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Axisymmetric dynamo action is possible with anisotropic conductivity
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A milestone of dynamo theory is Cowling’s theorem, known in its modern form as the impossibility for an
axisymmetric velocity field to generate an axisymmetric magnetic field by dynamo action. Using anisotropic
electrical conductivity, we show that an axisymmetric dynamo is in fact possible with a motion as simple as
solid-body rotation. On top of that, the instability analysis can be conducted entirely analytically, leading to an
explicit expression of the dynamo threshold, which is the only example in dynamo theory.
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I. INTRODUCTION

Since the pioneering study of Cowling [1] there has been a
constant effort to improve the demonstration of the so-called
Cowling’s (antidynamo) theorem. In its modern form this
theorem states that an axisymmetric magnetic field cannot
be generated by dynamo action under the assumption of ax-
isymmetry of velocity field, electrical conductivity, magnetic
permeability, and shape of the conductor [2–6]. Cowling’s the-
orem encompasses time-dependent flows [7,8], nonsolenoidal
flows, and variable conductivity [9,10]. However, nothing has
yet been said about the effect of an anisotropic electrical con-
ductivity and how in this case Cowling’s theorem is overcome.
A demonstration of dynamo action with shear and anisotropic
conductivity has already been given [11] but for a different
geometry and within asymptotic limits relevant to the fast
dynamo problem.

Beyond its theoretical interest, this issue is relevant
to at least three fields of physics. In astrophysics it
is well known that in the mean-field approximation, an
anisotropic tensor of magnetic diffusivity may naturally occur
from anisotropic gradients of magnetohydrodynamic turbu-
lence [12]. In plasma physics, just like thermal conductiv-
ity [13], the electrical conductivity in the magnetic field
direction is different from the electrical conductivity in the di-
rection perpendicular to the magnetic field [14]. This usually
occurs in a plasma which is already magnetized. Although this
does not preclude dynamo action, we will not examine this
issue here, considering that there is no external magnetic field.
Finally, as will be shown below, a dynamo experiment can be
designed on the basis of our anisotropic conductivity model.
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The results show that such an experiment is feasible, which
is welcome because experimental dynamo demonstrations are
rather rare.

II. ANISOTROPIC CONDUCTIVITY

Let us consider a material of electrical conductivity σ such
that σ = σ1 in a given direction q, and σ = σ0 � σ1 in the
directions perpendicular to q. We choose q as a unit vector in
the horizontal plane,

q = cos α er + sin α eθ , (1)

where (er, eθ , ez ) is a cylindrical coordinate system and α a
constant angle. In a companion paper another choice for q,
within a Cartesian frame, is studied [15].

In Fig. 1 the curved lines correspond to the directions of
the large conductivity σ0. They are perpendicular to q and
describe logarithmic spirals.

Writing Ohm’s law j = σ1E in the direction of q and j =
σ0E in the directions perpendicular to q leads to the following
conductivity tensor:

σi j = σ0δi j + (σ1 − σ0)qiq j . (2)

Inversing (2) leads to the resistivity tensor [11]:

Ri j = 1

σ0
δi j +

(
1

σ1
− 1

σ0

)
qiq j . (3)

We consider the solid-body rotation u of a cylinder of radius r0

embedded in an infinite medium at rest (Fig. 1), both regions
having the same resistivity tensor Ri j .

The magnetic induction B satisfies the equation

∂t B = ∇ × (u × B) − ∇ × ([η]∇ × B), (4)

where [η] is the magnetic diffusivity tensor defined as ηi j =
Ri j/μ0, μ0 being the magnetic permeability of vacuum.
Renormalizing the distance, magnetic diffusivity, and time by
r0, (μ0σ0)−1 and μ0σ0r2

0 , respectively, the dimensionless form
of the induction equation is identical to (4) but with

ηi j = δi j + η1qiq j, η1 = σ0

σ1
− 1, (5)
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FIG. 1. Left: The inner cylinder of radius r0 rotates as a solid
body within an outer cylinder at rest. The radial boundary r1 of
the outer cylinder is rejected at infinity. In the limit η1 = ∞ the
electric currents follow logarithmic spiral trajectories. Right: The
vector q, which makes a constant angle α with the radial direction, is
perpendicular to the spiraling current.

and

u =
{

r�eθ , r < 1

0, r > 1
, (6)

where � is the dimensionless angular velocity of the inner
cylinder.

