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In this paper, we derive estimates for size of the small scales and the attractor dimension in lowRm
magnetohydrodynamic turbulence by deriving a rigorous upper bound of the dimension of the
attractor representing this flow. To this end, we find an upper bound for the maximum growth rate
of anyn-dimensional volume of the phase space by the evolution operator associated to the Navier–
Stokes equations. As explained in Constantinet al. @J. Fluid Mech.150, 427 ~1985!#, the value of
n for which this maximum is zero is an upper bound for the attractor dimension. In order to use this
property in the more precise case of a three-dimensional periodical domain, we are led to calculate
the distribution ofn modes which minimizes the total~viscous and Joule! dissipation. This set of
modes turns out to exhibit most of the well known properties of magnetohydrodynamic turbulence,
previously obtained by heuristic considerations such as the existence of the Joule cone under strong
magnetic field. The sought estimates for the small scales and attractor dimension are then obtained
under no physical assumption as functions of the Hartmann and the Reynolds numbers and match
the Hartmann number dependency of heuristic results. A necessary condition for the flow to be
tridimensional and anisotropic~as opposed to purely two-dimensional! is also built. © 2003
American Institute of Physics.@DOI: 10.1063/1.1601222#

I. INTRODUCTION

Magnetohydrodynamic~MHD! turbulence at low mag-
netic Reynolds numberRm ~i.e., for which the magnetic field
is not disturbed by the flow! is of great interest for laboratory
experiments as well as for industrial applications including
metallurgy and the study of liquid metal blankets used in
nuclear fusion reactors. It essentially differs from classical
hydrodynamic turbulence by the additional Joule dissipation
arising from the electric currents present in the flow.1,2 This
anisotropic dissipation competes with the usual viscous dis-
sipation and when it is dominant, the flow exhibits very char-
acteristic features: first, the turbulent modes are confined out-
side the so-called Joule cone in the Fourier space~of axis the
direction of the applied magnetic field, and the angle of
which is governed by the ratio of the Lorentz to the inertial
forces!. Also the additional dissipation leads to a faster en-
ergy decay proportional tot21/2 for freely decaying
turbulence3 when it is much greater than viscous dissipation.
Homogeneous 3D MHD turbulence also exhibits ak23

power density spectrum, different from the usualk25/3 law.
This spectrum has been observed experimentally and heuris-
tic considerations suggest it results from a local balance be-
tween inertia and Lorentz forces.4 One of the most striking
features of low-Rm MHD turbulence is its anisotropy due to
the fact that vortices stretched along the magnetic field lines
escape ohmic dissipation,5,6 and which results in the exis-
tence of the Joule cone in Fourier space where the modes are
strongly dissipated. The flow may then become two-
dimensional when the modes with a nonzero wave number
component in the magnetic field direction are all killed by
Joule dissipation.

To summarize, three points characterize well lowRm

MHD turbulence~this does not extend to moderate and high
RmMHD turbulence!: its faster decay, its anisotropy, and its
power density spectrum. Although all those quantities are
known through experiments and relate well to heuristic con-
siderations, none of them is clearly linked to the mathemati-
cal properties of the Navier–Stokes equations. This point is
important for two reasons: first, results derived from math-
ematical properties of the equations are very robust and
therefore give indisputable support to heuristic arguments,
should they match. Second, they provide some deep insights
into the behavior of the solutions, which is necessary when
one wants to undertake calculations on turbulent flows. We
aim at doing a step towards filling this gap by studying an-
isotropy and small scales in a fully established turbulent
flow, by means of the theory of dynamical systems. This
latter tool is indeed very suitable to understand turbulence as
some of its objects are in direct relation with characteristic
properties of turbulence such as the size of the smallest
scales which is expressed by the idea that the solutions of
Navier–Stokes are described by a finite~but possibly large!
number of determining modes. This number is also of the
same order of magnitude as the dimension of the attractor of
the system for which estimates can be found. Some impor-
tant questions then arise:~1! how many modes are required
to describe the flow?~2! which modes? and~3! what infor-
mation is lost if one attempts a calculation using a smaller
number of modes? The purpose of this paper is to suggest
some ideas for~1! and~2! in the case of MHD turbulence. A
way to answer~1! is to find an upper bound for the dimen-
sion of the attractor of the dynamical system formed by the
anisotropic Navier–Stokes equation~i.e., with Lorentz force!
and associated boundary conditions. This work has already
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been carried out without magnetic field by Ref. 7 who found
a close bound for the attractor dimension of the 2D problem
under the formG2/3(11 ln G)1/3 ~G is the Grashof number
based on a measure of the applied forcing!, which fits well
with the typical size of the small scales given by Ref. 8 from
heuristic considerations. A similar result has been found in
3D by Ref. 9 and summarized in Ref. 10 but the final Re3

bound found for the attractor dimension~Re is the Reynolds
number! is not as sharp as the previous bound, when com-
pared to the Re9/4 estimate by the Kolmogorov theory. How-
ever, some estimates for the inertial terms derived from this
reference will be used to tackle the MHD problem. Note that
a thorough study of the general MHD equations~i.e., the
system formed with the Navier–Stokes equations and the
induction equations, which covers situations where velocity
and magnetic field are fully coupled! is presented in Ref. 11.
In particular, it is shown that any invariant set for this system
~hence any attractor! has a finite Hausdorf dimension. Note
also that MHD turbulence where the magnetic field can fluc-
tuate has been widely studied and even if the physical
mechanisms involved are very different to those in the case
we study here, a similar anisotropy is observed when a mean
magnetic field is imposed~see, for instance, Ref. 12!.

The layout of the paper is as follows: we first review the
tools of system dynamics used thereafter~i.e., the method for
calculating the attractor dimension! and show how they re-
late to our problem. It turns out that calculating the upper
bound for the attractor dimension is related to the problem of
finding the least dissipative modes. Section III is devoted to
finding those modes and their properties as well as the upper
bound itself: those modes are found to correspond to promi-
nent modes of actual MHD-turbulent flows. In Sec. IV, ana-
lytical estimates are given and a comparison is drawn with
the usual heuristic arguments.

