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Small scales and anisotropy in low  Rm magnetohydrodynamic turbulence

A. Pothérat and T. Alboussiere
Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ,
United Kingdom

(Received 14 February 2003; accepted 24 June 2003; published 5 September 2003

In this paper, we derive estimates for size of the small scales and the attractor dimensioiRim low
magnetohydrodynamic turbulence by deriving a rigorous upper bound of the dimension of the
attractor representing this flow. To this end, we find an upper bound for the maximum growth rate
of anyn-dimensional volume of the phase space by the evolution operator associated to the Navier—
Stokes equations. As explained in Constaetiral. [J. Fluid Mech.150, 427 (1985], the value of

n for which this maximum is zero is an upper bound for the attractor dimension. In order to use this
property in the more precise case of a three-dimensional periodical domain, we are led to calculate
the distribution ofn modes which minimizes the tot@iscous and Jou)edissipation. This set of
modes turns out to exhibit most of the well known properties of magnetohydrodynamic turbulence,
previously obtained by heuristic considerations such as the existence of the Joule cone under strong
magnetic field. The sought estimates for the small scales and attractor dimension are then obtained
under no physical assumption as functions of the Hartmann and the Reynolds numbers and match
the Hartmann number dependency of heuristic results. A necessary condition for the flow to be
tridimensional and anisotropi@s opposed to purely two-dimensiona also built. © 2003
American Institute of Physics[DOI: 10.1063/1.1601222

I. INTRODUCTION MHD turbulence(this does not extend to moderate and high
RmMHD turbulence: its faster decay, its anisotropy, and its

power density spectrum. Although all those quantities are
: ) ) . known through experiments and relate well to heuristic con-
is not disturbed by the flols of great interest for laboratory siderations, none of them is clearly linked to the mathemati-

experiments as well as for industrial applications includingCal properties of the Navier—Stokes equations. This point is

metallurgy and the study of liquid metal blankets used in. . .
. : . . _important for two reasons: first, results derived from math-
nuclear fusion reactors. It essentially differs from classical

hydrodynamic turbulence by the additional Joule dissipatiorfhrgfl;(;&:; pri(\)/zeirr?jiz 32;&2 gjuagftn; ir:ur\i/gtri)é ;?bttjrfqteﬁ:sd
arising from the electric currents present in the ficiThis 9 P PP 9 '

anisotropic dissipation competes with the usual viscous dis§hou|d they match. Second, they provide some deep insights

sipation and when it is dominant, the flow exhibits very char-INtO the behavior of thke sol|ut|c|)n§, which is nelcessf?ry when
acteristic features: first, the turbulent modes are confined ouf"® want§ to undertake ca cu a_1t|ons_on turbulent OWS. We
side the so-called Joule cone in the Fourier sfatexis the ~im at doing a step towards filling this gap by studying an-
direction of the applied magnetic field, and the angle ofisotropy and small scales in a fully established turbulent

which is governed by the ratio of the Lorentz to the inertial 10W, by means of the theory of dynamical systems. This
forces. Also the additional dissipation leads to a faster en-atter tool is indeed very suitable to understand turbulence as

ergy decay proportional tot~*2 for freely decaying SOmMe of its objects are in direct relation with characteristic

turbulenc@ when it is much greater than viscous dissipation.Properties of turbulence such as the size of the smallest
Homogeneous 3D MHD turbulence also exhibitska® scales which is expressed by the idea that the solutions of
power density spectrum, different from the uskaP’® law. ~ Navier—Stokes are described by a finfbait possibly large
This spectrum has been observed experimentally and heurigumber of determining modes. This number is also of the
tic considerations suggest it results from a local balance besame order of magnitude as the dimension of the attractor of
tween inertia and Lorentz forcé<One of the most striking the system for which estimates can be found. Some impor-
features of lowRm MHD turbulence is its anisotropy due to tant questions then aris€t) how many modes are required
the fact that vortices stretched along the magnetic field lineto describe the flow?2) which modes? and3) what infor-
escape ohmic dissipatiér?, and which results in the exis- mation is lost if one attempts a calculation using a smaller
tence of the Joule cone in Fourier space where the modes angmber of modes? The purpose of this paper is to suggest
strongly dissipated. The flow may then become two-some ideas fofl) and(2) in the case of MHD turbulence. A
dimensional when the modes with a nonzero wave numbeway to answei(1) is to find an upper bound for the dimen-
component in the magnetic field direction are all killed by sion of the attractor of the dynamical system formed by the
Joule dissipation. anisotropic Navier—Stokes equatitre., with Lorentz forcg

