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Abstract

We present measurements performed in a spherical shell filled with liquid sodium, where a 74 mm-

radius inner sphere is rotated while a 210 mm-radius outer sphere is at rest. The inner sphere holds

a dipolar magnetic field and acts as a magnetic propeller when rotated. In this experimental set-up

called DTS, direct measurements of the velocity are performed by ultrasonic Doppler velocimetry.

Differences in electric potential and the induced magnetic field are also measured to characterize

the magnetohydrodynamic flow. Rotation frequencies of the inner sphere are varied between -30 Hz

and +30 Hz, the magnetic Reynolds number based on measured sodium velocities and on the shell

radius reaching to about 33. We have investigated the mean axisymmetric part of the flow, which

consists of differential rotation. Strong super-rotation of the fluid with respect to the rotating inner

sphere is directly measured. It is found that the organization of the mean flow does not change much

throughout the entire range of parameters covered by our experiment. The direct measurements

of zonal velocity give a nice illustration of Ferraro’s law of isorotation in the vicinity of the inner

sphere where magnetic forces dominate inertial ones. The transition from a Ferraro regime in the

interior to a geostrophic regime, where inertial forces predominate, in the outer regions has been well

documented. It takes place where the local Elsasser number is about 1. A quantitative agreement

with non-linear numerical simulations is obtained when keeping the same Elsasser number. The

experiments also reveal a region that violates Ferraro’s law just above the inner sphere.

∗ formerly member of the geodynamo team (Institut des Sciences de la Terre); daniel.brito@univ-pau.fr
† now at : Laboratoire de Sciences de la Terre, Université de Lyon, ENS de Lyon, CNRS, Lyon, France
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I. INTRODUCTION13

The Earth’s fluid core below the solid mantle consists of a 3480 km-radius spherical cavity14

filled with a liquid iron alloy. A 1220 km-radius solid inner core sits in its center. It has15

been accepted since the 1940’s [1, 2] that the flows stirring the electrically conducting liquid16

iron in the outer core produce the Earth’s magnetic field by dynamo action. The fluid17

motion is thought to originate from the cooling of the Earth’s core, which results both in18

crystallization of the inner core and in convection in the liquid outer core [3].19

The last decade has seen enormous progress in the numerical computation of the geo-20

dynamo problem after the first simulation of a dynamo powered by convection [4–7]. It21

is however still unclear why many characteristics of the Earth’s magnetic field are so-well22

retrieved with simulations [8] since the latter are performed with values of important di-23

mensionless parameters that differ much from the appropriate values for the Earth’s core.24

The main numerical difficulty is the simultaneous computation of the velocity, the magnetic25

and the temperature fields with realistic diffusivities, respectively the fluid viscosity, the26

magnetic and the thermal diffusivities. Those differ indeed by six orders of magnitude in27

the outer core [9]; such a wide range is at present out of reach numerically, the simulations28

being performed at best with two orders of magnitude difference between the values of the29

diffusivities. An experimental approach of the geodynamo is, in that respect, promising since30

the fluid metals used in experiments have physical properties, specifically diffusivities, very31

close to the properties of the liquid iron alloy in the Earth’s outer core. Moreover, experi-32

ments and simulations are complementary since they span different ranges of dimensionless33

parameters.34

Magnetohydrodynamics experiments devoted to the dynamo study have started some 5035

years ago (see the chapter authored by Cardin and Brito in [10] for a review). To possibly36

induce magnetic fields, the working fluid must be liquid sodium in such experiments. Sodium37

is indeed the fluid that best conducts electricity in laboratory conditions. A breakthrough38

in these dynamo experiments occurred at the end of 1999 when amplification and saturation39

of an imposed magnetic field were measured for the first time in two experiments, in Riga40

[11] and in Karlsruhe [12]. The commun property of those set-ups was to have the sodium41

motion very much constrained spatially, in order to closely follow fluid flows well known42

analytically to lead to a kinematic dynamo, respectively the Ponomarenko flow [13] and the43
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G.O. Roberts flow [14]. More recently, the first experimental dynamo in a fully turbulent44

flow was obtained in a configuration where two crenelated ferromagnetic rotating discs drive45

a von Kàrmàn swirling flow in a cylinder [15]. Earth’s like magnetic field reversals were46

also obtained in this experimental dynamo [16]. Other similar experiments have been run47

where sodium flows are driven by propellers in a spherical geometry [17, 18]. In order to48

emphasize the specificity of the experimental study presented in the present paper, it is49

worth mentioning two common features of the previously mentioned sodium experiments:50

the forcing of the sodium motion is always purely mechanical and the magnetic field is weak51

in the sense that Lorentz forces are small compared to the non-linear velocity terms in the52

equation of motion [19].53

The experiment called DTS for "Derviche Tourneur Sodium" has been designed to in-54

vestigate a supposedly relevant regime for the Earth’s core, the magnetostrophic regime55

[20–22] where the ratio of Coriolis to Lorentz forces is of the order one. The container made56

of weakly conducting stainless steel is spherical and can rotate about a vertical axis. An57

inner sphere consisting of a copper envelope enclosing permanent magnets is placed at the58

center of the outer sphere; the force free magnetic field produced by those magnets enables59

to explore dynamical regimes where Coriolis and Lorentz forces are comparable. The sodium60

motion in the spherical gap is driven by the differential rotation between the inner sphere61

and the outer sphere, unlike in the Earth’s core where the iron motion is predominantly62

driven by convection [23] and maybe minorly by differential rotation of the inner core [24].63

The DTS experiment has not been designed to run in a dynamo regime. It has instead64

been conceived as a small prototype of a possible future large sodium spherical dynamo65

experiment which would benefit from its results. Note that meanwhile Daniel Lathrop and66

collaborators have built a 3m-diameter sodium spherical experiment with an inner sphere67

differentially rotating with respect to the outer sphere, like in DTS. Schaeffer, Cardin and68

Guervilly [25, 26] have shown numerically that a dynamo could occur in a spherical Couette69

flow at large Rm in a low magnetic Prandtl number fluid such as sodium (Pm= ν/λ, see70

TABLE I).71

Numerical simulations in a DTS-type configuration [27–29] of Couette spherical flows72

with an imposed magnetic field all show azimuthal flows stabilized by magnetic and rotation73

forces. Using electric potential measurements along a meridian of the outer sphere boundary,74

we concluded in our first report of DTS experimental results [30] that the amplitude of the75
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azimuthal flow may exceed the velocity of sodium in solid body rotation with the inner76

sphere, as predicted theoretically in the linear regime [31].77

The DTS experiment offers a tool to investigate non uniform rotation of an electrically78

conducting fluid in the presence of rotation and magnetic forces. The differential rotation79

of a body permeated by a strong magnetic field and the waves driven by the non uniform80

rotation have received considerable attention since the work of Ferraro [32, 33]. Indeed,81

the absence of solid envelopes makes non uniform rotation possible in stars, where it plays82

an important role in the mixing of chemical elements [34], in contrast with the case of83

planetary fluid cores. Ferraro found that the angular rotation in an electrically conducting84

body permeated by a steady magnetic field symmetric about the axis of rotation tends to85

be constant along magnetic lines of force. MacGregor and Charbonneau [35] illustrated86

this result and showed, in a weakly rotating case, that Ferraro’s theorem holds for Ha ≫ 187

(Ha, the Hartmann number, measures the magnetic strength, see TABLE II). An intense88

magnetic field, probably of primordial origin, is the key actor in the transfer of angular89

momentum from the solar radiative interior to the convection zone [36, 37]. Finally, in90

a geophysical context, Aubert recently found, investigating zonal flows in spherical shell91

dynamos, that Ferraro’s law of isorotation gives a good description of the geometry of the92

zonal flows of thermal origin [38].93

In the second study of the DTS experiment [39], we investigated azimuthal flows when94

both the inner boundary and the outer boundary are rotating but at different speeds, using95