II. NAVIER–STOKES EQUATIONS AND DYNAMICAL
SYSTEMS

A. Method for calculating an upper bound for the
attractor dimension of a dynamical system

We shall now give some guidelines about the method
which we use to derive such an upper bound. A dynamical
system with vector valuated unknownx is defined by an
evolution equation of the form

dx

dt
5F~x! ~1!

together with boundary conditions on the considered domain
spanned by the variablex or phase space. By definition of a
global attractor for the system~which is a set located in the
phase space!, a solution of Eq.~1! always ends up being
arbitrary close to it at infinite time. Therefore, if we consider
any set ofn infinitesimal independent departures from a so-
lution located in the attractor (dxk)k51...n , the subset of the
phase space generated by these disturbances will eventually
end up within the attractor in the limitt→`. This implies
that if the initial dimensionn of this subset is greater than the
attractor dimension, itsn-dimensional volume tends to zero
at infinite time ~as, for instance, a 3D cube would have to

become ‘‘flat,’’ i.e., of volume 0, in order to fit in a plane at
infinite time!. Therefore, the lowest value ofn for which the
volume of the subspace generated by any set ofn distur-
bances annihilates at infinite time is an upper bound for the
attractor dimension. This result is expressed rigorously and
extended to noninteger values ofn by the theorem of Con-
stantin and Foias.13

In order to be able to use this theorem, it suffices to find
the lowest value ofn which corresponds to a zero value of
the maximum expansion rate among all possible
n-dimensional infinitesimal disturbances. The evolution of
each disturbance is expressed by linearization of Eq.~1! in
the vicinity of the attractor:

d

dt
dx5Adx1O~dx2!. ~2!

Then the expansion rate of then-volume Vn5idx13...
3dxni is the sum of the expansion rates in all the eigendi-
rections ofA within the n-dimensional subspace:

Vn~ t !5Vn~ t50!exp~ t^Tr@APn#& t!, ~3!

where Pn stands for the projector onto then dimensional
subspace spanned by (dxk(t))k51...n , and ^ & t stands for the
longest possible time-average. One can get an idea of how
this result comes up by considering the volume spanned by a
base of orthogonal eigenvectors ofA (ek)kP$1...n% , in the case
whereA is self-adjoint and time-independent. If (lk)kP$1...n%
is the related set of eigenvalues, then the length of the vol-
ume element along the directionek evolves as~see Fig. 1!

ek~ t !5ek~ t50!exp~lkt !. ~4!

As the (ek) are orthogonal, the volume is simply the product
of the lengths in all directions, so that it evolves as

Vn5ie1~ t50!iie2~ t50!i ...ien~ t50!iexpS (
k51...n

lkt D
5Vn~ t50!exp~Tr At !. ~5!

Finding the maximum expansion rate over every pos-
siblen-dimensional subspace then comes down to finding the
maximum of the trace of the linearized evolution operator
over all possible sets ofn of its eigenmodes. Let us now
apply these ideas to the problem of MHD turbulence.

B. The Navier–Stokes equations as a dynamical
system

Let us consider an incompressible electrically conduct-
ing fluid in a finite domain, subject to a permanent, uniform
magnetic fieldB aligned with thez-axis. If s is the electrical

FIG. 1. Evolution of the volume associated with a base of orthogonal eigen-
vectors of an operator in the phase space. The dimensionn is set to 2.
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conductivity,r is the density,n is the kinematic viscosity, the
motion equations for velocityu, pressurep electric current
densityj can be written

~] t1u•¹!u1
1

r
¹p5nS ¹2u1

1

rn
jÃBD1f, ~6!

¹•u50, ~7!

wheref represents some forcing independent of the velocity
field. The set of Maxwell equations as well as electric current
conservation and the Ohm’s law are normally required to
close the system. However, we assume here that the mag-
netic field is not disturbed by the flow. In other words, the
magnetic diffusion is supposed to take place instantaneously
at the time scale of the flow~‘‘low magnetic Reynolds num-
ber’’ approximation!. In this case, Ref. 14 has shown that the
Lorentz force decomposes as the sum of a magnetic pressure
term and a rotational term:

jÃB5
n

r
¹pm1

sB2

rn
¹22 ]zz

2 u. ~8!

This reveals the nature of the electromagnetic effects on the
flow: the first term accounts for the electromagnetic pressure
~of little effect in incompressible flows!. The second term
can be interpreted as a momentum diffusion along the mag-
netic field lines5 which tends to homogenizex, y components
of the velocity alongz. This stretches vortices along thez
direction. The actual turbulent flow therefore exhibits some
anisotropy which results from the competition between this
momentum diffusion and the tendency from inertial terms to
favor return to isotropy. Note that if the electromagnetic
effects are dominant, the stretched vortices can reach
the boundaries of the flow, which then becomes
two-dimensional.

Injecting Eq.~8! in the Navier–Stokes equation~6!, the
electromagnetic pressure is absorbed in the hydrodynamic
pressure term so that the entire MHD problem is expressed
using the velocity only. The related variation equation which
governs the evolution of a three-dimensional perturbationdu
of the solutionu then takes the form

~9!

¹•du50. ~10!

In the literature, the nonlinear inertial terms are often written
as a bilinear operatorB~u,du!, and the dissipation, as a linear
operator that we callDHa ~as it will be seen to depend on the
Hartmann number Ha in Sec. III!. One can guess from this
equation, that the evolution of small volume of the phase
space generated by a set ofn disturbances~as defined in Sec.
II A ! results from the competition between inertial terms
which tend to expand the volume by vortex stretching and
dissipative terms which tends to damp the disturbances, and
hence reduce the volume.

The case without magnetic field has been investigated in
two and three dimensions. In 2D, Ref. 15 found an upper
bound for the attractor dimension which matches well the
results obtained by Kolmogorov-like arguments:

d2D<c1G2/3~11 ln G!1/3, ~11!

whereG is the Grashof number expressing the ratio of the
forcing to the viscous friction andc1 , as well as everyci

introduced throughout the rest of the paper, are constants of
order 1. To this day, no rigorous estimate for the attractor
dimension of the 3D problem precisely matches Kolmogor-
ov’s prediction for the number of degrees of freedom. One of
the main reasons is that unlike in 2D, it has not yet been
proved that the velocity gradients remain finite at finite time,
which lets the door open to possible singularities. However,
one can work under the assumption that the flow remains
regular at finite time and define the maximum local energy
dissipation rate as

e5n^sup
u

sup
r

i¹u~r ,t !i2& t . ~12!

