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Experiments with a liquid metal alloy, Galinstan, are reported and show clear evidence of Alfvén

wave propagation as well as resonance of Alfvén modes. Galinstan is liquid at room temperature

and, although its electrical conductivity is not as large as that of liquid sodium or NaK, it has still

been possible to study Alfvén waves, thanks to the use of intense magnetic fields up to 13 T. The

maximal values of Lundquist number, around 60, are similar to that of the reference

experimental study by Jameson [J. Fluid Mech. 19, 513 (1964)]. The generation mechanism for

Alfvén waves and their reflection is studied carefully. Numerical simulations have been

performed and have been able to reproduce the experimental results, despite the fact that the

simulated magnetic Prandtl number was much larger than that of Galinstan. An originality of the

present study is that a poloidal disturbance (magnetic and velocity fields) is generated, allowing

us to track its propagation from outside the conducting domain, hence without interfering.
VC 2011 American Institute of Physics. [doi:10.1063/1.3633090]

I. INTRODUCTION

Alfvén waves are velocity and magnetic waves which

propagate in electrically conducting fluids along magnetic

field lines. After their discovery by Alfvén2 in 1942 as a the-

oretical possibility from Maxwell’s and Navier-stokes equa-

tions, they have been first ignored for a few years and then

universally accepted as a key ingredient for transporting

energy and momentum in many astrophysical and geophysi-

cal fluid systems. Alfvén waves have since been observed in

the magnetosphere of the Earth,3 in the solar wind, in the so-

lar corona, and in interplanetary plasmas. These oscillations

are generally coupled to other physical phenomenon, gener-

ate nonlinear interactions and turbulence, which make their

understanding and even their observation quite difficult.4

Planetary cores are made of liquid metals and most of

them are dynamos.5 They generate strong magnetic fields

where Alfvén waves may propagate.6,7 Under the rotational

constraint, the Alfvén waves in a rotating planetary core may

take a degenerate form known as torsional waves and other

quasi-geostrophic waves and may be responsible for the sec-

ular variations of the geomagnetic field.8,9 Moreover, small-

scale turbulence in planetary cores is likely to be affected by

Alfvén waves and this has implications on the rate of energy

dissipation.10

Despite their astrophysical and geophysical importance,

Alfvén waves have not been studied extensively in the labora-

tory. In plasmas, it is a necessary condition to have a collision-

less plasma, hence Alfvén wave frequency smaller than the

ion cyclotron frequency, to avoid excessive collision damping.

A consequence of Alfvén wave dispersion relation—with

wave velocity independent of wavenumber modulus—is that

a large wavelength must be produced and observed, which

necessitates specific devices such as the LAPD (Ref. 11). A

review of early experiments on plasma Alfvén waves has

been made by Gekelman.12 In liquid metals, the difficulty

arises from Joule dissipation of magnetic energy. It can be

escaped only with large dimensions and large applied mag-

netic fields. Waves have been identified in a spherical Couette

flow with liquid sodium and an imposed dipolar magnetic

field13 and are thought to be magneto-inertial waves. Surpris-

ingly, Alfvén waves have also been studied in solid state

physics. More precisely, they have been observed in the cold

plasma (holes and electrons) within low-temperature single

crystals of bismuth.14

Experimental detection in liquid metals has been under-

taken in Stockholm after their discovery, first in mercury15

and then in sodium16 but rather limited effects have been

measured because of heavy damping. In a nicely designed

sodium experiment, in a torus, Jameson1 has been able to

produce strong resonant effects at the fundamental frequency

of the Alfvén mode and a weak resonance at three times this

frequency in impressive agreement with his theoretical pre-

diction, both in terms of frequency and amplitude of reso-

nance. However, his results on propagation of Alfvén waves

have not been published, except in his Ph.D. thesis.17

Now, high magnetic fields have become available for

industrial and experimental purposes, and we take this op-

portunity to perform experiments in a small setup, using a

gallium alloy at room temperature and yet achieving a value

for the Lundquist number comparable to that of Jameson.

This is a first step in anticipation of future liquid sodium

experiments where the Lundquist number might be increased

by a factor of order 10.
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After an introduction to the properties of theoretical

Alfvén waves (Sec. II), we present the experimental results.

In our design (Sec. III), an Alfvén wave is initiated by a short

impulse of electrical current in a coil (Ec) placed just next to

the volume of liquid metal. The Alfvén wave is then

observed, thanks to the associated change in magnetic flux it

generates through some “passive” coil (Tc) in which the

electromotive force (EMF) is measured and recorded via a

data acquisition system (Secs. IV and VII). The observations

are compared to numerical calculations. In addition, the

response to a harmonic current is recorded (Secs. V and VI)

and also confronted to numerical results. The numerical

schemes used are presented in Secs. VIII and IX. In Sec. X,

the results are discussed and some numerical calculations at

significantly larger Lundquist number are shown. The possi-

bility and expected advantages to upgrade the setup so that

liquid sodium can be used are envisaged.