Doppler velocimetry and electric potential measurements. Specifically, we discussed the96

transition between the outer geostrophic region and the inner region where magnetic forces97

dominate. Extending the asymptotic model of Kleeorin et al. [40], we could explain the98

shape of the measured azimuthal velocity profiles. We had to use a specific electric potential99

difference as a proxy of the differential rotation between the two spheres as, unfortunately,100

the electrical coupling between the liquid sodium and the copper casing of the interior101

magnets was apparently both imperfect and unreliable. Finally, we reported in on our third102

article [41] about the DTS experiment the presence of azimuthally traveling hydromagnetic103

waves that we inferred mainly from electric potential measurements along parallels.104

We investigate here again the main flows when the outer sphere is at rest. Our new study105

benefits from a comparison with our earlier work [39] for a rotating outer sphere. There is no106

need any more to use an indirect measure of the global rotation of the fluid as the electrical107
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coupling between liquid sodium and copper has become unimpaired. Furthermore, the DTS108

experiment has been equipped with a host of new measurement tools. The flow amplitude109

is measured along 7 different beams using Doppler velocimetry. Assuming axisymmetry, we110

have thus been able to map the azimuthal flow in most of the fluid. It turns out that the111

electric potential differences evolve monotonically with the inner core rotation but cannot112

be interpreted directly as a measure of the velocity below the outer viscous boundary layer.113

We have also entered a probe inside the cavity to measure the induced magnetic field in114

the interior. The dense measurements in the DTS experiment give a nice illustration of115

the Ferraro law of isoration [32] in the inner region where magnetic forces dominate. In the116

outer region, we retrieve axially invariant azimuthal flow as the Proudman-Taylor theorem117

holds there, even though the outer sphere is at rest. The variation of the geostrophic velocity118

with the distance to the axis differs nevertheless from the case of a rotating outer sphere as119

recirculation in the outer Ekman layer plays an important role in the latter case.120

The organisation of the paper is as follows. In section II, we describe the experimental set-121

up and the techniques that we use to measure the magnetic, electric and velocity fields; we122

illustrate them with a discussion of a typical experimental run. In section III, we present the123

governing equations and the relevant dimensionless numbers of the experiment. We devote124

one section of the article to the observation of differential rotation and another one to the125

meridional circulation. Then, the experimental measurements are compared to numerical126

simulations of DTS. We summarize and discuss the results of our study in section VII.127
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II. THE DTS EXPERIMENT128

A. The experimental set-up129

The DTS experimental set-up [30, 39, 41] is shown in FIG. 1. It has been installed in a130

small building purpose-designed for sodium experiments.131

FIG. 1. (Color online) Diagram and picture of the experimental set–up. A: moveable sodium

reservoir, B: shielded electric slip-ring, C: electromagnetic valve, D: outer sphere, E: magnetized

rotating inner sphere, F: spherical shell containing liquid sodium, G: magnetic coupling entraining

the inner sphere shaft, H: crenelated belt, I: brushless electric motor driving the inner sphere, J:

expansion tank for sodium, K: thermostated chamber. The total height of the set-up is 3.9 m.

As shown in FIG. 1, liquid sodium is contained in a spherical shell between an outer132
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sphere and an inner sphere. The radius of the outer sphere is a = 210 mm and that of the133

inner sphere b = 74 mm. The outer sphere is made of stainless steel and is 5 mm thick.134

The copper inner sphere (FIG. 2 and FIG. 3) contains magnetized Rare-Earth cobalt bricks135

assembled such that the resulting permanent magnetic field is very close to an axial dipole136

of moment intensity 700 Am2, with its axis of symmetry aligned with the axis of rotation.137

The magnetic field points upward along the rotation axis and its magnitude ranges from 345138

mT at the poles of the inner sphere down to 8 mT at the equator of the outer sphere.139

Sodium is kept most of the time in the reservoir at the bottom of the set-up. When140

needed to run an experiment, sodium is melted and pushed up from that reservoir into the141

spherical shell by imposing an overpressure of Argon in the reservoir. When liquid sodium142

reaches the expansion tank at the top of the spherical shell, an electromagnetic valve located143

just below the sphere (see FIG. 1) is locked such that sodium is kept in the upper part during144

experiments. In case of emergency, the valve is opened and sodium pours directly into the145

reservoir.146

FIG. 2. (Color online) (a) Picture of one hemisphere of the inner sphere. Different pieces of magnets

in gray are assembled in the bulk of the inner sphere. (b) View from the side of the inner sphere and

its rotating shaft. Note that the wheels at the top and bottom (only one is shown in the picture)

of the rotating shaft are attached to the outer sphere.

The central part of the experiment is air-conditioned in a chamber maintained at around147

130℃ during experiments: four 1 kW infrared radiants disposed around the outer sphere148

heat the chamber, whereas cold air pumped from outside cools the set-up when necessary.149

Liquid sodium is therefore usually kept some 30℃ above its melting temperature during150

experiments. Some physical properties of sodium relevant to our study are listed in TABLE I.151
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TABLE I. Physical properties of pure liquid sodium at 130℃ (Documents from CEA, Commissariat

à l’Energie Atomique et aux énergies alternatives). *The sound velocity in sodium has been precisely

measured in the present study using the UDV apparatus.

ρ density 9.3 102 kg m−3

σ electric conductivity 9 106 Ω−1m−1

ν kinematic viscosity 6.5 10−7 m2s−1

η magnetic diffusivity 8.7 10−2 m2s−1

c sound velocity* 2.45 103 m s−1

The whole volume containing sodium, from the reservoir tank up to the expansion tank is152

kept under Argon pressure at all times in order to limit oxidization of sodium.153

The rotation of the inner sphere, between f = −30 Hz and f = 30 Hz, is driven by154

a crenelated belt attached to a 11 kW brushless motor (SGMH-1ADCA61 from Yaskawa155

Electric Corporation, Tokyo, Japan). The belt entrains a home-made magnetic coupler156

located around the inner sphere shaft as seen in FIG. 1. The coupler is composed of an157

array of magnets located outside the sodium container, another array of magnets inside the158

container being immersed in liquid sodium. The inner magnets are anchored to the rotating159

shaft of the inner sphere such that when the belt is rotated outside, the inner sphere is160

rotated as well. Such a coupler has the advantage of not requiring any rotating seal in liquid161

sodium. Torque values up to about 70 N·m have been efficiently transmitted through this162

coupler in the experiment.163

B. Measurements164

1. Ultrasonic Doppler velocimetry165

We use UDV ultrasonic Doppler velocimetry [42] in order to measure liquid sodium ve-166

locities in the spherical shell. This non intrusive technique has been intensively used in our167

group for the last decade, in particular in rotating experiments performed either in water168

or in liquid metals [43–46]. The technique consists in the emission from a piezoelectric169

transducer of a succession of bursts of ultrasonic waves that propagate in the fluid. When170
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the wave encounters a particle with a different acoustic impedance, part of the ultrasonic171

wave is backscattered towards the transducer. The time elapsed between the emitted and172

the reflected waves and the change in that time respectively give the position of the par-173

ticle with respect to the transducer and the fluid velocity along the beam direction. Data174

processing is internal to the DOP2000 apparatus (http://www.signal-processing.com,175

Signal Processing company, Lausanne, Switzerland).176

FIG. 3. (Color online) (a) 3D perspective view of the outer sphere and its interior. Caps at various

latitudes hold ultrasonic velocity probes to perform UDV. The divergent ultrasonic beams emitted

from each cap are shown in perspective with different colors (and numbers for the grayscale version).

The five superimposed horizontal slices of magnets are assembled in the heart of the inner sphere.

Differences in electric potential are measured between points from latitude +45◦ to latitude -45◦,

with steps of 10◦ (holes along a meridian at the right of the Figure). (b) Meridional view of the

normalized coordinates (s/a, z/a) covered by the ultrasonic trajectories numbered from 1 to 7.