One can also define a Reynolds number Re using a suitable
velocity scale and a typical large scaleL, which can be ex-
tracted from the eigenvalue of the Laplacian of smallest
modulel1 , such thatL5l1

21/2:

Re5
L^supu supriu~x,t !i2& t

1/2

n
. ~13!

Here, supu stands for the upper bound over the set of solu-
tionsu in the phase space, whereas supr stands for the upper
bound over the physical domain. Note that fixing the value of
the Reynolds number is the 3D equivalent to fixing the value
of the Grashof number, which represents the forcing in 2D. It
should be underlined at this point, that as the attractor is only
defined for quasi-steady states, it is entirely determined by
the balance between forcing~given by the value of the Rey-
nolds number! and dissipation~the nature of which is fixed
by the value of the Hartmann number!.

Under this assumption that the velocity remains finite, an
upper bound for the trace of the operatorB~.,u! on any
n-dimensional subspace of the phase space is presented in
Ref. 10:

uTr~B~ .,u!!u, 1
2nl1n Re2. ~14!

Also, studying the sequence of eigenvalues of the dissipation
operator~which reduces to a Laplacian in the absence of
magnetic field! on a finite physical domain with appropriate
boundary conditions, gives access to the trace of the dissipa-
tion operator~see, for instance, Ref. 15! and provides an
upper bound for the trace of the total evolution operator, on
any n-dimensional subspace of the phase space:

Tr~~B~ .,u!1n¹2!Pn!<nl1n~ 1
2 Re22c2n2/3!. ~15!

One can be sure that whenn is such that the r.h.s. of Eq.~15!
is negative, alln-volumes shrink, hencen.d3D whered3D is
the attractor’s dimension~this is Constantin and Foias
theorem16!. It then comes from Eq.~15! that

d3D<c3 Re3. ~16!
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The bound~16! is a rather loose estimate when compared to
the Re9/4 number of degrees of freedom derived from Kol-
mogorov arguments which assumes the existence of a power-
law spectrum and uses a Reynolds number defined on the
mean-square velocity. This is probably due to the difficulty
in getting estimates for the norms of the velocity gradients,
as well as to the fact that the bound given here does not rely
on the existence of a power-law spectrum, which makes it
also valid for low values of Re, unlike the K4117 theory.

Coming back to the problem of finding an upper bound
for the attractor of an MHD turbulent flow under imposed
magnetic field, our task now consists mainly in finding an
upper bound for the trace of the operatorDHa on any
n-dimensional subspace, as the estimate for the inertial terms
~14! can then still be used to derive the minimum of the trace
of the linearized evolution operator. The study of the dissi-
pation operator, with the aim of finding such a minimum is
the purpose of Sec. III. To this end, and in order to keep the
calculations simple, we shall restrict the problem to a physi-
cal domain defined by a three-dimensional periodic box of
size 2pL.

III. MODES MINIMIZING THE DISSIPATION

A. Eigenvalue problem for the dissipation operator

We now look for the maximum trace of the dissipation
operator, or bearing in mind that this trace is negative, we
aim at finding the modes with the least dissipation. The
physical domain is a 3D-periodic box of size 2pL in a
uniform, vertical magnetic field. Normalizing distances
by L, the dissipation operator rewritesDHa5(n/L2)(¹2

1Ha2 ¹22 ]zz
2 ), where the square of the Hartmann number

Ha5LBAs/rn represents the ratio of Joule to viscous dis-
sipation at the largest scaleL. From now on,DHa will denote
the nondimensional form of the dissipation operator, normal-
ized byn/L2. It is straightforward to see that under periodic
boundary conditions, the Laplacian is invertible so thatDHa

is also invertible, as well as compact and self-adjoint.DHa

therefore has a discrete spectrum. Finding the minimum
value of the modulus of the trace ofDHa over anyn-subspace
then comes down to finding then eigenvalues ofDHa of
smallest module (lk)k51...n . In other words, we need to find
the n least dissipative modes. The rest of this subsection is
devoted to this task.

The eigenvalues problem forDHa can be written

~¹41Ha2 ]zz
2 !v5l¹2v, ~17!

¹•v50. ~18!

Under periodic boundary conditions,]/]x, ]/]y, and ]/]z
commute withDHa so that each componentvx , vy , andvz of
the solutionv5(v i) i P$x,y,z% of Eq. ~17! is of the form

v i~x!5Vi exp~k"x1f i !, ~19!

with

k5~kx ,ky ,kz!PZ3,

x5~x,y,z!P@0...2pL#3,

f iP@2p,p#.

Note thatkÞ0, asDHa is invertible. The continuity equation
implies thatk"V50 so that eventually, the dimension of the
eigenspace associated tok is 2. Wave numberskx , ky , kz are
related to the eigenvaluel through the dissipation equation,
obtained by injecting Eq.~19! in Eq. ~17!:

l~kx ,ky ,kz!52~kx
21ky

21kz
2!2Ha2

kz
2

kx
21ky

21kz
2

. ~20!

We shall now assume that the components ofk are positive
and that onek actually represents 8~resp. 4 resp. 2! different
modes ifk has no~resp. one resp. two! zero component~s!,
so that the eigenspace associated tol(kx ,ky ,kz) has a di-
mension 16~resp. 8 resp. 4!. Each eigenvaluel(kx ,ky ,kz)
can be interpreted as the dissipation rate associated with the
mode (kx ,ky ,kz). We see that because of Joule dissipation,
the total dissipation is always higher than the viscous dissi-
pation alone~obtained for Ha50!. Note also that as the
eigenmodes are trigonometric functions, the space spanned
by (kx ,ky ,kz) is the discrete Fourier space.