To summarize, three points characterize well I&m  and associated boundary conditions. This work has already

Magnetohydrodynami€MHD) turbulence at low mag-
netic Reynolds numbdrmy(i.e., for which the magnetic field
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been carried out without magnetic field by Ref. 7 who found

a close bound for the attractor dimension of the 2D problem

under the formg?3(1+InG)'® (G is the Grashof number

based on a measure of the applied forginghich fits well :

with the typical size of the small scales given by Ref. 8 from € 2=0)

heuristic considerations. A similar result has been found in

3D by Ref. 9 and summarized in Ref. 10 but the finaP Re FIC- 1. Evolution of the'volume associated with apase c_>f orthogonal eigen-
. . . vectors of an operator in the phase space. The dimemsisrset to 2.

bound found for the attractor dimensigRe is the Reynolds

numbeyj is not as sharp as the previous bound, when com-

pared to the R¥* estimate by the Kolmogorov theory. How-

ever, some estimates for the inertial terms derived from thi®ecome “flat,” i.e., of volume 0, in order to fit in a plane at

reference will be used to tackle the MHD problem. Note thatinfinite time). Therefore, the lowest value affor which the

a thorough study of the general MHD equatiom., the volume of the subspace generated by any seh afistur-

system formed with the Navier—Stokes equations and thbances annihilates at infinite time is an upper bound for the

induction equations, which covers situations where velocityattractor dimension. This result is expressed rigorously and

and magnetic field are fully coupleés presented in Ref. 11. extended to noninteger values ofby the theorem of Con-

In particular, it is shown that any invariant set for this systemstantin and Foia&®

(hence any attractphas a finite Hausdorf dimension. Note In order to be able to use this theorem, it suffices to find

also that MHD turbulence where the magnetic field can flucthe lowest value oh which corresponds to a zero value of

tuate has been widely studied and even if the physicalhe maximum expansion rate among all possible

mechanisms involved are very different to those in the case-dimensional infinitesimal disturbances. The evolution of

we study here, a similar anisotropy is observed when a meagach disturbance is expressed by linearization of (Egin

e_l(t)

magnetic field is impose(see, for instance, Ref. 12 the vicinity of the attractor:
The layout of the paper is as follows: we first review the
tools of system dynamics used thereaftar., the method for — 8X=ASX+O(5x?). 2)

calculating the attractor dimensipand show how they re-

late to our problem. It turns out that calculating the upperThen the expansion rate of thevolume V,=|dx;X...
bound for the attractor dimension is related to the problem of< §x,| is the sum of the expansion rates in all the eigendi-
finding the least dissipative modes. Section Il is devoted tqections of A within the n-dimensional subspace:

finding those modes and their properties as well as the upper

bounolg itself: those modes are ﬁ‘)ou?]d to correspond to pr(?ngi- V(1) =Vi(t=0)exp(t(TAPn])o), @)
nent modes of actual MHD-turbulent flows. In Sec. IV, ana-where P, stands for the projector onto the dimensional
lytical estimates are given and a comparison is drawn wittsubspace spanned byx(t))x=1 n, and( ), stands for the

the usual heuristic arguments. longest possible time-average. One can get an idea of how
this result comes up by considering the volume spanned by a

Il. NAVIER-STOKES EQUATIONS AND DYNAMICAL base of orthogonal eigenvectorsf(e)k.(i1.n; . in the case

SYSTEMS where A is self-adjoint and time-independent. Ky 1..n

is the related set of eigenvalues, then the length of the vol-

A. Method for calculating an upper bound for the ume element along the directiap evolves agsee Fig. 1

attractor dimension of a dynamical system

We shall now give some guidelines about the method ~ (1= &(t=0)expAy). )
which we use to derive such an upper bound. A dynamicaAs the (g) are orthogonal, the volume is simply the product
system with vector valuated unknownis defined by an of the lengths in all directions, so that it evolves as
evolution equation of the form

dx Vo=|lei(t=0)][lex(t=0)].. .||en(t=0)||eXp( > )\kt)
k=1..n
aZF(X) (1)