Some of the corresponding rays are plotted in (a) with the same color code (same numbers). The

distance d from the outer sphere along the ultrasonic beam is marked by small dots drawn every

20 mm. The dotted lines are field lines of the imposed dipolar magnetic field.

The ultrasonic probes are held in circular stainless steel caps attached to the outer sphere,177
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as shown in FIG. 3(a). There are six locations with interchangeable caps on the outer178

sphere such that fluid velocities can be measured from any of these different positions. The179

thickness of the stainless steel wall between the probes and liquid sodium has been very180

precisely machined to 1.4 mm in order to insure the best transmission of energy from the181

probe to the fluid [47]. Small sodium oxides and/or gas bubbles are present and backscatter182

ultrasonic waves as in gallium experiments [46]. We keep the surface of the caps in contact183

with sodium as smooth and clean as possible to perform UDV measurements.184

We use high temperature 4 MHz ultrasonic transducers (TR0405AH from Signal Pro-185

cessing) 10 mm long and 8 or 12 mm in diameter (piezoelectric diameter 5 or 7 mm). The186

measurements shown throughout the paper were performed with pulse repetition frequency187

(prf) varying from 3 kHz to 12 kHz and with a number of prf per profile varying from 8 to188

128. A present limitation of this UDV technique is that the maximum measurable veloc-189

ity obeys the following function umax = c2/4fePmax where c is the ultrasonic velocity of the190

medium, fe is the emitting frequency, and Pmax is the maximum measurable depth along191

the velocity profile. Applying this relationship to the parameters used in DTS, Pmax ≃ 200192

mm (approximative length of the first half of the beam in Figure 3) and fe = 4 Mhz, the193

maximum measurable velocity is of the order 2.2 m/s. In particular cases, it is possible to194

overcome this limitation by using aliased profiles of velocity [43] as shown later in the paper.195

The spatial resolution of the velocity profiles is about 1 mm, and the velocity resolution is196

about 0.5%, or better for the aliased profiles.197

We have measured both the radial and oblique components of velocity in the bulk of the198

spherical shell. The radial measurements were performed from the latitudes +10◦, -20◦ and199

-40◦. The oblique measurements were performed from different locations and in different200

planes, along rays that all deviate from the radial direction by the same angle (24◦). Thus,201

they all have the same length in the fluid cavity. At the point of closest approach, the rays202

are 11 mm away from the inner sphere. The seven oblique beams used in DTS are sketched203

in FIG. 3(b). The way to retrieve the meridional and azimuthal components of the velocity204

field along the ultrasonic beam is detailed in the Appendix.205

We use UDV measurements to confirm the strong magnetic coupling between the inner206

rotating sphere and sodium. In a smaller version of DTS performed in water, maximum207

angular velocities (normalized by that of the inner sphere) of the order 0.16 are obtained208

for a hydrodynamic Reynolds number of 105 in the vicinity of the equatorial plane, close209
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to the rotating inner sphere [26]. For similar Re in DTS, sodium is in super-rotation close210

to the inner rotating sphere and maximum measured velocities are instead around 1.2 (see211

FIG. 11(b) for example).212

2. Magnetic field inside the sphere213

The measurement technique described so far does not requires probes that protrude inside214

the sphere. In order to measure the magnetic field inside the sphere, in the liquid, we have215

installed magnetometers inside a sleeve, which enters deep into the liquid. The external216

dimensions of the sleeve are 114 mm (length inside the sphere) and 16 mm (diameter). It217

contains a board equipped with high-temperature Hall magnetometers (model A1384LUA-T218

of Allegro Microsystems Inc). We measure the radial component of the magnetic field at219

radii (normalized by a the inner radius of the outer sphere) 0.93 and 0.74. The orthoradial220

component is measured at 0.97 and 0.78, and the azimuthal component at 0.99, 0.89, 0.79,221

0.69, 0.60 and 0.50. The sleeve is mounted in place of a removable port (at a latitude of222

either 40◦, 10◦ or −20◦). A top view of the sleeve is shown in FIG. 6. The measured voltage223

is sampled at 2000 samples/second with a 16-bit 250 kHz PXI-6229 National Instruments224

acquisition card. The precision of the measurements (estimated from actual measurements225

when f = 0) is about 140 µT, and corresponds to about 20 unit bits of the A/D converter.226

Magnetic fields up to 60 mT have been measured.227

3. Differences in electric potentials on the outer sphere228

Differences in electric potentials are measured along several meridians and along one229

parallel of the outer sphere [30, 39, 41]. In the present study, we are interested in the230

measurements performed along meridians since they are linked to the azimuthal flow velocity231

uϕ (we denote (r, θ, ϕ) the spherical coordinates). The measurements are performed between232

successive electrodes located from -45◦ to +45◦ in latitude, with electrodes 10◦ apart as233

sketched in FIG. 3(a). We note ∆V40 = V45−V35 the difference between the electric potential234

at latitudes 45◦ and 35◦. Electric potentials are measured by electrodes soldered to brass235

bolts 3 mm long, those being screwed into 1 mm-diameter, 4 mm-deep blind holes drilled in236

the stainless steel wall of the outer sphere. The measured voltage is filtered by an RC anti-237
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aliasing 215 Hz low-pass filter and then sampled at 1000 samples/second with a 16-bit 250238

kHz PXI-6229 National Instruments acquisition card. The precision of the measurements239

(estimated from actual measurements at f = 0) is about 80 µV, and corresponds to about240

10 unit bits of the A/D converter. Electric potential differences up to 7 mV have been241

measured.242

Denoting E the electric field, we introduce the electric potential V through E = −∇V ,243

which is valid in a steady state. Then, the electric potential measurements are analysed using244

Ohm’s law for a moving conductor, j = σ (u×B+ E) where σ is the electric conductivity,245

j the electric current density vector, u the velocity field and B the magnetic field. If the246

meridional electric currents jθ are small compared to σuϕBr in the fluid interior and away247

from the equatorial plane where Br = 0, and if the viscous boundary layer adjacent to the248

outer sphere is thin, which ensures the continuity of Eθ through the layer, then the measured249

differences in electric potential depend on the product of the local radial magnetic field Br250

by uϕ, the azimuthal fluid velocity:251

∆V

a∆θ
= uϕBr , (1)

where ∆θ = 10◦ is the angle between two electrodes. However, we shall question below the252

assumption on the smallness of jθ, referred to as the frozen flux hypothesis.253

4. Velocity and torque measured from the motor driving the inner sphere254

The electronic drive of the motor entraining the inner sphere delivers an analog signal255

for its angular velocity and its torque. We checked and improved the velocity measurement256

by calibrating it using a rotation counter, which consists of a small magnet glued on the257

entrainment pellet and passing once per turn in front of a magnetometer. The torque signal258

is used to infer the power consumption in section IID.259

C. A typical experiment : a complete set of measurements260

A complete set of measurements performed during a typical experiment is analyzed below.261

The run was chosen to illustrate the various measurements but also to depict how the262

different observables evolve with f . During that run of 600 seconds, the inner sphere was263
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first accelerated from 0 to f = 30 Hz in around 120 seconds, then decelerated back to 0 during264

120 seconds. The inner sphere was then kept at rest for about 100 seconds and accelerated265

in the opposite direction to f = −30 Hz in 120 seconds. It returned to zero rotation in 120266

seconds again. That cycle of rotation is shown in FIG. 4. The torque delivered by the inner267

sphere motor is also shown and evolves clearly non-linearly during those cycles.268
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FIG. 4. (Color online) Records of the inner core rotation frequency f , torque C and differences

in electric potential ∆V40, ∆V30, ∆V20, ∆V10, ∆V−20, ∆V−30, ∆V−40 as a function of time. The

subscript denotes the latitude (in degrees) of the electric potential difference.