II. THEORETICAL ALFVÉN WAVES

In a background magnetic field, B, an electroconducting

material can sustain electromagnetic waves. Let us consider

a small magnetic disturbance b associated to a small velocity

field u. In a uniform imposed magnetic field, the linearized

Navier-Stokes and induction equations can be written as

q
@u

@t
¼ �rpþ B

l
� r

� �
bþ q�r2u; (1)

@b

@t
¼ B � rð Þuþ 1

lr
r2b: (2)

Linear combinations of these equations lead to

@uþ

@t
¼ �r p

q
þ Bffiffiffiffiffiffi

ql
p � r
� �

uþ þ �r2uþ 1

lr
r2 bffiffiffiffiffiffi

ql
p ;

(3)

@u�

@t
¼ �r p

q
� Bffiffiffiffiffiffi

ql
p � r
� �

u� þ �r2u� 1

lr
r2 bffiffiffiffiffiffi

ql
p ;

(4)

where u6 ¼ u6b=
ffiffiffiffiffiffi
ql
p

are the so-called Elsasser variables.

One can get rid of the pressure term by taking the curl of the

equations, but this term is also identically zero for the case

of simple transverse shear structures. Furthermore, in the

limit ideal case of vanishing diffusivities (kinematic viscos-

ity and magnetic diffusivity), one obtains pure wave equa-

tions without damping,

@u6

@t
¼ 6

Bffiffiffiffiffiffi
ql
p � r
� �

u6: (5)

The Elsasser variable uþ propagates in the direction oppo-

site to B while u
� propagates in the direction of B. The

wave velocity (phase velocity) is the Alfvén velocity

B=
ffiffiffiffiffiffi
ql
p

, and the structure of the wave equation is so simple

that its group velocity is also equal to the Alfvén velocity, in-

dependent of the direction and magnitude of the wave vector.

In a “uþ ” wave-packet, u� ¼ 0 (if not, it would have split

into two wave packets of opposite velocity), and conversely,

so that equipartition of kinetic and magnetic energy is

established.

In the case of liquid metals (and some plasmas), magnetic

diffusivity is much larger than kinematic viscosity so that a dif-

fusivity term 1= lrð Þr2 uþ � u�ð Þ is added to the “u
þ ” equa-

tion and 1= lrð Þr2 u� � uþð Þ to the “u� ” equation. The ratio

of orders of magnitude of the advective term ðB= ffiffiffiffiffiffi
ql
p � rÞu6

to the diffusive term is the Lundquist number,

Lu ¼
ffiffiffi
l
q

r
rBL; (6)

for a given length-scale L. For a large Lundquist number, a

wave packet of dimension L can travel a distance of order

LuL before it is dissipated by ohmic losses (within one mag-

netic diffusion time-scale lrL2).

III. EXPERIMENTAL “GALALFVÉN” SET-UP

The setup consists of a cylindrical tank of diameter 110

mm and height L¼ 100 mm as shown in Fig. 1. The cavity is

filled with Galinstan (eutectic ternary alloy made of Gallium

68%, Indium 21%, and Tin 12%). Its melting point is

10.5 �C, which explains the use of Galinstan, liquid at room

temperature, instead of gallium (melting point 29.8 �C).

Its density is q¼ 6370 kg/m3, its kinematic viscosity

�¼ 3.7� 10� 7 m2s� 1, and its electrical conductivity r varies

in the literature between 2.3� 106 (Ref. 18) and 3.46� 106

X� 1m� 1 (Ref. 19). In this work, we choose to take

r¼ 3.35� 106 X� 1m� 1 (Refs. 20 and 21) at 15 �C. The con-

tainer is made of non-magnetic 316 stainless steel of electri-

cal conductivity 1.35� 106 X� 1m� 1. The wall thickness is 2

mm. During an experiment, the box is placed in the bore

(130 mm of diameter) of a powerful (12 MW) resistive elec-

tromagnet (magnet M5), facility of the LNCMI in Greno-

ble.22 The electromagnet produces a magnetic field of

intensity between 0 and 13 T aligned with the axis of the cy-

lindrical container. Variations of the intensity of the imposed

magnetic field along the axis of the bore are less than 0.7%

(Ref. 22) within the volume of the fluid.