B. Distribution of the least dissipative modes in the
Fourier space

The n least dissipative modes are given by then lowest
values of2l(kx ,ky ,kz). In order to find them, we note that
kz°2l(kx ,ky ,kz) is always increasing. This implies that
then minimal modes have to be located ‘‘below’’@i.e., closer
to the (kx ,ky) plane than...# the manifoldl(kx ,ky ,kz)5lm

where 2lm(n) is the maximum value of2l(kx ,ky ,kz)
reached on the set ofn minimal modes. The fact that]
2l/]kz.0 also implies that allk inside the volume defined
by this curve,kx>0, ky>0 andkz>0, do belong to the set of
n minimal modes.@In the case where several triplets achieve
the valuelm , the curve f 5l2lm , may in fact enclose
more thann points, but this little error is of no consequence
for our purpose, and is anyway addressed in the numerical
method described in Sec. III C.#

This provides enough information to visualize the distri-
bution of then minimal modes: As shown in Fig. 2, the 2D
manifoldsl5lm(n) are represented in the plane (k' ,kz),
wherek'

2 5kx
21ky

2 , by a family of curvesGHa,n of equation
in polar coordinates:

GHa,n :r 5A2lm2Ha2 sin2 u. ~21!

Note thatlm(n) is the value which corresponds to thenth
mode as the modes are sorted by growing dissipation rate.
For Ha fixed,2lm(n) is thus an increasing function ofn and
determines uniquely the graphGHa,n whenn varies. One can
then already get a quantitative picture of the set ofn minimal
modes and distinguish three different kinds of sets.

~1! For Ha.1 fixed, the least dissipative modes are lo-
cated on thek' axis, and therefore do not depend onz and
correspond to a two-dimensional flow independent ofz. In-
deed, the functionk'°l(k' ,kz), wherek'5Akx

21ky
2, has

a unique absolute minimum fork'
2 5(Ha2kz)kz . The less

dissipative mode is then (k' ,kz)5(0,1), as~0,0! is not per-
mitted ~becausel50 is not an eigenvalue ofDHa). The first
3D mode to appear has to be the least dissipative mode such
that kz.0, the variations ofl(k' ,kz) imply that it is ~Ha
21,1!. If k2D is the maximum value ofk' among the 2D
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modes, then (k2D,0) has to be less dissipative than
(AHa221,1), which yieldsk2D and the associated dissipa-
tion rate:

k2D5A2 Ha21, ~22!

l~AHa21,1!52 Ha. ~23!

@If Ha,1, the second mode is 3D and is always~0,1!.#
~2! The next added modes~by order of growing dissipa-

tion rate! spread inside a cardioid which is very elongated
along thek' axis. The flow represented by such modes is
therefore highly anisotropic and features vortices stretched
along thez direction. Such a distribution of modes matches
the well known properties of 3D turbulent flows under strong
magnetic field, for which turbulent modes are located outside
the so-called Joule cone of axiskz in Fourier space.4,5 More
precisely, whenA2lm/Ha,1 ~which can only happen for
Ha.1 for which ~0,1! is not the second dissipative mode!,
the cardioid is located under the lineu5um where um

5arcsin(A2lm/Ha), so that the volume defined by such a
cardioid elongated along thek' axis matches well a trunca-
tion ~becausen is finite! of the space outside the Joule cone.

~3! Eventually, if more modes need to be added in order
to reach the value ofn, a value oflm is reached such that
A2lm/Ha.1, so that 0,u<p/2. In other words, the car-
dioid looks more like a quarter of an ellipsoid centered
around the origin, the shape of which tends toward a quarter
circle as the number of modes increases and the Joule cone
degenerates into thekz axis. Such a picture describes a nearly
isotropic flow, only weakly affected by electromagnetic ef-
fects. Note that unlike the 2D–3D transition, which takes
place for one specific value ofn at Ha fixed, the transition
between 3D turbulence with a joule cone and quasi-isotropic

3D turbulence is smooth. Indeed, for Ha2,2lm(n)
,2 Ha2 the GHa,n graphs look like some hybrid between a
cardioid and an ellipse~see Fig. 2!.

In the whole eigenvalue problem, we have assumed that
n was fixed. However, for a given values of Ha and Re,n
corresponds to the number of modes for which the minimal
dissipation compensates the expansion of the initial
n-volume in the phase space due to inertia. At fixed Ha, we
can see that for low inertia~i.e., low n! the flow is two
dimensional, whereas for strong inertia, the flow can be close
to three-dimensional isotropic turbulence. Physically, this
suggests that the flow corresponding to the estimate of the
attractor dimension we are looking for results from a random
production of modes by inertia@as the estimate~14! depends
on the number of modes but not on their distribution in the
phase space#, and a selection of the least dissipative modes
by the dissipative terms. Of course, this assumes that the
estimate~14! for the expansion rate due to inertial effects is
realistic, at least with regard to its dependency onn. At this
point, it is important to recall that the minimal modes of the
dissipation operator found here are not solution of the
Navier–Stokes equations. However, they turn out to exhibit a
physical behavior which matches qualitatively what is heu-
ristically known from turbulent MHD flows. This suggests
that expansions of solutions of the Navier–Stokes equations
over the base of minimal eigenmodes of the dissipation
might be suitable to calculate turbulent flows, all the more as
these modes already satisfy the boundary conditions.

We shall now compute recursively the set ofn least dis-
sipative modes in the discrete space of Fourier coefficients
and find the related upper bound for the attractor dimension.
Note that as we actually construct ann-dimensional set of
modes which achieves the maximum magnitude of the trace
of DHaPn , the upper bound for the modulus of this trace
actually is the maximum~keeping in mind that the trace of
the dissipation is negative!.

C. Trace of the dissipation operator and attractor
dimension

We shall now calculate the trace ofDHaPn associated
with the least dissipative modes as a function ofn and Ha,
then using Eq.~14!, we express the estimate for the upper
bound of the attractor dimension as a function of Ha and Re
by searching the value ofn which annihilates the trace of the
evolution operator, as explained in Sec. II A. The trace of
DHaPn is calculated nearly exactly using a computer~the
only error is due to truncation after the 17th digits of real
numbers which occurs in our program! by adding up the
dissipation rates along the sequence of modes sorted by in-
creasing values of2l. The method is described in the
Appendix.