FIG. 4 shows electric potential records (see part IIB 3) obtained during this experiment269

and time averaged over 0.1 s windows. The differences of potential vary in sync with the270

inner sphere rotation frequency as expected if the various ∆V ’s measure the differential271

rotation between the liquid sodium and the outer sphere to which the electrodes are affixed272

(II B 3). However, it is also apparent that the fluid rotation as measured from the ∆V ’s does273

not increase linearly with the inner sphere frequency. We interpret it as an indication that274

braking at the outer boundary, which opposes the entrainment by the inner core rotation,275
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varies non linearly with the differential rotation. As expected, records from electrodes pairs276

are anti-symmetrical with respect to the equator, since the forcing is symmetrical while the277

radial component of the imposed magnetic field changes sign across the equator.278

FIG. 5 shows the fluid velocity u(d) measured by UDV during the first half of the exper-279

iment along the ray 6 as a function of time and distance. Velocity profiles were recorded280

along a total distance d ≃ 80 mm. As demonstrated in FIG. 5(b), the velocity is aliased281

since the maximum measurable velocity, for the ultrasonic frequency used during the exper-282

iment, is exceeded. Since the azimuthal velocity profiles are quite simple in shape, it has283

been straightforward to unfold those profiles and retrieve the correct amplitudes as shown in284

FIG. 5(c). The evolution with f is similar to that of the electrodes, but indicates a stronger285

leveling-off as f increases.286

FIG. 6 shows the magnetic field induced inside the fluid during the typical experiment.287

The measurements are taken in the sleeve placed at 40◦ latitude. The induced azimuthal field288

in FIG. 6 (a) is measured at 6 different radii (given in section IIB 2). Its intensity reaches289

60 mT near the inner sphere and gets larger than the imposed dipole in some locations.290

Note the simple evolution with f , which contrasts with that of the electric potentials and291

velocities in that it increases with an exponent close to 1. The induced meridional field292

(FIG. 6) is some 20 times weaker. It is dominated by fluctuations, and does not change293

sign when f does. Note that the evolution with f is not monotonic. Similar behaviors are294

observed at latitudes 10◦ and −20◦.295
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FIG. 5. (Color online) UDV measurements performed along the ray number 6 (see FIG. 3) during

the second half of the typical experiment when the inner sphere was rotated from rest to -30 Hz

and then back to rest. (a) Spatio-temporal representation of the measured velocity, given by the

color scale (in m/s). (b) Velocity at three distances from the probe as a function of time, extracted

from the spatio-temporal shown in (a). The velocity profiles are clearly aliased since the profiles

are discontinuous. (c) After applying a median time-filtering window of 0.2 s and unfolding the

profiles, the correct velocities are retrieved as a continuous function of time.
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FIG. 6. (Color online) (a) Azimuthal bϕ, (b) radial br and orthoradial bθ induced magnetic field

at a latitude of 40◦ in the sleeve at different radial positions recorded during the two triangles

sequence of FIG. 4. A top view of the sleeve at the bottom of (a) gives the radial position and the

orientation of the various Hall magnetometers. The intensity of the induced azimuthal field reaches

60 mT near the inner sphere and has the sign of −f . The fluctuations reach about 10% of the

mean. The meridional components of the induced magnetic field are much weaker and dominated

by fluctuations, which have been filtered out here (0.2 Hz low-pass filter).
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D. Power scaling296

The power dissipated by the flow is shown in FIG. 7 as a function of the rotation frequency297

f . It is computed from the product Γ × 2πf , where Γ is the torque retrieved from the motor298

drive. We subtracted the power measured with an empty shell (dash-dot curve) to eliminate299

power dissipation in the mechanical set-up. The dissipation in the fluid reaches almost 8 kW300

for the highest rotation frequency of the inner sphere (f = ±30 Hz). The small spread of301

the data dots indicates that power fluctuations are small. The continuous line is the record302

of power versus f when the inner sphere is ramped from 0 to −30 Hz as in FIG. 4. The303

corresponding increase in kinetic energy only slightly augments power dissipation.304

Power dissipation is found to scale as f 2.5, which does not differ from the scaling obtained305

in the laminar numerical study of section VI. There, it is explained as the result of the306

balance between the magnetic torque on the inner sphere and the viscous torque on the307

outer sphere, assuming that the fluid angular velocity below the outer viscous boundary308

layer is of the order of the inner sphere angular velocity. Although the outer boundary layer309

displays strong fluctuations, the situation is completely different from Taylor-Couette water310

experiments [48].311

18



FIG. 7. Power dissipated by the flow in DTS. The data dots are from measurements of the motor

torque for plateaus at given f . The dissipation in the mechanical set-up has been removed. It is

obtained by rotating the inner sphere before filling the shell with sodium. It is drawn here upside-

down in the lower panel (empty symbols) and can be fit by Pempty(W) = 4× |2πf |+ 0.03× (2πf)2

(dash-dot curve). Dissipation in the flow scales as f2.5, and is here compared with f2 (dotted line)

and f3 (dashed line).
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III. GOVERNING EQUATIONS312

A spherical shell of inner radius b and outer radius a is immersed in an axisymmetric

dipolar magnetic field Bd:

Bd(r, θ, ϕ) = B0

(

b

r

)3

[2 cos θer + sin θeθ] ,

where (r, θ, ϕ) are spherical coordinates. The outer boundary is kept at rest and the inner313

sphere rotates with the constant angular velocity Ω = 2πf along the same axis as the dipole314

field that it carries. We assume that the electrically conducting fluid filling the cavity is315

homogeneous, incompressible and isothermal. We further assume that the flow inside the316

cavity is steady.317

The inner body consists of a magnetized innermost core enclosed in an electrically con-318

ducting spherical solid envelope of finite thickness db. We choose b as unit length, bΩ as unit319

velocity, ρb2Ω2 as unit pressure, and b2ΩB0/η = RmB0 as unit of induced magnetic field b320

(B = Bd+Rmb). Then, the equations governing the flow u and the induced magnetic field321

are:322

∇ · u = 0 (2)

∇ · b = 0 (3)

(u · ∇)u = −∇p+ Λ ((Bd · ∇)b+ (b · ∇)Bd) + Re−1∇2u (4)

∇2b = −∇× (u×B), (5)

where p is a modified pressure. The notation Λ refers to the Elsasser number, classically323

used for rotating flows in the presence of a magnetic field. That number Λ compares the324

magnetic and inertial forces in the vicinity of the magnetized inner sphere. In the shell325

interior, the two forces are better compared by a "local" Elsasser number: Λl = (b/r)6Λ326

(with (b/a)6 ≃ 1.83 10−3). Finally, it is of interest to introduce the Hartmann number327

Ha that compares the magnetic and viscous forces. We have Ha = (ΛRe)1/2. In the shell328

interior, the number (b/r)3Ha is more appropriate to compare the two forces. Typical values329

of these dimensionless numbers can be found in TABLE II.330

The set of equations (2-5), where the non linear terms are neglected, was the subject331

of the analytical study of Dormy et al. [31] that described how the differential rotation332
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TABLE II. Typical values of the dimensionless numbers in the DTS experiment, computed for

f = Ω/2π = 25 Hz.