=V,(t=0)exp(Tr At). (5)
together with boundary conditions on the considered domain o ) )
spanned by the variableor phase space. By definition of a _ Finding the maximum expansion rate over every pos-
global attractor for the systefiwhich is a set located in the S|blgn-d|men5|onal subspace th'en comes down.to finding the
phase spage a solution of Eq.(1) always ends up being Mmaximum of _the trace of the_ Ilngarlzed evolution operator
arbitrary close to it at infinite time. Therefore, if we consider ©Ver all possible sets afi of its eigenmodes. Let us now
any set ofn infinitesimal independent departures from a so-2PPly these ideas to the problem of MHD turbulence.
lution located in the attractoréi, )y -1 n, the subset of the _ _ .
phase space generated by these disturbances will eventuaﬁgThe Navier—Stokes equations as a dynamical
end up within the attractor in the limit—oc. This implies system
that if the initial dimensiom of this subset is greater than the Let us consider an incompressible electrically conduct-
attractor dimension, ite-dimensional volume tends to zero ing fluid in a finite domain, subject to a permanent, uniform
at infinite time (as, for instance, a 3D cube would have to magnetic fieldB aligned with thez-axis. If o is the electrical
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conductivity,p is the densityp is the kinematic viscosity, the The case without magnetic field has been investigated in
motion equations for velocity, pressurep electric current  two and three dimensions. In 2D, Ref. 15 found an upper
densityj can be written bound for the attractor dimension which matches well the
1 1 results obtained by Kolmogorov-like arguments:
— 2 H
(ﬂt+U-V)U+pr—V(V u+ HJXB +f, (6) dzDsClg2/3(1+|ng)1/3’ (11)
V.u=0 (7 where G is the Grashof number expressing the ratio of the

forcing to the viscous friction and;, as well as every;
wheref represents some forcing independent of the velocityintroduced throughout the rest of the paper, are constants of
field. The set of Maxwell equations as well as electric currenbrder 1. To this day, no rigorous estimate for the attractor
conservation and the Ohm’s law are normally required tadimension of the 3D problem precisely matches Kolmogor-
close the system. However, we assume here that the magv’s prediction for the number of degrees of freedom. One of
netic field is not disturbed by the flow. In other words, thethe main reasons is that unlike in 2D, it has not yet been
magnetic diffusion is supposed to take place instantaneoushyroved that the velocity gradients remain finite at finite time,
at the time scale of the flowlow magnetic Reynolds num-  which lets the door open to possible singularities. However,
ber” approximation. In this case, Ref. 14 has shown that theone can work under the assumption that the flow remains

Lorentz force decomposes as the sum of a magnetic pressutegular at finite time and define the maximum local energy
term and a rotational term: dissipation rate as

_ v oB? e=v{supsug|Vu(r,t)|?);. (12
jXB:;me'i‘ FV 2&§ZU. (8) T !

This reveals the nature of the electromagnetic effects on th(é)ne c_;an also define a Reynolds number Re using a suitable

flow: the first term accounts for the electromagnetic pressur(‘éeloc'ty scale and a typical large scaﬂewhlch can be ex-

(of little effect in incompressible flows The second term tracted from the elgenva_ILig of the Laplacian of smallest

can be interpreted as a momentum diffusion along the magnduleXy, such that =x; ==

netic field Iin_e§ which tend.s to homogenize_y components L(sup, sup|u(x,t)||?)¥2

of the velocity alongz. This stretches vortices along tlze Re= . (13

direction. The actual turbulent flow therefore exhibits some v

anisotropy which results from the competition between thisHere, sup stands for the upper bound over the set of solu-

momentum diffusion and the tendency from inertial terms totionsu in the phase space, whereas sstands for the upper

favor return to isotropy. Note that if the electromagneticbound over the physical domain. Note that fixing the value of

effects are dominant, the stretched vortices can reacthe Reynolds number is the 3D equivalent to fixing the value

the boundaries of the flow, which then becomesofthe Grashof number, which represents the forcing in 2D. It

two-dimensional. should be underlined at this point, that as the attractor is only
Injecting Eq.(8) in the Navier—Stokes equatidB), the  defined for quasi-steady states, it is entirely determined by

electromagnetic pressure is absorbed in the hydrodynamitie balance between forcigiven by the value of the Rey-

pressure term so that the entire MHD problem is expressedolds numberand dissipatior(the nature of which is fixed

using the velocity only. The related variation equation whichby the value of the Hartmann number