The graphs of Tr(DHaPn) and the estimate for the attrac-
tor dimensiondM(Re,Ha) are reported, respectively, in Figs.
3 and 4. For now, let us put the emphasis on the curves in
Fig. 4 which show the variations of the attractor dimension
estimate with regard to the variable Ha, for different fixed
values of the Reynolds number. Apart for very low values of
the Reynolds number~of the order of unity, which does not

FIG. 2. Iso-l curves in the plane (k' ,kz). One can see the three major types
of mode distribution: the 2D state corresponds to a set of modes located on
the k' axis, the strongly anisotropic 3D state exhibits the Joule cone-like
shape~the border of the Joule cone has been plotted in the case where all the
modes are inside the curve designated by the vertical arrow! and the quasi-
isotropic state is reached when the modes are enclosed inside curves located
the furthest away from the origin. Axis units are arbitrary. The semicircle of
center~0,5,0!, for which 2lm5Ha2 is also the limit between modes de-
scribed in Sec. III B~2! and modes described in Sec. III B~3!.
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relate to the usual picture of turbulent flows!, each curve
clearly exhibits three distinct regions corresponding to three
different ranges of Hartmann numbers. Let us follow a given
curve from Ha50 to high values of Ha. Physically, this
would correspond to looking at a turbulent flow and increas-
ing the applied magnetic field in a quasi-static way.

~1! We first encounter a region where the attractor di-
mension is nearly constant when the Hartmann number in-
creases. This region describes a flow under weak magnetic
field, for which the dissipation is essentially due to viscosity,
and therefore does not depend on the magnetic field. The
flow is in a state of 3D quasi-isotropic turbulence and the
modes are spread within a nearly circular region~of radius
k'm

;kzm
) of the (k' ,kz) plane.

~2! For values of Ha above one, the attractor dimension
decreases approximately as Ha21. Indeed, for Ha;1 viscous
and Joule dissipation are of the same order of magnitude so

that the overall dissipation is stronger than in the hydrody-
namic case. Therefore as Re is fixed, fewer modes are
needed to reach a dissipation which balances the expansion
rate n Re due to inertia. Equivalently, turbulence becomes
more and more anisotropic as vortices are stretched in the
direction of the magnetic field, so if one interpretsdM as the
number of vortices in the domain, as in Ref. 10, fewer of
these long vortices are needed to fill the 2pL32pL32pL
box, so that the number of degrees of freedom decreases.
This second case corresponds to a set of modes defined by
the elongated cardioid of Sec. III B.

Eventually, for even higher values of the magnetic field,
one reaches a region where again, the estimate found for the
attractor dimension does not depend on Ha. One can see
from Fig. 4 that this happens when the flow undergoes a
transition between 3D and 2D state, or in other words, when
even the smallest vortex reaches the size of the box in thez
direction (kzm

,1). The flow then becomes two-dimensional
and looks like ‘‘rows’’ of columnar vortices~modes are on
the k' axis according to the description of Sec. III B!. As
there is no more velocity variation along the magnetic field
lines, no current loops are present in the flow so that the
Lorentz force falls to 0@looking at Eq.~8!, ]zz

2 u50 implies
¹3~jÃB!50#. The attractor dimension does not depend on
Ha anymore but should match estimates found for two-
dimensional turbulence. It does not turn out to be the case
but we shall leave this point for more thorough discussion in
Sec. IV.

Up to now, we have found a set of modes which corre-
sponds to the actual minimum dissipation and which, under
the assumption of finite dissipation~12!, returns an upper
bound for the attractor dimension of turbulent MHD flows,
without any restrictions on the values of Ha and Re. What is
more striking is that although these modes are not solution of
the Navier–Stokes equations themselves, their distribution in
the Fourier space seems to match physical observations for
such turbulent flows. To find out to what extent this is the
case, we shall now derive some analytical approximations of

FIG. 3. Trace of the dissipation operator as a function ofn for fixed Ha
~top!. Each iso-n curve exhibits successivelyn2 ~2D modes!, n3/2 ~3D an-
isotropic set of modes! and n5/3 slopes~quasi-isotropic set of modes!. The
higher the value of Ha, the later the transitions occur. The curves corre-
sponding to the five lowest values of Ha are not distinguishable. Trace of the
dissipation operator as a function of Ha for fixedn ~bottom!. The three
different kinds of sets of modes appear~quasi-isotropic, for low Ha, 2D for
high Ha!.

FIG. 4. Attractor dimension as a function of Ha for fixed Re.
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the ‘‘exact’’ results found in this section and compare them
to broadly accepted results derived from heuristic arguments.

IV. ASYMPTOTIC RESULTS AND COMPARISON WITH
HEURISTICS

A. Integral formulation of the eigenvalue problem

We go back to the point where the set ofn less dissipa-
tive modes is calculated, at the end of Sec. III B, and we aim
at finding some analytical approximations for the results ob-
tained numerically in Sec. III C, should it be at the price of
working only in asymptotic regimes of the flow parameters.
At this stage, the problem of finding the set ofn eigenmodes
which minimize the dissipation can be mathematically for-
mulated as follows: for givenn and Ha, we look for the set
of n points (k i) i 51...n in N32(0,0,0) which achieves the
minimum of the functional:

Tr~DHaP8n!52 (
i P$1...n%

2l~k i !. ~24!

The study of this set of modes in Sec. III has shown that the
(k i) i 51...n are located inside the volumeVlm

located ‘‘under’’
the manifold of equationl(kx ,ky ,kz)5lm , which defines it
uniquely~see note at the beginning of Sec. III B!. The prob-
lem then comes down to expressinglm as a function ofn
and Ha. To this end, we notice that the dimension of the
attractor associated with a turbulent flow is an enormous
number, for which the sums@such as the one in Eq.~24!# can
be safely replaced by integrals over the continuous Fourier
space. Under this approximation, the fact the modes are on a
discrete set implies that each of them fills a unit-volume in
the Fourier space, so that the volume contained under the
manifold l(x,y,z)5lm should ben/8:

16E
Vlm

dkx dky dkz5n. ~25!