Re b2Ω/ν 1.3 106

Rm b2Ω/η 10

Λ σB2
0/ρΩ 1.9

Ha (ReΛ)1/2 1.6 103

between the fluid interior and the outer sphere drives an influx of electrical currents from333

the mainstream into the outer viscous Hartmann boundary layer. Electrical currents flow334

along the viscous boundary layer and return to the conducting inner body along a free shear335

layer located on the magnetic field line tangent to the outer boundary at the equator. As336

these electrical currents cannot flow exactly parallel to the magnetic field line, they produce337

a Lorentz force, which sustains "super-rotation" of the fluid. Recent studies have extended338

the analysis to the case of a finitely conducting outer sphere [49, 50]. On increasing the339

conductance of the container, Dormy et al. (2010) found that more and more electrical340

currents leak into the solid boundary and the super-rotation rate gets as large as O(Ha1/2).341

Though the analytical results have set the stage for the interpretation of the experimental342

results, the neglected non linear effects are crucial in the DTS experiment, even for the343

smallest rate of rotation of the solid inner body.344

Upon reversal of Ω, uϕ and bϕ change into −uϕ and −bϕ whilst the other components of345

u and b are kept unchanged.346
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IV. DIFFERENTIAL ROTATION347

A. Transition between the Ferraro and geostrophic regimes348

In this section, we use the UDV records to delve into the geometry of isorotation surfaces.349

The L number associated to each dipolar magnetic field line enters the equation of the350

surfaces spanned by dipolar lines of force:351

r = L sin2 θ . (6)

Accordingly, L gives the radius of the intersection of the magnetic field line with the352

equatorial plane. The notation L refers to the L-value (or L-shell parameter) widely used to353

describe motions of low energy particles in the Earth’s magnetosphere. FIG. 8 shows that,354

for L≤ 2.7, the angular velocity measured along rays 2 and 3, which are the most appropriate355

to map the azimuthal velocity field, is, to a large extent, a function of L only. Thus, the356

angular velocity does not vary along magnetic field lines near the inner sphere, where the357

magnetic field is the strongest. We interpret this result as a consequence of Ferraro’s theorem358

of isorotation. The latter is written:359

Bd · ∇
(

uϕ

s

)

= 0. (7)

It is obtained from the ϕ component of the induction equation for steady fields, ignoring360

magnetic diffusion. Although often invoked in the framework of ideal MHD (where magnetic361

diffusion is negligible), Ferraro’s law does not require a large Rm [51]. It implies that there362

is no induced magnetic field and that, as a consequence, the magnetic force is exactly zero.363

More precisely, deviations from this law lead to the induction of a magnetic field, which364

produces a magnetic force that tends to oppose this induction process. Writing u = u0+u1,365

where u0 obeys the equation (7), we obtain b ≈ u1 from (5). Then, the momentum equation366

(4) yields u1 ≈ (ReΛ)−1u0 = Ha−1u0 (as numerically verified in [35]) when the inertial term,367

on the left hand side, can be neglected. Ferraro’s law of isorotation, though, is not the only368

way to cancel the magnetic force. In the presence of electric currents parallel to the magnetic369

field, the magnetic force remains zero and the equation (7) can be violated [50, 51]. For the370

geometry of the DTS experiment, it cannot happen along the innermost dipolar field lines371

that join the two hemispheres, without touching the outer sphere. Indeed, symmetry with372

respect to the equatorial plane E implies that the currents do not cross E.373
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Thus, the observation of a velocity field obeying Ferraro’s law is a symptom that magnetic374

forces predominate in that region. Note that the fact that the two legs of the profile along375

ray 2 show similar velocities even for large L only probes the symmetry of the flow with376

respect to the equatorial plane.377378

Now, FIG. 9 shows that for s ≥ 0.6 the azimuthal velocity is largely a function of s379

only. There, the Proudman-Taylor theorem holds and azimuthal flows are geostrophic as380

the inertial forces predominate. In contrast with the case of a rotating outer sphere (see381

Figure 7 in [39]), there is no region of uniform rotation: zonal velocities are z-independent382

but vary with the distance to the z axis.383

The transition between the Ferraro and geostrophic regimes (FIG. 10) occurs at smaller384

distances from the axis as the rotation frequency of the inner core increases (unfortunately,385

we cannot get reliable UDV data for larger f). It takes place where the local Elsasser number386

Λl, which compares the magnetic and inertial forces, is of order 1. It is noteworthy that387

the Elsasser number Λ defines the location (cylindrical radius) where Λl = 1. The surface388

Λl = 1 separates two regions of the fluid cavity. Inside this surface, the magnetic forces389

predominate whether outside it the rotation forces are the most important ones. Finally,390

the value of Λ largely defines the geometry of isorotation surfaces.391

In the geostrophic region, magnetic stress integrated on the geostrophic cylinders remains392

strong enough to overcome the viscous friction at the outer boundary and to impart a rapid393

rotation to the fluid but becomes weaker than the Reynolds stress (which can be represented394

as a Coriolis force). As a result, the fluid angular velocity is still of the order of the angular395

velocity of the inner sphere and the velocities are predominantly geostrophic.396

B. Inversion of velocity profiles397

Flow velocity is constrained by its projection on the several ultrasonic rays that we398

shoot. We invert the Doppler velocity profiles for the large scale mean flow, assuming that399

the steady part of the flow is symmetric about the axis of rotation and with respect to the400

equatorial plane. A poloidal/toroidal decomposition,401

u = uϕeϕ +∇× (upeϕ) , (8)
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FIG. 8. (Color online) Rotation frequency of the fluid sodium over the inner sphere rotation

frequency as a function of the magnetic field lines L for four ultrasonic velocity profiles (trajectories

1, 2, 3 and 6, with the same color code as in FIG 3) and four inner sphere rotation frequencies (f =

-1.5, -3, -6 and -10 Hz). The dashed line is a straight line to help the eye.
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FIG. 9. (Color online) Rotation frequency of the fluid sodium normalized by the inner sphere

rotation frequency as a function of s, for various ultrasonic velocity profiles and four inner sphere

rotation frequencies (f = -1.5, -3, -6 and -10 Hz). The colors of the profiles (numbers) follow the

conventions laid out in FIG. 3.
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FIG. 10. (Color online) Normalized cylindrical radius s/a along the UDV trajectories number 1

(blue square), 2 (red circle) and 3 (black cross) where ffluid = f (i.e. f∗ = 1) as a function of the

inner sphere rotation frequency. Pale line : Λl = 0.5, Dark line : Λl = 2.5.
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is employed. We first consider the azimuthal velocity uϕ, which is expanded in associated402

Legendre functions with odd degree and order 1, i.e.403

uϕ(r, θ) =
lmax
∑

l=0

ul
ϕ(r)P

1

2l+1(cos θ) . (9)

The functions ul
ϕ(r) are decomposed into a sum from k = 0 to kmax of Chebyshev poly-404

nomials of the second kind on the interval [0, 1] mapped onto the interval [b/a, 1], i.e. the405

fluid domain. The azimuthal velocity is not constrained to vanish at the inner and outer406

boundaries, in order to account for the presence of thin unresolved boundary layers.407

Azimuthal velocities are more than 10 times larger than the poloidal (i.e. meridional)408

velocities. Nevertheless, the latter projects onto the ultrasound rays. We take the difference409

of the profiles acquired for f and −f in order to eliminate this small contribution (the410

meridional circulation does not change sign while the azimuthal velocity does).411

FIG. 11 shows the isovalues of angular frequency f ∗ inverted for f = ±3 Hz, with412

lmax = 3 and kmax = 7. A crescent of super-rotation is present near the inner sphere.413

There, isorotation contours roughly follow magnetic field lines, in agreement with Ferraro’s414

theorem, as anticipated above. At larger cylindrical distance from the inner sphere, the415

flow becomes geostrophic: the contour lines are vertical. We note that angular velocities416

just above the north pole of the inner sphere do not comply with Ferraro’s law. Instead,417

velocities decrease to quite low values inside the cylinder tangent to the inner sphere. Such418

violations have been shown to occur when the electric conductivity of boundaries is high419

[50, 51]. We speculate that we might be in this situation inside the tangent cylinder because420

the opening of the sphere at the top and bottom (see FIG. 3) replaces the poorly conducting421

stainless steel wall by sodium.422

FIG. 11 compares the synthetic angular velocity profiles to the observed Doppler velocity423

profiles along the various rays. Note that super-rotation is clearly visible in the raw profiles.424

The drop in velocity just above the inner sphere is constrained by profiles 4 (green) and 6425