III. RESOLUTION

Provided the velocity is stationary and z independent, an
axisymmetric magnetic induction can be searched in the form

B(r, z, t ) = B̃eθ + ∇ × (Ãeθ ), (7)

with (Ã, B̃) = (A, B) exp(γ t + ikz), where γ is the instability
growth rate, k the vertical wave number of the corresponding
eigenmode, and where A and B depend only on the radial
coordinate r. Thus the magnetic induction takes the form

B =
(

−ikA, B,
1

r
∂r (rA)

)
exp(γ t + ikz), (8)

with dynamo action corresponding to �{γ } > 0.
From Eqs. (6) and (8) we find that ∇ × (u × B) = 0 in

each region r < 1 and r > 1. Replacing (5) and (6) in the
induction equation (4) leads to

γ A + Dk (A) = iη1cskB − η1s2Dk (A), (9)

γ B + Dk (B) = −iη1cskDk (A) − η1c2k2B, (10)

where Dν (X ) = ν2X − ∂r[ 1
r ∂r (rX )], c = cos α and s = sin α.

Looking for stationary solutions, the dynamo threshold
corresponds to γ = 0. Then the system (9)–(10) implies

Dk̃ (B) = Dk

(
B − i

ck

s
A

)
= 0, (11)

where

k̃ = k

(
1 + η1

1 + η1s2

)1/2

. (12)

FIG. 2. Eigenmodes −ikA and B vs r for η1 = ∞, k = 1.1, α =
0.16π , λ = 
(k), and μ = −
(k̃).

The solutions of Dν (X ) = 0 being a linear combination of
I1(νr) and K1(νr), we find

r < 1,

⎧⎨
⎩

A = s
ick

(
λ I1(k̃r)

I1(k̃)
+ μ I1(kr)

I1(k)

)
B = λ I1(k̃r)

I1(k̃)

(13)

r > 1,

⎧⎨
⎩

A = s
ick

(
λK1(k̃r)

K1(k̃)
+ μK1(kr)

K1(k)

)
B = λK1(k̃r)

K1(k̃)
,

(14)

where I1 and K1 are modified Bessel functions of first and sec-
ond kind. In (13) and (14) the following boundary conditions
have been applied to A and B: finite values at r = 0, continuity
at r = 1, and lim

r→∞ A, B = 0.

From (8), the continuity of B is satisfied provided ∂rA is
also continuous at r = 1. From (13) and (14) this leads to the
following identity between λ and μ:

λ
(k̃) + μ
(k) = 0, (15)

with


(x) = x

(
I0(x)

I1(x)
+ K0(x)

K1(x)

)
≡ [I1(x)K1(x)]−1, (16)

the last equality coming from the Wronskian relation
Im(x)Km+1(x) + Im+1(x)Km(x) = 1/x.

In Fig. 2 the eigenmodes −ikA and B are plotted versus r
for λ = 
(k) and μ = −
(k̃) such that (15) is satisfied. Both
−ikA and B reach their maximum at r = 1.

Finally, the tangential components of the electric field
E = −u × B + [η]∇ × B have to be continuous at r = 1. The
continuity of Ez implies the following identity:

(∂rB − ik�A)(r = 1−) = ∂rB(r = 1+). (17)

According to Fig. 2, from which we have −ikA � 0, ∂rB(r <

1) > 0 and ∂rB(r > 1) � 0, the only way to satisfy (17) is to
have � < 0. Replacing (13), (14), and (15) in (17) leads to the
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FIG. 3. Curves of the dynamo threshold �c vs k for
α = 0.16π and η1 = 5, 10, 102, ∞. Inset: η1 = ∞ and α/π =
0.1, 0.12, 0.16, 0.2, 0.25.

dynamo threshold

�c = c

s
(I1(k̃)K1(k̃) − I1(k)K1(k))−1. (18)