governs the evolution of a three-dimensional perturbafion Under this assumption that the velocity remains finite, an
of the solutionu then takes the form upper bound for the trace of the operatB¢.,u) on any
n-dimensional subspace of the phase space is presented in
Ref. 10:
2 1
5 50= —u-V Su Su-Vat o] V24 L 2| ou. I Tr(B(.,u))|<ivA N RE. (14)
—_— \ pv / Also, studying the sequence of eigenvalues of the dissipation
romlinear inertia dissipation operator(which reduces to a Laplacian in the absence of
9 magnetic fieldd on a finite physical domain with appropriate
V.5u=0. (10) boundary conditions, gives access to the trace of the dissipa-

tion operator(see, for instance, Ref. 1@nd provides an
In the literature, the nonlinear inertial terms are often writtenupper bound for the trace of the total evolution operator, on
as a bilinear operatds(u,su), and the dissipation, as a linear any n-dimensional subspace of the phase space:
operator that we calDy, (as it will be seen to depend on the
Hartmann number Ha in Sec. JllOne can guess from this Tr((B(.,u) + vV?)P)<v\in(3 R —c,n?3). (19
equation, that the evolutlon. of small volume. of the phaseOne can be sure that wherns such that the r.h.s. of E4L5)
space generated by a setroflisturbancesas defined in Sec. is negative, alh-volumes shrink, hence> d,p wheredap, is
IIA) results from the competition between inertial terms  “2 = dimensior(this’is Constasr?tin ands?:oias
which tend to expand the volume by vortex stretching ano{ eorendf). It then comes from Eq(15) that
dissipative terms which tends to damp the disturbances, ang ' ’
hence reduce the volume. dyp=czRé€. (16)
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The bound(16) is a rather loose estimate when compared toNote thatk#0, asD,y, is invertible. The continuity equation
the R€* number of degrees of freedom derived from Kol- implies thatk-V=0 so that eventually, the dimension of the
mogorov arguments which assumes the existence of a powegigenspace associatedkas 2. Wave numberk, , k, , k, are
law spectrum and uses a Reynolds number defined on thelated to the eigenvalue through the dissipation equation,
mean-square velocity. This is probably due to the difficultyobtained by injecting Eq(19) in Eq. (17):

in getting estimates for the norms of the velocity gradients, 2

as well as to the fact that the bound given here does notrely A (ky ky k,)=— (K2+ K2+ k) —Hé————. (20)
on the existence of a power-law spectrum, which makes it K+ kj+k;

also valid for low values of Re, unlike the KWltheory. We shall now assume that the component& @fre positive

Coming back to the problem of finding an upper boundand that oné actually represents @esp. 4 resp. Rdifferent
for the attractor of an MHD turbulent flow under imposed modes ifk has no(resp. one resp. twazero componei),
magnetic field, our task now consists mainly in finding anso that the eigenspace associated\ (&, k, ,k,) has a di-
upper bound for the trace of the operatBy;, on any mension 16(resp. 8 resp. ¥4 Each eigenvalua (ky ky k)
n-dimensional subspace, as the estimate for the inertial termsan be interpreted as the dissipation rate associated with the
(14) can then still be used to derive the minimum of the tracemode ( ,k, ,k,). We see that because of Joule dissipation,
of the linearized evolution operator. The study of the dissi-the total dissipation is always higher than the viscous dissi-
pation operator, with the aim of finding such a minimum is pation alone(obtained for Ha0). Note also that as the
the purpose of Sec. lll. To this end, and in order to keep th@igenmodes are trigonometric functions, the space spanned
calculations simple, we shall restrict the problem to a physiby (k,k, ,k,) is the discrete Fourier space.
cal domain defined by a three-dimensional periodic box of
size 2rL. B. Distribution of the least dissipative modes in the

Fourier space

lll. MODES MINIMIZING THE DISSIPATION Then least dissipative modes are given by théowest

A. Eigenvalue problem for the dissipation operator values of—\ (kK ,k;). In order to find them, we note that
ki~ —\(Ky Ky ,K,) is always increasing. This implies that

We now look for the maximum trace of the dissipation N inimal modes h o be located “beloi” |
operator, or bearing in mind that this trace is negative, Wé €nh minimatmodes have to be locate elojie., closer
to the (y,ky) plane than.].the manifold\ (ky,k, k) =\,

aim at finding the modes with the least dissipation. The . .
physical domain is a 3D-periodic box of sizerR in a  WNereé —Am(n) is the maximum value of=X(ky.ky k;)

uniform, vertical magnetic field. Normalizing distances reached on the_set_oi m|n|mal_ m_odes. The fact th_ai
by L, the dissipation operator rewriteBy,= (v/L2)(V2 — N/ dk,>0 also implies that alk inside the volume defined
J Ha™