FIG. 1. (Color online) Schematic drawing of the liquid-metal vessel and a

photograph of the set-up.
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A small magnetic disturbance is generated by a copper

coil, the “excitation coil” (Ec), mechanically attached under

the container, in addition to the stationary imposed magnetic

field. This excitation coil, concentric with the container, con-

sists of 300 turns of wires between 45 and 85 mm of diame-

ter and 10 mm of thickness. Two types of experiments have

been run, depending on the type of signal generated in the

excitation coil: “pulse” experiments and “sweep” experi-

ments. To study the propagation of a magnetic perturbation

(“pulse”), we imposed a voltage to the coil such that one

obtains a one-signed impulse of electrical current in the coil.

The current is generated by a function generator (Agilent

33220 A) coupled to a linear amplifier restricted to 25 V

(peak to peak) and 3 A. A positive voltage (20 V) is applied

to the coil, followed by a slightly shorter negative voltage.

The total duration is 300 ls. It produces an impulse of elec-

trical current, as shown in Fig. 2, of 0.25 A (peak value),

which is an approximation for a Dirac function, as long as it

is short compared to the duration of Alfvén wave propaga-

tion. This is a necessary condition for the response not to

depend on the exact shape of the pulse function, i.e., there is

no need for a dimensionless parameter characterizing the du-

ration of the pulse compared to that of Alfvén wave propaga-

tion in addition to the Lundquist number. This condition is

well fulfilled for imposed magnetic fields of a few teslas, but

the duration of the pulse is more than a third of the time for

Alfvén waves to reach the other end of the cavity when the

magnetic field intensity is maximum (13 T). This electrical

current “pulse” generates a poloidal magnetic field at the

bottom of the container of order of 1 mT. Each run is made

of 200 pulses of 300 ls, shot every 101.2 ms, so that they are

all independent from each other. The 200 signals are stacked

to reduce the noise and filtered around 50 Hz and its harmon-

ics to eliminate the frequency of the electrical network. A

“sweep” run is designed to measure the resonance of Alfvén

modes in the cavity by imposing a sinusoidal current to the

excitation coil with a frequency varying exponentially in

time from 20 Hz to 4000 Hz over a duration of 10 s.

The excitation current first generates a magnetic field

within the liquid gallium alloy which then propagates as an

Alfvén wave towards the opposite end of the cylinder. The

signals acquired are global measurements of magnetic flux

variation through four different axisymmetrical coils (see

Fig. 1): this signal is multiplied by the number of turns in

each coil. The so-called lateral coils, lower coil (Lc), middle

coil (Mc), and upper coil (Uc) have 30 turns and a diameter

just over 110 mm, and their mean axial position is 8 mm, 50

mm, and 92 mm, respectively, measured from the bottom of

the fluid cavity. The coil at the top (Tc) is identical to the ex-

citation coil (Ec) with 300 turns, a mean radius of 65 mm,

and an average axial position 10 mm above the fluid cavity.

Those four voltages and the current in the excitation coil

(measured via a calibrated shunt) were recorded using a

National Instruments A/D data acquisition card (16 bit reso-

lution) monitored by a Labview programme installed on a

pentium PC. The rate of acquisition was set to 20 kHz.

IV. MAGNETIC PULSES: EXPERIMENTAL RESULTS
OF PROPAGATION

Let us first describe with hand-waving arguments the

sequence of events after a pulse of current is generated in the

excitation coil, as revealed by the analysis of experimental

results and the visualization of numerical results. In the exci-

tation coil, the electric current increases to a maximum and

then decreases to zero (neglecting that short phase where it

becomes slightly negative). While the current is increasing,

its associated magnetic field penetrates into the gallium alloy

by magnetic diffusion (the timescale is shorter than Alfvén

wave propagation). Maxwell equation r� E ¼ �@B=@t
indicates that an electric field is generated, which forces an

electric current to flow in the azimuthal direction and oppo-

site to the direction of the excitation current. Alfvénic propa-

gation makes it move immediately. During the subsequent

phase of decreasing electric current, another electric current

loop is generated below the initial one with the same direc-

tion as the excitation current. This state is thus the initial

state for Alfvénic propagation: two current loops in opposite

azimuthal directions, one below the other. Their associated

poloidal magnetic field consists in a double torus of opposite

poloidal fields.

Figure 2 shows the electric potential recorded at the top

coil (Tc) following a current pulse in the Emission coil (Ec)

for different values of the applied magnetic field (B¼ 3, 5, 7,

9, 11, 13 T). It can be seen that the maximal amplitude

response is attained at shorter and shorter times when the

background magnetic field intensity is increased. The ampli-

tude of that response increases with increasing values of the

magnetic field. These findings are compatible with the propa-

gation of an Alfvén wave of velocity proportional to the

applied magnetic field and subjected to Joule dissipation.

They propagate along the applied magnetic field. Anticipat-

ing on Sec. VIII B, snapshots at different times are repre-

sented in Figure 10.