(cyan), but its vertical extent is not.426

C. ffluid deduced from differences in electric potential and from UDV427

As in the previous study of DTS with rotating outer sphere [39], we observe that the428

amplitudes of the differences in electric potential ∆V ’s vary linearly with ∆V40, the pro-429
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FIG. 11. (Color online) (a) Reconstructed isovalue map of fluid angular frequency f∗ (the fluid

angular frequency normalized by f) at f = ±3 Hz in a meridional plane, assuming axisymmetry and

symmetry with respect to the equator. Three dipolar field lines (dash-dot white) are superimposed

in the angular velocity maps. Super-rotation (f∗ > 1) is clearly visible near the inner sphere, where

the Ferraro law of isorotation applies. Contours become vertical further away, where geostrophy

dominates. The fluid frequency is higher than 0.4 everywhere except in thin unresolved boundary

layers. The color lines are the projection in the upper half (s, z) plane of the ultrasonic rays used in

the inversion (see FIG. 3). (b) Comparison between the measured ultrasonic Doppler f∗ (shown by

their error bars) and the synthetic profiles (solid lines) computed from the angular frequency map

of (a) for f = ±3 Hz. The x-axis gives the distance along the ray (in a units). The corresponding

rays are plotted in (a) with the same color code (and indicated with trajectory numbers referring

to FIG. 3). 28



portionality factor increasing from the equator toward the poles due in particular to the430

increase of Br in formula (1). We show however in the present study that measuring the431

electric potential does not yield a reliable indicator of the angular velocity f ∗ using formula432

(1). In FIG. 12, we compare the normalized fluid angular velocity f ∗ retrieved from the433

∆V ’s, for four different latitudes, to f ∗ obtained directly by UDV at the nearest measured434

point, around d/a = 0.1. The frequencies f ∗ obtained from ∆V and from UDV in FIG. 12,435

would be similar if both measurement techniques were only sensitive to uϕ in the interior436

below the outer viscous boundary layer. The strong discrepancy between these two sets of437

frequencies reveals instead that the outer boundary layer in DTS cannot simply be reduced438

to a Hartmann layer, outside of which the meridional currents jθ can be neglected. We439

further discuss this point in the numerical part VI.440

V. MERIDIONAL CIRCULATION441

The meridional circulation is constrained from Doppler velocity profiles of the radial ve-442

locity (shot along the radial direction), from profiles shot in a meridional plane, and from the443

projection of the meridional velocity on "azimuthal" shots. The latter is obtained by taking444

the sum of the profiles acquired for f and −f , in order to eliminate the azimuthal contribu-445

tion. The same is done for the radial and meridional profiles to remove any contamination446

from azimuthal velocities.447

The poloidal velocity scalar uP of equation (8) is expanded in associated Legendre func-448

tions with even degree and order 1, i.e.449

uP (r, θ) =
lmax
∑

l=0

ul
P (r)P

1

2l(cos θ) . (10)

The radial ur and orthoradial uθ components of velocity are then obtained as:450

ur(r, θ) =
lmax
∑

l=0

ul
P (r)

r

1

sin θ

d

dθ

(

sin θ P 1

2l(cos θ)
)

. (11)

451

uθ(r, θ) = −
lmax
∑

l=0

(

ul
P (r)

r
+

dul
P (r)

dr

)

P 1

2l(cos θ). (12)

The functions ul
P (r) are decomposed into a sum of sin (kπ(r − b/a)/(1− b/a)) from k = 0452

to kmax. The radial velocity is thus constrained to vanish at the inner and outer (rigid)453

boundaries, but the orthoradial velocity is not, in order to account for the presence of thin454
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FIG. 12. (Color online) f∗ deduced from the measurements of ∆V using formula (1). Blue line :

f∗ value obtained with UDV measurements on the trajectory number 1 at the distance d/a = 0.1.

Dashed red line : f∗ value obtained with UDV measurements on the trajectory number 2 for

d/a = 0.1.
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unresolved boundary layers. FIG. 13 shows the streamlines of the meridional circulation455

inverted for f = ±3 Hz, with lmax = 4 and kmax = 8. The fluid is centrifuged from the456

inner sphere in the equatorial plane and moves north in a narrow sheet beneath the outer457

boundary. It loops back to the inner sphere in a more diffuse manner. Meridional velocities458

are more than ten times weaker than azimuthal velocities.459

FIG. 14 compares the synthetic radial and meridional profiles to the observed Doppler460

velocity profiles along the various rays. Velocities are normalized by 2πfa.461

Over a decade (from f = 1.5 Hz to = 15 Hz), radial velocities are consistently centrifugal462

at 10◦ latitude and centripetal at 40◦, and are roughly proportional to f . The radial profiles463

at 20◦ are more complex and evolve with f , indicating a non-monotonic evolution of the464

meridional circulation, also evidenced by the records of the r and θ components of the465

induced magnetic field inside the fluid (see FIG. 6). FIG. 15 compiles the rms value of466

radial velocity at 20◦ for various f . Note that the fluctuations are larger than this value,467

which is almost 50 times smaller than azimuthal velocities.468

VI. COMPARISON WITH NUMERICAL SIMULATIONS469

Two previous numerical studies are particularly relevant to our work. Hollerbach et al.470

studied exactly the DTS configuration but for values of Λ much larger than its value in the471

experiment [29]. They focus their study on the modification of the linear solution by inertial472

effects, stressing that the magnetic field line tangent to the outer sphere at the equator loses473

its significance in the non linear regime. As a result of the relatively large value of Λ, the474

inertial effects remain too weak -when the outer sphere is at rest- to make a geostrophic475

region arise at large distances from the axis. The solutions of Garaud [52] (see the figures476

7 and 11) for a slightly different problem do show the transition between a Ferraro and a477

geostrophic regions. In her model, which pertains to the formation of the solar tachocline,478

a dipolar magnetic field permeates a thick spherical shell as in DTS, the rotation of the479

outer boundary is imposed and the rotation of the inner boundary is a free parameter: a480

condition of zero torque is imposed on that boundary. Numerical models [29, 39] of the481

DTS experiment when the outer sphere is rotating also clearly show a Ferraro region near482

the inner sphere where the magnetic field is strong and a geostrophic region in the vicinity483

of the equator of the outer sphere. We argue below that all these results obtained for a484
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FIG. 13. (Color online) Reconstructed stream lines of the meridional circulation at f = ±3 Hz in a

meridional plane, assuming axisymmetry and symmetry with respect to the equator. The interval

between lines is 1.6 × 10−3. The fluid is centrifuged away from the inner sphere in the equatorial

region and moves up to the pole along the outer boundary. The color lines are the projection in

the upper half (s, z) plane of the ultrasonic rays used in the inversion.
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FIG. 14. (Color online) Comparison between the measured ultrasonic Doppler velocity profiles

(shown by their error bars) and the synthetic profiles (solid lines) computed from the meridional

circulation map of FIG. 13 for f = ±3 Hz. (a) Radial profiles along the radial direction r1, r2

and r3 shown in FIG. 13. (b) "Azimuthal" profiles. The contribution from the azimuthal flow has

been removed by taking the sum of profiles acquired for f and −f . The x-axis gives the distance

along the ray (in a units) and the y-axis is the velocity measured along the ray, adimensionalized

by 2πfa. The corresponding rays are plotted in FIG. 13 with the same color code (for the grayscale

version, the trajectory numbers in (b) refers to those in FIG. 3).
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FIG. 15. Compilation of the rms radial velocity amplitude as a function of the absolute value of

f . The rms velocity is computed from Doppler velocimetry profiles shot at a latitude of 20◦, from

3 cm beneath the outer shell down to the inner sphere (to avoid spurious values close to the outer

boundary). Radial velocity is roughly proportional to f but there is a large dispersion, as the shape

of the profiles changes with f . Note that for f = 10 Hz, the tangential velocity on the inner sphere

reaches 465 cm/s.
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rotating outer sphere provide us with a useful guide to interpret the numerical solutions485

when the outer sphere is at rest.486

A. The numerical model487

The model consists of four nested spherical layers (see FIG. 16). The fluid layer is enclosed488

between a weakly conducting outer container and a central solid sphere comprised of an inner489

insulating core and of a strongly conducting outer envelope.490

Stainless steel

Sodium,  

 Copper, 4.2

inner core
Insulating

FIG. 16. (Color online) Geometry of the numerical model. The relative conductance of the solid

outer shell is σbδ/σa = 1/336, with σb and δ respectively the conductivity and the thickness of the

outer sphere. It reproduces the experimental value with σb chosen as the conductivity of stainless

steel at 140◦C. The conductivity ratio between the layers 2 and 3 reproduces the ratio (4.2) between

the conductivity of copper and sodium.