As previously noted, we find negative values of �c, dynamo
action corresponding to |�| � |�c|. In Fig. 3 the curves of
the dynamo threshold are plotted for different values of η1

and α. The minimum value of |�c| is obtained for η1 → ∞,
k∗ = 1.1, and α∗ = 0.16π :

�∗ = min
η,k,α

|�c| = 14.61. (19)

IV. DYNAMO MECHANISM

The dynamo mechanism can be described as a two-step
process as illustrated in Fig. 4. The boundary condition (17)
implies that Bθ is generated from Br by differential rotation
between the inner and outer cylinders. This leads to distortion
of magnetic field lines as shown in the right of Fig. 4. In return,
the first term on the right-hand side of (9) corresponds to the

FIG. 4. Left: Three-dimensional sketch of some trajectories of
the current density j and the magnetic field B. Right: Magnetic field
lines in the horizontal plane z = 0. The magnetic field is distorted
by the differential rotation while the current density is bent by the
conductivity anisotropy.

generation of Br from Bθ , provided η1csk �= 0. This appears
more clearly by rewriting (9) and (10) as

γ Br = η1csk2Bθ − (1 + η1s2)Dk (Br ), (20)

γ Bθ = η1csDk (Br ) − (Dk + η1c2k2)Bθ . (21)

In the left of Fig. 4 the horizontal currents are represented
to follow the direction of logarithmic spirals. To show it, the
current density j = ∇ × B is written in the form

j =
(

−ikB, Dk (A),
1

r
∂r (rB)

)
exp(γ t + ikz). (22)

From (9) taken at the threshold γ = 0, we find that

jθ = − η1cs

1 + η1s2
jr, (23)

corresponding to the equation of logarithmic spirals. In the
limit η1 → ∞ we find that j · q = 0, the currents following
the trajectories given in Fig. 1.

Dynamo action thus occurs through differential rotation
conjugated to anisotropic diffusion. For η1 = 0 (isotropic
diffusion) or cs = 0, in Eqs. (20) and (21) Br and Bθ are de-
coupled, canceling any hope of dynamo action in accordance
with Cowling’s theorem.

It is interesting to note that in (20) and (21), in each equa-
tion it is the first term on the right-hand side which supports
dynamo action. These terms correspond to the off-diagonal
coefficients of the anisotropic diffusivity tensor (5). Therefore
the diagonal and off-diagonal coefficients act respectively
against and in favor of dynamo action.

V. CONCLUSIONS

The neutral point argument of Cowling relies on the im-
possibility, in an axisymmetric configuration, of maintaining a
toroidal current density [1]. This argument fails as soon as the
conductivity is a tensor, because in this case, the cross product
of a toroidal velocity field with a poloidal magnetic field can
actually produce a toroidal current density. In other words, the
anisotropic conductivity forces the current density to follow
spiraling trajectories with nonzero azimuthal components,
thus overcoming Cowling’s theorem.

Beyond the fact that with an anisotropic conductivity an ax-
isymmetric dynamo can be operated from a simple solid-body
rotation, it is interesting to put some numbers on the previous
results. Considering an inner cylinder of radius r0 = 0.05 m,
taking the conductivity of copper μ0σ0 ≈ 72.9 s m−2 leads to
a dynamo threshold f ∗ = �∗(2πμ0σ0r2

0 )−1 ≈ 12.8 Hz. Pro-
vided the cylinder height and outer radius r1 are sufficiently
large, this is experimentally achievable. Such an anisotropic
conductivity can be easily manufactured by alternating thin
layers of two materials with different conductivities and a
logarithmic spiral arrangement of these thin layers. Of course,
the resulting conductivity is no longer homogeneous and,
more importantly, it does not satisfy the axisymmetry hypoth-
esis of Cowling’s theorem. However, provided the layers are
thin enough, an anisotropic conductivity model is relevant to
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design such a dynamo experiment. Another dynamo exper-
iment design with spiraling wires has been studied [16].

Though the geometry is different, the dynamo threshold is
comparable to the present one.
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