with n and thus of the same order of
magnitude as the normal component. In order to take into account these ne-
glected terms, we have to admit a variation with n for the normal component.
Let us rewrite (a-1) with %, being n-dependent. In order to simplify the equa-
tion, we take
k =x-nHa(bn)K,;, (a-4)
where Kj is defined by the relation Mj -Mjp, =K, exp(——Halcose\n) . We ob-

tain a differential equation for «,:
8,x, — Ha(cosO)x,, = —divmy + (bn)div(MS cos™ 0) + nHa(mggrad('cose)) -
~nHa(bn)M;, cos™* 0 grad(cos6) + nHa(Mg grad(bn)) = (a-5)
= —divd} - M} cos™ 0 grad(bm) + nHa{d;gradfcose) + M grad(bn)}.
The notation dj =m; —(bn)M;cos 'O allows to obtain a simpler ex-

pression for the right-hand side. We see that dj , like my , is independent of

n, is equal to zero on S” and tangential to S*. We solve (a-5) and find a linear
solution:
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k, = Ha *div(djcos 1(—)) - n{dacos'l() grad(cos6) + M{cos '0 grad(bn)} . (a-6)
Let us now return to m* —m! using Eq. (a-4):

(m"-m)), = {Ha'ldiv(dg cos™’ 6) - nd} cos ' 0 grad(cos6) -
(a-7)
-nM; cos™ 0 g:vfad(bn)} exp(—Ha[c.os 9|n) -nHa(bn)Mj; -Mjp,),.

The solution of Eq. (26) is now complete. Here, m’ —m_ is a function of

the unknevwm variable na, " (n-independent, equal to zero on S™ and tangential
to ") and of the known variable M, defined in [1]:

(m*-m}), =(mj - nHa(bn)Mg)exp(—Ha[cosG[n), (a-8)

(ma” ~wm)), = {Ha"ldiv{dg cos ! 0) ~ndjcos ' grad(cosG) =
‘ . (a-9)
-nM cos™ O grad( ‘é,m)} exp(~Ha}cos@[n) -nHa(bn)(M, -Mj.),.
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