The velocity field is decomposed as stated in the definitions (8) and (9). The variables491

ul
ϕ(r) and ul

p(r) are then discretized in radius. Analogous decompositions of variables de-492

noted blϕ(r) and blp(r) are employed to represent the induced magnetic field. The truncation493

level lmax (see (9)) is 120 and at least 450 unevenly spaced points are used in the radial494

direction. Specifically, the density of points strongly increases close to the boundaries in495

order to resolve the viscous boundary layers.496
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The equations (4) and (5), modified to include all the non linearities and the time deriva-497

tives of u and b, are transformed into equations for ul
ϕ, ul

p, b
l
ϕ and blp. We treat the non linear498

terms explicitly. To advance from one time step to the next, we use an Adams-Bashforth499

method. Diffusive terms, however, are treated implicitly. Finally, Laplace’s equation in500

spherical coordinates separates which makes it easy to write the magnetic boundary condi-501

tions.502

The dimensionless numbers Re and Λ are chosen so that steady solutions exist and are503

stable, with Pm ≪ 1 (Pm enters the definition of the unit induced field). We strive to repro-504

duce the experimental values of Λ and Rm. Solutions are obtained after time-stepping the505

equations until a stationary or periodic state is reached. They have been successfully com-506

pared to solutions obtained with another numerical code PARODY, which is not restricted507

to axisymmetric variables [26, 53].508

It is not possible to simulate the Reynolds number of the experiment, which is about 106.509

For the experimental range of Λ, steady solutions are obtained with Re ∼ 103.510

B. Steady axisymmetric solutions511

FIG. 17 displays a typical solution for the angular and meridional velocities that illustrates512

well the experimental results. The fluid rotates faster than the magnetized inner body in its513

vicinity. There, the angular velocity is constant along magnetic field lines of force. Further514

away of the inner core, the zonal shear becomes almost geostrophic. In addition to these515

features that we have retrieved from the experimental results, the numerical solution displays516

recirculation in the outer boundary layer at high latitude. There, the interior flow largely517

consists in rigid rotation and the boundary layer has the characteristics of a Bödewadt layer518

with a region of enhanced angular rotation.519

For large enough Re (e.g. (a/b)2Re = 104 with (b/a)2Ha = 20), circular waves are520

present in the Bödewadt layer, above 60◦ of latitude. They propagate towards the axis.521

Similar waves had been reported before in simulations of the flow between a rotating and522

a stationary disk in the absence of a magnetic field [54]. There, they eventually die out.523

Thus, the persistence of propagation of circular waves in the boundary layer attached to the524

sphere at rest may be attributed to the presence of a magnetic field. On the other hand,525

these waves arise for larger Re as Ha is augmented. Their emergence delimits the domain526
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FIG. 17. (Color online) (a) Angular and (b) meridional velocity in a meridional plane for Re =

9.5 102, Ha = 163, and Pm = 10−3. (c) angular velocity estimated from V , using (1). Two dipolar

field lines (white) are superimposed in the angular velocity maps, and the thick black contour line

is where the angular velocity is unity.

of steady solutions.527

We have checked that the thickness of the outer boundary layer in the numerical solution528

scales as Ω−1/2. Note that it corresponds to 3 mm for Ω = 1.5 s−1 and the viscosity of529

liquid sodium. The fluid rotation is driven by the electromagnetic torque acting at the inner530

boundary against the viscous torque at the outer boundary. We have found that both the531

viscous torque on the inner surface and the electromagnetic torque on the outer surface are532

negligible. Comparing different simulations, we have also checked that the main viscous533

torque scales as ∼ Ω3/2, as expected from the thickness of the Bödewadt layer. Thus, the534

power required to drive the fluid rotation scales as Ω5/2, as does the experimentally measured535

power, and torque measurements do not give indications on turbulence (see section IID).536

The angular rotation just below the outer viscous layer scaled by the inner core angular537

rotation decreases with Re in agreement with the experimental results. On the other hand,538

the angular rotation that would be inferred from the electric potential differences calculated539

at the outer surface using expression (1) increases with Re. FIG. 17(c) displays the angu-540

lar velocity as estimated from the electric potential, according to equation (1). It can be541

compared to FIG. 17(a). The actual shear is well retrieved where the magnetic force pre-542

dominates, in the region where Ferraro’s law of isorotation holds. There, the electric current543

density j is limited by the strength of the magnetic force, which needs to be balanced by an-544

other force. That restriction makes it possible to neglect j in Ohm’s law. Then, predictions545
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made from (1) are correct. On the other hand, the actual shear is not well recovered in the546

geostrophic region where the electric current density is not limited by the strength of the547

magnetic field. There, the frozen-flux relation (1) can be violated. We thus explain why the548

electric potential measurements at the surface of the DTS experiment do not yield a good549

prediction of the angular velocity immediately below the outer viscous boundary layer.550

Our first discussion [30] of the electric potential measurements was based on a numerical551

model calculated for the experimental values of Ha and thus for too large values of Λ. As a552

result, the magnetic force, in the numerical model, was dominant in the entire fluid layer and553

the frozen-flux relationship (1) was verified, at least away from the equator where Br = 0.554

However, equation (1), becomes less and less valid as Re is increased and Λ decreased, in555

agreement with the divergence that has been experimentally observed (see the FIG. 12)556

between the angular velocity calculated from (1) and the actual velocity.557

Incidently, cranking up the rotation of the magnetized inner sphere stabilizes the fluid558

circulation, at least within a certain parameter range. We have calculated the time-averaged559

solution (not shown) for the same parameters as the steady solution illustrated by FIG. 17,560

but for a lower Re. Both the flow and the induced magnetic field are periodic for this set of561

parameters. A second meridional roll, which is centripetal in the equatorial plane, turns up562

in the outer region. There, it creates a disk-shaped region where the rotation is slow and563

the solution is strikingly different from the almost geostrophic solution (FIG. 17) obtained564

for a slightly larger value of Re.565
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C. Comparison between numerical simulations and experimental results566

We find that reproducing the Elsasser number Λ, rather than a combination of Λ and Re567

such as the Hartmann number Ha = (ReΛ)1/2, is the key factor to recover the experimental568

results. The parameters for the solution displayed in FIG. 17 correspond to Λ = 28, which569

is the appropriate value for experiments with Ω = 1.5 s−1. With Pm = 10−3, the value of570

the magnetic Reynolds number is about right. It remains too small for the poloidal field to571

be much different from the imposed dipole field (again for the parameters of FIG. 17).572

FIG. 18 shows that numerical solutions are able to satisfactorily reproduce the ultrasonic573

measurements of angular velocity, obtained for the same values of Λ, as expected from the574

similitude of the angular velocity maps 11 and 17. The simulated velocities have weaker575

amplitude than the measured ones in much of the fluid though. We have checked that576

increasing Re, whilst keeping Λ constant, favours enhanced corotation between the fluid577

and the inner core. As our calculations are for much smaller Re than the values realized in578

the experiment, that result may explain the remaining discrepancy between measured and579

simulated velocities.580
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FIG. 18. (Color online) Angular velocity along the ultrasonic rays as a function of the distance

from the probe: measured (solid lines, 3 Hz, Λ = 16) and retrieved from a time-averaged numerical

solution (dashed lines, Re = 1.5 103, Ha = 163, Pm = 10−3, Λ = 18). The color lines refers to those

used to define the ultrasonic beams in the FIG. 3 (the numbers also refers to the ultrasonic beams

numbers defined in the FIG. 3). The error bars of the experimental data are shown in FIG. 11.
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VII. DISCUSSION AND CONCLUSION581