+H& V242, where the square of the Hartmann numberby this curvek,=0, k,=0 andk,=0, do belong to the set of

Ha=LB/o/pv represents the ratio of Joule to viscous dis—?hr;'\r;;?ua:al;T]Od?hsgncg;secfa_si zvr):ere ;e;/eriil t]‘g?:ltetesnilcohsﬁve
sipation at the largest scale From now on;Dy, will denote m: - m» y

the nondimensional form of the dissipation operator, normali o€ tham points, but this little error is of no consequence

ized by v/L2. It is straightforward to see that under periodicfor our purpose, and is anyway addressed in the numerical

boundary conditions, the Laplacian is invertible so that, met:_?]q descr:jbed in Se(r:].'lllf]:. tion to visualize the distri
is also invertible, as well as compact and self-adjoiy, IS provides enough information fo visualize the distri-

therefore has a discrete spectrum. Finding the minimunp'“'tIon of then minimal modes: As shown in Fig. 2, the 2D

value of the modulus of the trace DY, over anyn-subspace mﬁ ”'foll‘gikkjl‘gn)bare frep_rlesefnted n Ssthe pI?nEL(, ktz.)’
then comes down to finding the eigenvalues ofDy, of WRETEK, =K Ky, Dy a family of CUrVesSspa, OF €quation

smallest moduleX,)x-1 - In other words, we need to find in polar coordinates:

the n least dissipative modes. The rest of this subsection is  Guan :f = V—Ap—Ha’ sir® 6. (21
devoted to this task. Note thath,,(n) is the value which corresponds to thth
The eigenvalues problem fdp, can be written mode as the modes are sorted by growing dissipation rate.
(VA+ He? &gz)VI)\VZV, 17) For Ha.fixed,—')\m(n) is thus an increasing fuqction afand
determines uniquely the gragh,, , whenn varies. One can
V.v=0. (18  then already get a quantitative picture of the seat ofinimal

modes and distinguish three different kinds of sets.

(1) For Ha>1 fixed, the least dissipative modes are lo-
cated on the&k, axis, and therefore do not depend nand
correspond to a two-dimensional flow independent.ai-

Under periodic boundary conditions/dx, d/dy, and d/dz
commute withDy, so that each componenf, v, , andv, of
the solutionv=(v;);cx,y,z Of EQ.(17) is of the form

vi(X)=V; expk-x+ ¢), (19 deed, the functiok, —\(k, ,k,), wherek, = k2+K, has

with a unique absolute minimum fd(fz(Ha— k)k,. The less

X dissipative mode is therk( ,k,)=(0,1), as(0,0) is not per-

k= (ky.ky k) € 77, mitted (because\=0 is not an eigenvalue dP,,,). The first
x=(x,y,2) e[0..27L T3, 3D mode to appear has to be the least dissipative mode such

that k,>0, the variations ol (k, ,k,) imply that it is (Ha
e —m,7]. —1,1. If k,p is the maximum value ok, among the 2D
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quasi-iectropic 3D state — oon 3D turbulence is smooth. Indeed, for Ha—\(n)

—a— points of maximum kx

e Joulecone |-, soule cone border <2 Hé the Gy, , graphs look like some hybrid between a

= - ,.«" cardioid and an ellipsésee Fig. 2

ool hS ’_»’ In the whole eigenvalue problem, we have assumed that
\ n was fixed. However, for a given values of Ha and Re,

corresponds to the number of modes for which the minimal

)
‘ Dume dissipation compensates the expansion of the initial

anisotropic 3D state

\ Kd

~ ! ’,’ n-volume in the phase space due to inertia. At fixed Ha, we
) “ can see that for low inertidéi.e., low n) the flow is two
’ dimensional, whereas for strong inertia, the flow can be close
‘ to three-dimensional isotropic turbulence. Physically, this
suggests that the flow corresponding to the estimate of the
attractor dimension we are looking for results from a random
production of modes by inertias the estimatél4) depends
- on the number of modes but not on their distribution in the
k phase spadeand a selection of the least dissipative modes
by the dissipative terms. Of course, this assumes that the