From dimensional analysis (Buckingham’s theorem),

the problem of wave propagation must involve three inde-

pendent dimensionless numbers, as seven dimensional scales

are sufficient to define the problem: L, B, l, r, q, �, and nI,
the length-scale, imposed magnetic field, magnetic perme-

ability, electrical conductivity, kinematic viscosity, and scale

FIG. 2. (Color online) A pulse of electrical current (black curve) in the

emitting coil generates an Alfvén wave. The associated change in magnetic

flux is recorded at the opposite end in the top coil, Tc.
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for the intensity of the current generated in the excitation

coil (n turns of intensity I), respectively, while four funda-

mental units are needed: meter, kilogram, second, and

Ampere. We are free to choose those three dimensionless

numbers. A good choice is Pm¼ lr�, Lu ¼
ffiffiffiffiffiffiffiffi
l=q

p
rBL, and

A¼ lnI/(BL), the magnetic Prandtl number, Lundquist num-

ber, and a dimensionless number characterizing the relative

intensity of the magnetic field associated to the pulse to that

of the imposed magnetic field. For Galinstan, the magnetic

Prandtl number is Pm¼ 1.56� 10� 6. Its small value implies

that viscous dissipation is negligible compared to Joule dissi-

pation and that Alfvén wave propagation will not be affected

by viscous effects. The number A is also irrelevant (or rather,

the experiments are done in the limit of weak forcing), since

the available regime of Alfvén waves has been checked to be

strictly linear. When the intensity of the current pulse is

changed, all response signals scale exactly with the intensity

of the pulse. Hence, the Lundquist number is the only rele-

vant dimensionless number governing Alfvén wave propaga-

tion in liquid metals.

The same results as in Fig. 2 are plotted in Fig. 3 where

the x-coordinate has been changed for a dimensionless mea-

sure of time, based on the flight-time of Alfvén waves L/VA

and where the legend is expressed in terms of dimensionless

Lundquist numbers instead of magnetic field intensity. In

addition, the EMF has been made dimensionless using a scale

for the magnetic flux l n I L divided by the Alfvén flight-

time, i.e.,
ffiffiffiffiffiffiffiffi
l=q

p
B n I ¼ Lu n I=ðr LÞ. The phase velocity of

Alfvén waves in the axial direction is VA ¼ B=
ffiffiffiffiffiffi
ql
p

, where

l¼ 4p10� 7 H m� 1 is the permeability of vacuum (suitable

for the non-magnetic Galinstan alloy) and q¼ 6370 kg m� 3 is

the density of Galinstan at room temperature. With B¼ 13 T

and L¼ 10 cm, Alfvén speed is VA ’ 144:5 ms�1 and the the-

oretical flight-time along the length of the cylinder is

L=VA ’ 0:692 ms, in accordance with the observed time of

response in Fig. 2. In dimensionless time (Fig. 3), it is seen

that the reception signal at the end of the cylinder has its max-

imum response around dimensionless time unity and that the

signals for different values of the magnetic field are similar

except for an increase of amplitude with increasing strength of

the applied magnetic field. There is little evidence of a signal

at dimensionless time 3, when the wave should reappear after

2 reflections, except for B¼ 13 T, due to excessive damping.

V. HARMONIC RESPONSE: EXPERIMENTAL RESULTS

The harmonic response could have been obtained step

by step by imposing a sine function current to the excitation

coil with each possible frequency. Instead, we chose to apply

a so-called “sweep” function, which is a sine function with

slowly evolving frequency from a minimum of 20 Hz to a

maximum of 4.0 kHz. We have made use of an option of the

function generator (“log” variation), which is to have the fre-

quency increase exponentially in time: this means that the

change in frequency is always the same during each period

of the signal, in our case 0.52 Hz. This is satisfying, even at

the lowest frequency 20 Hz, since the relative change in fre-

quency is only 25% after ten periods of the signal. The

higher the frequency, the smaller is the relative change. One

can safely assume that the response to the sweep is close to

that of a large set of purely harmonic responses: this has

been checked for several values of frequency. After data

processing to determine frequency and response amplitudes,

the available range of frequencies is reduced to 30–3500 Hz.

For each coil, the response to the sweep consists in an

amplitude and in a phase shift for each frequency between

30 and 3500 Hz. In Fig. 4, both contributions to the response

to the sweep are shown for the top coil (Tc), for the same set

of magnetic field values as for the pulses: 3, 5, 7, 9, 11, and

13 T. The response moves towards higher frequencies for

stronger applied magnetic fields, while getting bigger.