The trace ofDHaPn similarly expresses as

Tr~DHaPn!516E
Vlm

l~kx ,ky ,kz!dkx dky dkz . ~26!

Equations ~25! and ~26! allow to derive both lm and
Tr(DHaPn) as functions ofn and Ha only. This can be done
analytically all the way through for each of the types of
minimal set ofn modes found in Sec. III A. The next two
sections are devoted to this task, as well as to comparing the
obtained results with heuristic considerations on MHD
turbulence.

B. Anisotropic turbulence under strong magnetic
field

1. Analytical estimates

Let us first tackle the case where the modes are located
within an elongated cardioid, i.e., Ha,2lm,Ha2, which
corresponds to a 3D anisotropic flow with dominant electro-
magnetic effects~see Sec. III C!. After integration in cylin-
drical coordinates for 0,u,um , Eqs.~25! and~26!, respec-
tively, take the form:

n

Ha3
5

p2

2
sin4 um , ~27!

Tr~DHaPn!

Ha5
52

p2

3
sin6 um . ~28!

Let us recall thatum is defined by sinum5A2lm/Ha, hence
Eq. ~28! allows us to expresslm as a function ofn:

lm5
A2

p
Ha1/2n1/2, ~29!

and Eq.~28! allows then to express the trace of the dissipa-
tion in terms ofn:

Tr~DHaPn!5
2 A2

3p
n3/2Ha1/2, ~30!

sinum5A2

p
n1/4Ha23/45A2lm

Ha2
. ~31!

The value ofn for which the trace of the total evolution
operator is zero@i.e., Tr((DHa1B(.,u)Pn))50] is an upper
bound for the attractor dimension, so using Eq.~14!:

dM<
9p2

32

Re4

Ha
. ~32!

The geometrical shape of the cardioid which defines the set
of n minimal modes yield the maximum values reached by
k' andkz , respectively:

k'm
5A2lm5

21/4

p1/2
n1/4Ha1/4, ~33!

kzm
52

lm

2 Ha
5

1

pA2
n1/2Ha21/2. ~34!

The bounds for the size of the small scales are obtained by
replacingn by dM , Eqs.~33! and ~34!, respectively:

k'm
<

A3

2
Re, ~35!

kzm
<

3

8

Re2

Ha
. ~36!

Graphs of relations~32!, ~35!, and~36! are plotted on Figs. 4
and 5, respectively, along with the numerical results of Sec.
III C and bring confirmation that the discrete Fourier space
can be accurately approached by a continuum.

2. Heuristics on MHD turbulence of Kolmogorov type
under strong field

Now, it is worth underlining again that these results are
exact, and come exclusively from the mathematical proper-
ties of the Navier–Stokes equations, without the involvement
of any physical approximation. There is therefore consider-
able interest in comparing them with orders of magnitude
obtained from heuristic considerations. Let us recall how the
smallest scales can be obtained in a more physical manner:
in a 3D periodic flow where Joule dissipation is stronger than
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viscosity except at small scales~Ha@1!, it is usual to con-
sider that a vortex in the inertial range~i.e., not destroyed by
viscosity! results from a balance between inertial and Lor-
entz forces, which implies

kz

k'

;S sB2L

rk'Uv
D 21/2

. ~37!

Moreover, one usually assumes that anisotropy remains the
same at all scales,4 over the inertial range. Under this as-
sumption, Eq. ~37! implies Uv(k')5U0k'

21, where U0

stands for a typical large scale velocity. This is usually ex-
pressed in terms of the energy spectrum as

E~k'!;k'
21Uv

2~k'!;U0
2k'

23 ~38!

and allows to rewrite Eq.~37! as

kz

k'

;
Re0

1/2

Ha
5N21/2. ~39!

Re0 is a Reynolds number scaled onU0 and L, the ratio
Ha2/Re05N is the corresponding interaction parameter.
Eventually, the small scales are heuristically defined as the
smallest possible structures of the inertial range which are
not destroyed by viscosity, which means that they result from
a balance between inertia and viscosity. This yields

kzm

k'm

2
;Ha21. ~40!

Now combining Eqs.~39! and ~40! yields

k'max
;Re1/2, ~41!

kzmax
;

Re

Ha
, ~42!

from which the number of degrees of freedom of the flow
can be estimated by counting the number of vortices of size
L/k'3L/k'3L/kz in a L3L3L box:

Nf;k'
2 kz;

Re2

Ha
. ~43!

When comparingNf to dM and the heuristic small scales to
Eqs. ~35! and ~36!, we see that our mathematical estimates
are loose when compared to heuristics because they exhibit a
higher exponent of the Reynolds number than the heuristic
relations. However, exponents of the Hartmann number
match, which suggests that the mathematical study actually
captures well the electromagnetic effects in turbulence. This
is confirmed by the fact that the sizes of the smallest scales
for a given number of modesn are exactly matched by heu-
ristic results presented in this section@Eqs.~33! and~34! can
indeed be recovered from Eqs.~40! and ~43!, consideringn
;Nf vortices in a box#. This, together with the fact that our
estimate for the trace of the dissipation corresponds to an
achieved extremum suggests that the latter is optimal. Be-
sides, if one considersdM;Nf;Re2/Ha as the order of mag-
nitude expected for the attractor dimension, then one should
expect the trace of the operator defined by inertial terms to
be of the order ofuTr(B(.,u))u;n Re for dM;Re2/Ha to be

solution of Tr((DHa1B(.,u))Pn)50. This suggests that the
exponent ofn is optimal in Eq.~14!, whereas the exponent of
Re is somewhat too high to match heuristic results valid for
MHD turbulence of Kolmogorov type~i.e., with an estab-
lished turbulent spectrum!. Note thatdM;Re2/Ha and Eq.
~31! yield sinum;ARe/Ha which matches the prediction of
Ref. 5 for the Joule cone angle, whereas the rigorous esti-
mate~32! again yields an overestimated exponent for Re but
the right one for Ha.