In the presence of an imposed magnetic field, which favors solid body rotation, the inertial582

forces largely reduce to a Coriolis force, even for large Reynolds numbers. Experimental583

results can thus be interpreted using a single dimensionless number, the Elsasser number.584

In that respect, experimental results obtained with global rotation [39] provide a better585

guide to interpreting the present results than the linear situation studied by Dormy et al.586

[28, 31]. We estimate that, in DTS, the rotation frequency f should be less than 0.1 Hz for587

the latter to be approached.588

Experiments have been conducted with the inner sphere rotating in the range -30 Hz589

≤ f ≤ 30 Hz. We have been able to map extensively the shear in the fluid cavity from590

ultrasonic Doppler velocimetry for |f | ≤ 10 Hz. Our observations provide a very clear591

experimental illustration of Ferraro’s law of isorotation, demonstrating the predominance592

of magnetic forces near the inner sphere. They also exhibit a strong super-rotation: in the593

region where magnetic forces dominate, the fluid angular velocity gets 30% larger than that594

of the inner sphere. This contrasts with the results obtained by Dormy et al. [28] when595

global rotation is present, which indicate that the phenomenon of super-rotation is hindered596

by the Coriolis force. The experimental results obtained in our previous study with global597

rotation [39] could not address this issue and we plan to run additional experiments for that598

purpose.599

The experiments also display a clear violation to Ferraro’s law: quite low angular velocities600

are observed just above the inner sphere, where the magnetic field is strongest (see FIG. 11).601

We suspect that this is due to the presence of sodium at rest at the top and bottom of the602

cylinder tangent to the inner sphere. Indeed, such violations have been shown to occur when603

the electric conductivity of boundaries is high [50, 51].604

We could follow the evolution of induced magnetic field, electric potentials and power605

across the full range of forcing. In a first approximation, all observables associated with the606

azimuthal flow (which dominates) can be described by a universal solution, both velocities607

and induced magnetic field scaling with f . In a second approximation, the increase of the608

dimensional fluid velocity with f thins the viscous boundary layer at the outer sphere and609

increases friction accordingly, thus reducing the adimensional velocity of the fluid inside610

the sphere. At the same time, the effective Coriolis force that results from the non-linear611
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(u · ∇)u term increases with respect to the (linear) Lorentz force: the geostrophic region612

extends further towards the inner sphere. This explains that the fluid velocity increases with613

f less rapidly than f (FIG. 5) at large f whilst the torque instead increases more rapidly614

than f (FIG. 4) (the electric potentials follow an intermediate trend). The outer friction615

torque is balanced by the magnetic torque at the inner boundary. This is consistent with616

an increase of the induced magnetic field, near the solid inner body, that is steeper than f617

(see FIG. 6). On the other hand, the description of Nataf and Gagnière [55] pertains to the618

region where the shear is geostrophic. There, the increased torque at the outer boundary is619

balanced by the magnetic torque on the geostrophic cylinders in the interior, which results620

from the shearing of the imposed dipolar field. The direct measurement of the velocity (up to621

10 Hz, see FIG. 9) shows that the adimensionalized shear does not change significantly with622

f even though the velocity itself decreases. In addition, the induced azimuthal magnetic623

field that we measure inside the sphere (FIG. 6), for the whole range of f , increases more624

rapidly than f . At large f , we observe that bϕ gets larger than the imposed dipolar field in625

much of the fluid layer. Eventually, this induced field is large enough to modify the overall626

magnetic field, and the resulting flow.627

This last regime, only achieved because the magnetic Reynolds number is large enough,628

is probably the most interesting one. Unfortunately, we cannot directly measure the flow629

velocities with the ultrasound technique at these very large f . Less direct techniques are630

now required to investigate the zonal shear for f > 10 Hz. Inertial waves modified in the631

presence of the dipolar and the induced magnetic fields have been inferred from records of632

the electric potential along parallels at the surface [41] and of the magnetic field along a633

meridian. Both their period and their wavenumber vary with the geometry of the differential634

rotation in the cavity. Hopefully, it will be possible to invert the zonal shear from the records635

of magneto-inertial waves.636

Guided by the numerical model, we find that electric field measurements are difficult to637

interpret, particularly in the equatorial region where the radial magnetic field Br vanishes.638

The frozen-flux approximation (1) holds when there is a mechanism that keeps under control639

the strength of the electrical currents [56]. This is the reason why the magnetic Reynolds640

number Rm is not relevant to discuss the validity of the frozen-flux approximation in our641

quasi-steady experiment. That approximation has predictive power, instead, in regions642

where the magnetic force is dominating. In the DTS experiment, it corresponds to the643
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inner region close to the magnet where Λ ≥ 1.644

In a geophysical context, a similar approach is routinely used [57] to invert the velocity645

field at the Earth’s core surface from models of the time changes of the geomagnetic field,646

the so-called secular variation. Taking the example of a quasi steady state, this geophysical647

application has been criticized from a strictly kinematic standpoint [58]. We reckon in-648

stead that it is necessary to consider the balance of forces to decide whether the frozen-flux649

hypothesis holds, at least for a quasi steady state as illustrated by the DTS experiment.650

Features of the experiment that only depend upon dimensionless numbers that do not651

involve diffusivities have been simulated numerically. An analogous explanation has been652

put forward to explain the intriguing successes of geodynamo simulations [5].653
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Appendix: Angular and meridional velocity along the ultrasonic oblique rays661

The seven oblique ultrasonic rays shot in DTS are sketched in FIG. 3. We define the662

declination D as the angle between the beam and the meridional plane (D counted positively663

eastwards), the inclination I as the angle between the projected beam in the meridional plane664

and the radial direction (I counted positively upwards) and λ as the latitude of the ultrasonic665

probe. Using those definitions, TABLE III give the characteristics of the beams.666

TABLE III. Latitude λ, inclination I, and declination D (in degrees) at the origin of the shots (on

the outer sphere) of the oblique ultrasonic beams in DTS.

Trajectory number and color λ I D

1, blue 40 21.1 11.7

2, red 10 2.2 23.9

3, black 10 12.5 -20.6

4, green -20 20 -13.5

5, yellow -20 21.1 -11.7

6, cyan -40 21.1 11.7

7, magenta -40 -24 0

1. Angular velocity667

Along these oblique beams, the projection u(d) (d is the distance from the probe) of the668

velocity is a combination of the components ur, uθ and uϕ of the total velocity field. Velocity669

u(d) is counted positive in the shooting direction. We assume that the mean fluid flow is670

axisymmetric, and also (ur,uθ) ≪ uϕ, the meridional velocities amplitude in DTS being less671

than 10% the amplitude of the azimuthal velocities. Using projections along the beam, we672

retrieve the angular velocity ω(d) along trajectories 1 to 6 using the following relationship673

ω(d) = − u(d)

a cos λ sinD
. (A.1)
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2. Meridional velocity674

We have also exploited the observation that the meridional velocity does not change sign675

when the rotation of the inner sphere is reversed - it remains centrifugal in the equatorial676

plane - whereas the angular velocity does change sign. Thus, combining measurements677

obtained with two opposite rotation rates of the inner core, we can separate azimuthal and678

meridional velocities.679

Assuming now that the mean meridional velocity is axisymmetric and using projections,680

we can retrieve the radial velocity681

ur(d) =
u(d)r(d)

d− a cosD cos I
, (A.2)

and the orthoradial velocity682

uθ(d) =
u(d)r(d)s(d)

a[a cosD cos λ sin I − d cos2D cos(λ+ I) sin I + d sin2D sin λ]
, (A.3)

where r(d) =
√
x2 + y2 + z2 is the spherical radius and s(d) =

√
x2 + y2 is the cylindrical683

radius at the measurement point. They (x, y, z) coordinates of the measurement point are684

given by:685

x(d) = a cosλ− d cosD cos(λ+ I) (A.4)

y(d) = −d sinD (A.5)

z(d) = a sinλ− d cosD sin(λ+ I) (A.6)
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