The same data as in Fig. 4 are plotted in Fig. 5, except

those frequencies are now made dimensionless using the

inverse of the Alfvén flight-time, i.e., fA¼VA/L, which is

around 1445 Hz for B¼ 13 T. Also, the amplitude of the

measured EMF has been divided by the magnitude B of the

imposed magnetic field: Assuming that the intensity of the

magnetic signal carried by the wave is independent of B, and

given that the propagation speed of this signal is proportional

to B (Alfvén velocity), it is expected that the EMF is

FIG. 3. (Color online) Same as Fig. 2 on the left hand side, except time has been made dimensionless using the propagation time of Alfvén waves and EMF

has been made dimensionless using Lu(nI)/(rL). On the right hand side, the same pulses computed numerically.
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proportional to B, as it corresponds to the time derivative of

the magnetic flux. A good collapse of the response is found

for large applied magnetic fields. The curve corresponding to

the smallest Lundquist number Lu¼ 14.2 is clearly distinct

from the others. We do not expect to see clearly an Alfvénic

response at such a low Lundquist number. Moreover, vibra-

tion disturbances have a large relative contribution at low

Lundquist number and are probably responsible for this large

departure.

The phase shift is particularly simple and increases line-

arly in time, as expected for waves with uniform velocity

irrespective of the wavenumber. The sign of the slope

changes at 0 and p because we have restricted the phase shift

to be within the interval [0; p]. The phase shift seems to be

less affected by disturbances (like vibrations) than the ampli-

tude of the response. This might be due to the fact that dis-

turbances have a random phase shift and no clear effect on

the outcome.

When the imposed magnetic field is strengthened, diffu-

sion effects become comparatively weaker. It is thus not

expected that the responses for different values of the mag-

netic field will collapse exactly in Fig. 5. In addition, mechan-

ical vibrations of the experiments induce some unwanted

contributions on the measured signals. These vibrations are

partly deterministic as they are triggered by the forces associ-

ated to the electric current pulse. However, their subsequent

evolution is independent of the applied magnetic field and

their associated signal is due to mechanical displacement of

the setup within the imposed magnetic field.

VI. PULSE RECONSTRUCTION FROM HARMONIC
RESPONSE

As discussed above, the amplitude of the magnetic dis-

turbance that is created by the excitation coil is so small

compared to the imposed uniform magnetic field of the mag-

net that our experiments are in a linear regime. This has been

checked indeed, and the measured signals vary linearly with

the amplitude of the imposed current with no detectable de-

parture from linearity.

A consequence of linearity is that our pulse and sweep

experiments are not independent from each other. In fact, the

harmonic response from the sweep experiments contains the

whole information regarding this linear system and the pulse

response can be reconstructed from it. Let CðtÞ be the current

in the excitation coil as a function of time during a pulse

experiment. Its Fourier transform can be written as

CFTðf Þ ¼
ð1
�1
CðtÞei2pftdt: (7)

Note that, because CðtÞ is real, CFTðf Þ must obey the conju-

gate symmetry CFTð�f Þ ¼ CFTðf Þ
� ��

. Next step, the Fourier

transform of the current is multiplied by the complex har-

monic response Hðf Þ (the real part is the in-phase response,

while the imaginary part is the out-of-phase response),

RFTðf Þ ¼ Hðf Þ CFTðf Þ: (8)

This is the Fourier transform of the actual response to the

pulse CðtÞ. It must then be conjugate symmetric, and as

CFTðf Þ obeys that symmetry so must also Hðf Þ. The last step

is to take the inverse Fourier transform and get the actual

response to the initial pulse,

FIG. 4. (Color online) Response to a sweep in the emitting coil, measured at

the top coil (Tc).

FIG. 5. (Color online) Same as Fig. 4 on the left hand side, with dimensionless frequency and EMF. On the right hand side, numerical simulations of harmonic

responses.
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RðtÞ ¼
ð1
�1
RFTðf Þe�i2pftdf : (9)

That signal is called the synthetic response to the pulse cal-

culated from the harmonic response. In Fig. 6, the synthetic

signal is compared to the actual signal measured during a

pulse experiment, for a magnetic field intensity of 13 T. The

signals compare well but are different in a few ways. The

synthetic signal fails to recover the maximal amplitude and

there are small additional bumps. These differences can be

explained by two arguments: first, the signals are discretized

and second, the range of frequencies covered during the

sweep experiments is not infinite. In particular, at the highest

frequency (3500 Hz), the harmonic response is still large for

strong magnetic fields. Ideally, we should have gone to

higher frequencies.

VII. FOLLOWING AN ALFVÉN WAVE

With the three lateral coils and the top coil, it is possible

to follow the progression of an Alfvén wave generated by a

pulse. In Fig. 7, the four measured EMFs (electromotive

forces) are shown for the case B¼ 13 T. Anticipating on Sec.