C. 3D turbulence under weak magnetic field „Ha™1…
1. Analytical estimates

Let us now investigate the case where2lm /Ha2.1
~and um5p/2) which relates to weakly anisotropic turbu-
lence, as mentioned in Sec. III. After integration in cylindri-
cal coordinates, for 0,u,p/2, Eqs.~25! and ~26! rewrite,
respectively:

n

Ha3
5

p

6 S 5lAl 2122Al 2113l 2 arctanS 1

Al 21
D D ,

~44!

Tr~DHaPn!

p Ha5
5

14

15
Al 212

4

45
lAl 212

8

45
Al 21

1
2

3
l 3 arctan

1

Al 21
, ~45!

with l 52lm /Ha2. It is here more difficult to the extract
analytical expression for Tr(DHaPn) as a function ofn and
Ha. However, equations can be expanded in powers ofl in
the limit l→`. This corresponds to a flow where inertia is
large compared to electromagnetic effects. Keeping only the
terms in l 3/2 and l 1/2 in the expansion of Eq.~44!, l can be
expressed as a function ofn/Ha3. Assuming this latter pa-
rameter is large as well and keeping the leading two terms
yields

2lm.
1

4

2

p
n2/31

1

3
Ha2. ~46!

Also, keeping the two leading powers ofl in the expansion
of Eq. ~45! and using Eq.~46! yields

Tr~DHaPn!.
3

10S 6

p D 2/3

n5/31
2

3
Ha2 n. ~47!

As in the case of strong fields, the upper bound for the at-
tractor dimension is obtained by looking for the value ofn
which annihilates the trace of the evolution operator:

dM<
153/2

162
A5 Re3S 12

4

3

Ha2

Re2D 3/2

. ~48!

In a quasi-isotropic flow the set of minimal modes spread in
an ellipsoidlike volume of the phase space so that the maxi-
mum values ofk' andkz are obtained foru50 andu5p/2,
respectively:

k'm
5A2lm, ~49!

kzm
5A2lm2Ha2. ~50!
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The bounds for the size of the small scales are obtained by
replacingn by dM in Eq. ~46! and using Eqs.~49! and ~50!,
respectively:

k'm
5

A5

2335/6
ReS 12

4

3

Ha2

Re2 S 12
32/3

5 D D 1/2

, ~51!

kzm
5

A5

2335/6
ReS 12

4

3

Ha2

Re2 S 112
32/3

5 D D 1/2

. ~52!

These final results on the dimension of the attractor and as-
sociated small scales match well the properties of the flow
put in light by the numerical results of Sec. III C: in the limit
of low Ha, bothdM , k' , andkzm

are weakly dependent on
electromagnetic effects. The flow is indeed almost isotropic
apart from a slight vortex elongation in thez direction. Also,
the upper bound for the attractor dimension in classical 3D
turbulence~16! is recovered for Ha50. Note that when Ha is
progressively increased from 0, the small scales initially
grow both in the direction orthogonal to the field and in the
direction of the field. However, the growth is more important
in the direction of the field which results in an early anisot-
ropy. It can be seen from Fig. 5 that when Ha is increased up
to a value where Lorentz dissipation is more important than
viscous dissipation, the length scale in the direction orthogo-
nal to the field saturates at the value found in Eq.~35!
whereas the length scale in the direction of the field contin-
ues to grow until it reaches the typical macroscopic length
scale.

2. Heuristic considerations in quasi-isotropic MHD
turbulence of Kolmogorov type

When eletromagnetic effects are small compared to in-
ertia, the turbulence is almost 3D isotropic, so one expects
the size of the small scales to be close to the valuekm

21

;Re23/4 obtained from the K41 theory.17 Indeed, Ref. 4 pro-

poses some heuristic estimates which suggest that the size of
the small scales if of this order of magnitude, and tends to
slightly increase under the effects of small eletromagnetic
effects. To this regard, the mathematical estimates~48!, ~51!,
and~52! again exhibit higher exponents of Re than heuristic
results which suggests inertial effects are overestimated. In-
deed, as in the case of strong magnetic fields, our estimate
for the trace of the dissipation is optimal, so if one is to trust
heuristic values of the small scales, then a better estimate for
the trace of the inertial terms is expected to be of the order of
n Re3/2, which is smaller than Eq.~14!. As for strong fields,
the exponent ofn in Eq. ~14! seems to be optimal, whereas
the exponent of Re is overestimated. It is however remark-
able that the exponent expected from heuristic considerations
for a weak field is different than the one which would be
expected for strong fields. This suggests finding a better es-
timate than Eq.~14! for the trace of the inertial terms would
require to account for the mode distribution in the Fourier
space.

D. The 2D case

For two-dimensional flows~i.e., lm<2 Ha), the motion
equations reduce to the 2D Navier–Stokes equations without
magnetic field, as the Lorentz force falls to zero. The dissi-
pation operator is a simpler two-dimensional Laplacian op-
erator, for which the trace of anyn dimensional subset of the
phase space is bounded by~see, for instance, Ref. 15, or
using the approximation of a continuous Fourier space as all
along this section!

Tr~DHaPn!<
n2

2p
, ~53!

which, together with Eq.~14! leads to an upper bound for the
attractor dimension:

dM<
p

8
Re2. ~54!

The estimate~11! presented in Ref. 15 fordM is based on an
accurate estimate for the 2D inertial terms of the order of
n1/2G(11 ln n)3/4. Although it is difficult to compare the
Grashof numberG5i fi2 /v ~where i fi2 stands for theL2

norm of the dimensional forcingf! to the Reynolds number,
one can be sure that the estimate~54! is rather bad in the 2D
case, as it features a much higher exponent ofn than the
estimate from Ref. 7. This again supports the idea that a
sharp estimate for the inertial terms must account for the
modes distribution@the estimate by Ref. 7 is derived from
the 2D assumption, whereas Eq.~14! is a generic 3D result#.
However, as both Eq.~11! and our estimate for the transition
between 2D and 3D state~22! are consistent with heuristics
one can expect them to yield a realistic transition curve in the
~G,Ha! plane. The latter is obtained by noticing that the iso
2l(k' ,kz) curves forkz50 are circles centered on the ori-
gin so that under the approximation of a continuous Fourier
space, the number of 2D modes isn2D52pk2D

2 ~the factor 2
is due to the fact that eigenspaces are of dimension 2!. Set-
ting n2D to the value ofd2D given by Eq.~11! and using Eq.
~22! yields the transition curve:

FIG. 5. Size of the smallest scales in the direction of the magnetic field and
perpendicular to the magnetic field. Dotted: Ha-1 slope, dashed:k2D ana-
lytical, dash-dot: Joule cone transition~analytical!, dashed~quasi-horizontal
lines!: k'max

~numeric! solid: kzmax
~numeric!.
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~A2 Ha21!25
c1

2p
G2/3~11 ln G!1/3. ~55!