VIII, the signals are compared to numerical simulations. The

linear response to a pulse is calculated using FreeFem, a 2D

finite element software developed by INRIA (Ref. 23) and

SFEMaNS (Ref. 24).

The pulse signal seems to reach the top coil even before

reaching the upper coil. The distance between each of those

coils to the excitation coil is actually quite similar. In addi-

tion, the pulse is severely distorted during reflection (see

Figs. 10 and 11), which implies that the electromotive force

is not necessarily similar for both coils.

VIII. NUMERICAL SIMULATIONS OF PULSE
RESPONSE

We have used two different softwares to compute the

response to electric current pulses, FreeFemþþ and SFE-

MaNS. They are based on different numerical schemes, and

boundary conditions are not written using the same physical

variables. Among the general boundary conditions are the

magnetic conditions at the interfaces between the various

domains of different electrical conductivity (Galinstan,

stainless steel, insulating regions). The meshes have been

designed to achieve low magnetic Prandtl numbers, as thin

Hartmann layers develop, and there is certainly a better

control of the mesh grid with SFEMaNS. Conversely, mag-

netic and velocity continuity equations are maintained to

small value using a penalty method in SFEMaNS, while

they are exactly enforced in the FreeFemþþ code. We felt

reassuring that both numerical methods lead eventually to

the same results. There exist numerical magnetohydrody-

namic (MHD) codes with uniform electrical conductivity,

and there also exist electromagnetic codes (calculation of

high frequency inductors for material processing), but there

are no fully coupled magnetohydrodynamic codes capable

to treat regions of different conductivities: this was an in-

centive to develop SFEMaNS, which can also include

domains of different magnetic permeabilities.

A. FreeFem 11

With FreeFemþþ , the numerical modelling was re-

stricted to axisymmetric poloidal magnetic b and velocity v

disturbances with reference to a basic motionless state with a

strong uniform magnetic field B0¼B0ez along the direction

of the symmetry axis. In cylindrical coordinates (q, /, z), the

velocity and magnetic disturbances are written as

v ¼
vqðq; zÞ

0

vzðq; zÞ

2
4

3
5; b ¼

bqðq; zÞ
0

bzðq; zÞ

2
4

3
5; (10)

a ¼
0

aðq; zÞ
0

2
4

3
5; x ¼ r� v ¼

0

xðq; zÞ
0

2
4

3
5: (11)

This analysis is restricted to a linearized approach, neglect-

ing all quadratic terms involving u or b, because the induced

magnetic field b is small compared to B0: this linearization is

also supported by the experimental results. Using the length-

scale L and the Alfvén velocity based on B0, we have a natu-

ral time-scale—the Alfvén flight-time tA ¼ L
ffiffiffiffiffiffi
ql
p

=B0.

Dimensionless Navier-Stokes and induction equations are

FIG. 6. (Color online) A synthetic response to the pulse in the coil is calcu-

lated from the harmonic response and plotted for comparison next to the

actual response to the pulse (B¼ 13 T).

FIG. 7. (Color online) Electromotive force in the four coils Lc, Mc, Uc, and

Tc, following a pulse, at B¼ 13 T, as a function of dimensionless time.
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linearized as follows assuming a uniform and constant fluid

density:

@v

@t
¼ �rpþ r� bð Þ � ez þ Lu�1Pmr2v; (12)

@b

@t
¼ r� v� ezð Þ þ Lu�1r2b: (13)

The curl of linearized Navier-Stokes equation and the

uncurled linearized induction equation can be written as fol-

lows in the azimuthal direction and in dimensionless

variables:

@x
@t
¼ @j/
@z
þ Lu�1Pm

@2x
@z2
þ @

@q
@x
@q
þ x

q

� �� �
; (14)

@a

@t
¼ �vq þ Lu�1 @2a

@z2
þ @

@q
@a

@q
þ a

q

� �� �
; (15)

where j/ the electric current density in the azimuthal direc-

tion can be expressed using Ohm’s law with no azimuthal

electric potential by symmetry,

j/ ¼ �
@a

@t
� vq: (16)

Velocity is expressed in terms of a streamfunction w,

v¼r� w q; zð Þe/
� �

. Its laplacian corresponds to the vorticity,

x ¼ � @
2w
@z2
� @

@q
1

q
@

@q
qwð Þ

� �
: (17)

Equations (14)–(17) form a closed set of equations for three

unknown w, x, and a, with appropriate boundary conditions:

no slip on the walls of the container and matching to the

external harmonic magnetic field. These equations are valid

within the fluid domain. As can be seen in Fig. 8, other

domains are defined and specific equations are written in

each of them. Around the fluid region, a realistic motionless

stainless steel region is specified, with electrical conductivity

equal to 0.3 that of liquid Galinstan. The region correspond-

ing to the excitation coil is taken to be a solid conductor with

electrical conductivity equal to that of copper divided by the

number of turns (300). The container is contained within the

bore of the electromagnet which has a complex geometry: it

has been simplified here and simply modelled as a cylindri-

cal tube made of copper, with electrical conductivity 15

times larger than Galinstan. Finally, a “vacuum” region cor-

responds to air and should extend to infinity, where the mag-

netic field obeys a harmonic equation. At the boundary of

the mesh, a Robin boundary condition is applied

ra � n ¼ �a=R, where R is the radius of the spherical extent

of the mesh. That condition is correct for the dipolar compo-

nent of the magnetic field only. Smaller structures are not

treated rigorously, but the size of the domain (R¼ 1.5 for all

presented results) is large enough so that small structures

have been reduced significantly at radius R. At the interface

between these different regions, a is a continuous function.

The equations are written in a weak formulation and inserted

as such in a FreeFem file.

In Figure 9, the numerical response is compared to the

experimentally measured response for the strongest magnetic

field. Parts of the experimental signal are not found in the nu-

merical response: they may be due to structural vibrations,

independent of Alfvén wave propagation. In Fig. 3 (right

hand side), the same values of the Lundquist number as for

the experiments are used, while the magnetic Prandtl number

was taken to be 10� 3: this is larger than that of Galinstan

(1.56� 10� 6, see Ref. 20), but small enough so that viscous

dissipation is negligible while Hartmann boundary layers

can still be resolved.

The pulse is generated as an azimuthal electric current

forced in the domain of the excitation coil. This is simply a

uniform source term for the laplacian of a, with a temporal

analytical expression that matches the experimental pulse

current. The mesh used by FreeFem is generated by Bamg—

another free software developed by INRIA—and can be

refined in regions of strong gradients (see Fig. 8). The

FIG. 8. (Color online) Mesh used (coarse version for easy visualization) to

calculate Alfvén waves with FreeFemþþ : meridional plane of an axisym-

metrical geometry with symmetry axis on the left.
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functional space used for the calculations presented here is

that of quadratic functions on each mesh element (the func-

tions and their first derivatives are continuous functions).

The evolution of the magnetic potential scalar and velocity

streamfunction is computed using an Adams-Moulton

scheme.

B. SFEMaNS

The generation and propagation was also calculated

using SFEMaNS (Ref. 24), a numerical code developed for

cylindrical geometries using a finite element method in the

meridional plane and spectral expansion in the azimuthal

direction. We have checked that FreeFem and SFEMaNS

give the same result for the same conditions.

Let us give a brief overview of the numerical method

which is used. The problem is modeled by the Full MHD

equations in the eddy current approximation: induction equa-

tion, Navier-Stokes equations with Lorentz electromagnetic

forces and continuity of velocity and magnetic fields. We

solve this system of equations in a heterogeneous domain

composed of conducting regions of different conductivities

(r1> 0, r2> 0,…) and an insulating region (vacuum,

r0¼ 0). Since the magnetic field is curl free in vacuum, it

can be expressed as the gradient of a scalar potential /, as

long as the insulating domain is simply connected. Enforcing

continuity of B and r/ across interfaces is a significant nu-

merical difficulty. In our finite element approximation, conti-

nuity is weakly imposed using an Interior Penalty Galerkin

(IPG) method together with Lagrange elements. This method

has been shown to be stable and convergent in Refs. 24

and 25. Since the geometry is axisymmetric, the equations

are written in cylindrical coordinates and the approximate

solution is expanded in Fourier series in the azimuthal direc-

tion and nodal Lagrange finite elements in the meridian

plane. The time is discretized by means of a semi-implicit

Backward Finite Difference method of second order (BDF2).

At the boundary of the computational domain, we can

impose Robin, Neumann, or Dirichlet boundary conditions.

The computations are carried out with the following dis-

cretization characteristics: the conducting domain, composed

of a finite cylinder (fluid) of 0.96 of height and 0.53 of radius

and one rectangle on the bottom represents the excitation

coil from z 2 �0:1; 0½ � and r 2 0:2; 0:4½ �. An additional

external layer of thickness 0.02 represents the vessel. All

these domains are discretized using a quasi-uniform grid of

mesh size Dx¼ 1/100. The conducting region is embedded

in a spherical insulating domain of radius 5, whose mesh

size varies from Dx¼ 1/40 at the inner interface to Dx¼ 0.5

at the outer boundary of the sphere. We also realize conduc-

tivity jumps compatible with the material used in the

experiment.