The fact that the transition is expressed using Ha andG
makes it all the more applicable to experimental configura-
tions as it only depends on the control parameters, unlike the
Reynolds number which involves a velocity which can be
hard to define and sometimes to measure.

V. CONCLUDING REMARKS

We have found a rigorous upper bound for the attractor
dimension in low-RmMHD turbulence, which is valid for all
values of Ha and Re, and relies solely on the Navier–Stokes
equations. This bound is obtained for the set of modes which
achieves the minimum of the total dissipation~viscous and
Joule!. This particular set of modes exhibits most of the well
known features of MHD turbulence: quasi-isotropic turbu-
lence close to hydrodynamic turbulence for weak electro-
magnetic force, strongly anisotropic state~modes inside the
Joule cone in the Fourier space! when Joule dissipation is of
the order of viscous dissipation, and two-dimensional state
when the Joule dissipation is dominant. The related estimates
for the small scales and Joule cone angle show the same
dependence on Ha as their heuristic counterpart. However,
because the estimate we use for the inertial terms is not op-
timal, the exponent of Re in the final attractor dimension is
higher than predicted by heuristic considerations. It is note-
worthy that this discrepancy to the heuristics is not the same
for the three different kinds of turbulence pointed out above,
which are characterized by three very different modes distri-
butions ~3D isotropic, 3D anisotropic with Joule cone, and
2D isotropic!. This suggests that a better estimate for the
inertial terms can be obtained by accounting for the mode
distribution in the Fourier space. However, the result found
for transition ~55! between 2D to 3D turbulence does not
suffer form this limitation on the estimation of the inertial
terms as it is derived from estimates for inertia and dissipa-
tion which both match heuristic results. This simple analyti-
cal result now needs testing against experiment.

The other possible improvement to the results found here
has to do with the periodical conditions in space. Indeed, in
laboratory experiments, as well as industrial setups, the 2D
state is achieved when the flow is confined between two
walls perpendicular to a strong magnetic field, so that the
dissipation along these walls~in the Hartman boundary
layer! is often the main factor which determines the whole
flow.18 This makes the 2D state obtained under 3D periodical
conditions rather unphysical. A way to improve this result
would be to carry out the same study as presented here with
walls in z50 and z51. Unfortunately, this will be at the
expense of a more complex calculation for which no analyti-
cal estimate can be derived.

Eventually, the fact that the least dissipative modes al-
ready incorporate many properties of MHD turbulence en-
courages us to investigate their ability to reproduce the en-
ergetic properties of MHD turbulence such as thek23

spectrum observed in the 3D anisotropic regime.4 Also, it
may be possible to reproduce the main properties of the flow

using a reduced set of these modes in a numerical model.
Indeed, because of the strong anisotropy which characterizes
low-RmMHD turbulence under strong magnetic field, it is in
principle possible to fully describe this class of flow using
Re2/Ha taken from the set of least dissipative modes. This
represents a much smaller set of modes than the Re2 modes
obtained by taking all the Fourier modes of wave number
smaller thank'm

.
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APPENDIX: NUMERICAL CALCULATION OF THE
LEAST DISSIPATIVE MODES

The sequence ofn eigenmodes of the dissipation opera-
tor is calculated recursively, in growing order of the eigen-
values’ modulus~which represents the dissipation rate of the
associated eigenmodes!. We start from the less dissipative
mode~1,0! which corresponds to the eigenvalue of smallest
module l1521 ~or smallest dissipation rate!. As
(k' ,kz)°2l(k' ,kz) has a unique absolute minimum, at
~0,1! the value of2l(k' ,kz) increases along any direction
originating from this minimum. The following less dissipa-
tive values~along the sequence of modes sorted by growing
dissipation rate! are to be sought in the closest possible vi-
cinity of this minimum~bearing in mind that bothk' andkz

span a discrete set of positive values!. The secondk is then
found by looking for the one which yields the smallest value
of 2l(k' ,kz) among the points ‘‘surrounding’’ the mini-
mum. The process is iterated, replacing the point selected
from the previous step in the surrounding curve by the set of
points surrounding it~and which are not already in the set of
minimal modes! as shown on Fig. 6. Note that this algorithm
requires knowledge of the sequence of values ofk' . The
latter is calculated using the same process, applied to the
function (kx ,ky)°kx

21ky
2.

FIG. 6. Recursive process to find then11st modes knowing the firstn ones
~located below the solid line, excluding the points on the line!. The point
kn11 which yields the minimal dissipation outside of the set made up with
the firstn modes is found among the points of the solid line. Once it is found
by looking at all the values of2l for these points, then12nd mode is
searched among the points of the dashed line, obtained by modifying the
solid line so that it ‘‘surrounds’’kn11 . Two distinct examples are given:
kn115k1 or kn115k2 .
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It is straightforward to extract the value ofn which cor-
responds to the first 3D minimal mode: this gives the 2D–3D
transition curve in the (n,Ha) plane. In order to save some
calculation time, the attractor’s dimension is actually worked
out at every added mode: indeed, as the estimate is obtained
by writing that the expansion of then-volume in the phase
space is the same as the contraction induced by the dissipa-
tion, once the maximum trace of the dissipation operator is
obtained for a givenn, we calculate the value of Re for
which n is an upper bound for the attractor dimension by

Re5A2Tr~DHaPn!

n
. ~A1!

The process is iterated using a short program written in the
MATLAB environment.
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