In Fig. 10, the reflection of an Alfvén wave is shown on

the end of the cylinder. The Lundquist number is equal to

61.2 corresponding to an external magnetic field of 13 T, and

the magnetic Prandtl number is equal to 5 � 10� 3. We can see

that the wave reaches the top of the cylinder after one dimen-

sionless Alfvén time. Both counter-rotating loops of mag-

netic and velocity field experience severe distortion during

reflection and are then retrieved on their way back with the

same configuration for the velocity field and with an opposite

sign for the magnetic field (also seen on the electric current).

Regarding energy, there is equipartition between kinetic

and magnetic energies. In addition, there is some energy

exchange during reflection between kinetic and magnetic

contributions, accompanied by a net loss due to dissipation

within the Galinstan and within the stainless steel container

(see Fig. 11).

IX. NUMERICAL SIMULATIONS OF HARMONIC
RESPONSE

It is possible to compute harmonic responses using tem-

poral evolution calculations, but this is costly due to the

necessity to go beyond the initial transient period. A second

FIG. 9. (Color online) The numerically calculated pulse response is com-

pared to the experimental measurements (B¼ 13 T).

FIG. 10. (Color online) Reflexion of an Alfvén wave on the top end of the

cylinder with SFEMaNS: meridional plane of an axisymmetrical geometry

with symmetry axis on the left.
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version of the FreeFem file has been written to determine the

harmonic response. The size of the numerical problem is

doubled as a real and an imaginary part are computed for a,

x, and w. The input current density is a pure real function.

Those functions are multiplied by e2pift, so that time deriva-

tives are changed into multiplications by 2pif. This results in

a purely spatial problem, providing the harmonic response at

the specified frequency f (see Fig. 5, on the right hand side).

X. DISCUSSION

The experimental results presented in this paper mark

some progress compared to those already published and have

also some distinct features. First, a direct Alfvén response to a

pulse is presented here for the first time: in Jameson’s paper,1

there are only harmonic responses. The second part on the

progression of Alfvén waves was never published; however,

there are some results in Jameson’s Ph.D. thesis and a glimpse

of these results in the educational film by Shercliff on magne-

tohydrodynamics. A distinct feature of our approach is the rel-

ative simplicity of our experiments: we have used a harmless

Galinstan alloy at room temperature, and any action was

external to the container. We have not injected any current in

the fluid and we have not inserted any search coil in the mid-

dle of the fluid region. This was possible only because we

have had access to strong magnetic fields at the LNCMI. In

terms of Lundquist number, we have reached approximately

the same value as Jameson, with a smaller magnetic Prandtl

number.

Another distinct feature of our experiments is that veloc-

ity and magnetic fluctuations are both poloidal fields, while

they were toroidal in the experiments by Lehnert, Lundquist,

and Jameson. This property made it possible to measure

these fluctuations from outside the container. This has also

consequences on the arrival time of Alfvén waves: the condi-

tion of continuity forces the velocity and magnetic fields to

have returning components, including beyond the theoretical

reach of Alfvén waves. This can be best seen on numerical

calculations with Lundquist numbers much larger than

achieved in the experiments (see Fig. 12). For those numeri-

cal runs, we have had to make a few changes: the electrical

conductivity of the stainless steel container has been set to

zero and the duration of the pulse has been reduced to one

hundredth of Alfvén propagation time (making it effectively

equivalent to a Dirac function). Because of these changes,

the dimensionless amplitudes should not be compared with

previous calculations. However, the shape of EMF response

for Lu¼ 100 is quite similar to the response at Lu¼ 61.2 for

realistic experimental conditions. For very large magnetic

fields, the dimensionless amplitude becomes smaller due to

diffusion effects on a short scale, i.e., the thickness of the

electric current structure.

While vorticity and electric currents travel as thin sheets

with little diffusion, magnetic and velocity fields extend on

both sides on the length scale of the radius. This is directly

related to the poloidal nature of velocity and magnetic fields

in our configuration. The central part of the structure (vortic-

ity and electric current sheet) reaches the top at a time very

close to one at large Lundquist number. It can also be

remarked that the double torus structure is generic to our

configuration and valid also for arbitrarily large Lundquist

numbers.

Future experiments can make progress in two directions.

First, with liquid sodium and slightly stronger magnetic

fields, the Lundquist number can be increased by a factor of

10. Second, with more energetic electrical disturbances, one

may hope to excite non-linearly some resonant modes in the

same manner as inertial modes.26

FIG. 11. (Color online) Magnetic and kinetic energies during propagation

and reflection of an Alfvén wave. Note that here the origin for time is taken

at the peak of the electric current pulse.

FIG. 12. (Color online) Iso-contours of magnetic streamfunction for Lundquist numbers 100, 800, and 6400 at Alfvén time 0.5, on the left hand side. Dimen-

sionless EMF for Lundquist numbers from 100 to 6400 measured at the top coil.
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