FIG. 2. IsoA curves in the planek( ,k,). One can see the three major types : : : . :
of mode distribution: the 2D state corresponds to a set of modes located O%Stlmate(]“l) for the expansion rate due to inertial effects is

the k, axis, the strongly anisotropic 3D state exhibits the Joule cone-likere?‘"Sti_Ca_ at_ least with regard to its depe_ndencynom this
shape(the border of the Joule cone has been plotted in the case where all theoint, it is important to recall that the minimal modes of the
modes are inside the curve designated by the vertical amow the quasi-  (jssipation operator found here are not solution of the

isotropic state is reached when the modes are enclosed inside curves Iocatﬁfzi:lvier—StokeS equations However they turn out to exhibit a

the furthest away from the origin. Axis units are arbitrary. The semicircle of ; . . N .
center(0,5,0, for which —\,,=Ha is also the limit between modes de- Physical behavior which matches qualitatively what is heu-
scribed in Sec. Il B2) and modes described in Sec. 11i(8). ristically known from turbulent MHD flows. This suggests
that expansions of solutions of the Navier—Stokes equations
over the base of minimal eigenmodes of the dissipation
modes, then K;p,0) has to be less dissipative than might be suitable to calculate turbulent flows, all the more as

(VH&—1,1), which yieldsk,p and the associated dissipa- these modes already satisfy the boundary conditions.

tion rate: We shall now compute recursively the setrofeast dis-
Kop= 12 Ha—1, (22) sipatiye modes in the discrete space of Fourier cqefficignts
and find the related upper bound for the attractor dimension.

N(VHa—1,1)=2 Ha. (23 Note that as we actually construct ardimensional set of

modes which achieves the maximum magnitude of the trace

: ccina. Of DyaPy, the upper bound for the modulus of this trace
(2) The next added modby order of growing dissipa actuallyis the maximum(keeping in mind that the trace of

tion rate spread inside a cardioid which is very eIongatedth dissipation i i
along thek, axis. The flow represented by such modes is e dissipation is negatiye
therefore highly anisotropic and features vortices stretche
along thez direction. Such a distribution of modes matches
the well known properties of 3D turbulent flows under strong
magnetic field, for which turbulent modes are located outside ~ We shall now calculate the trace @#,,P, associated
the so-called Joule cone of a¥s in Fourier spacé® More  with the least dissipative modes as a functiomadnd Ha,
precisely, wheny/—\/Ha<1 (which can only happen for then using Eq(14), we express the estimate for the upper
Ha>1 for which (0,1) is not the second dissipative mgde bound of the attractor dimension as a function of Ha and Re
the cardioid is located under the liné=6,, where 6,, by searching the value efwhich annihilates the trace of the
=arcsing/— \/Ha), so that the volume defined by such aevolution operator, as explained in Sec. IlA. The trace of
cardioid elongated along tHe axis matches well a trunca- DyP, is calculated nearly exactly using a computére
tion (becausen is finite) of the space outside the Joule cone.only error is due to truncation after the 17th digits of real
(3) Eventually, if more modes need to be added in ordemumbers which occurs in our prograrhy adding up the
to reach the value ofi, a value of\, is reached such that dissipation rates along the sequence of modes sorted by in-
J—An/Ha>1, so that 6@<=/2. In other words, the car- creasing values of-\. The method is described in the
dioid looks more like a quarter of an ellipsoid centeredAppendix.
around the origin, the shape of which tends toward a quarter The graphs of TrDP,) and the estimate for the attrac-
circle as the number of modes increases and the Joule coter dimensiondy(Re,Ha) are reported, respectively, in Figs.
degenerates into the axis. Such a picture describes a nearly3 and 4. For now, let us put the emphasis on the curves in
isotropic flow, only weakly affected by electromagnetic ef- Fig. 4 which show the variations of the attractor dimension
fects. Note that unlike the 2D-3D transition, which takesestimate with regard to the variable Ha, for different fixed
place for one specific value of at Ha fixed, the transition values of the Reynolds number. Apart for very low values of
between 3D turbulence with a joule cone and quasi-isotropithe Reynolds numbeiof the order of unity, which does not

[If Ha<1, the second mode is 3D and is alwd@sl).]

%. Trace of the dissipation operator and attractor
dimension
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Trace of the total dissipation for fixed values of Ha du(Ha) for fixed values of Re between and

10M¢
— numerical results
« =+« analytical slope
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line of 2D state

Ha=1.5926+05

a2 Ha=5.0330+04
of Ha=8950
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Ha=50.
Ha’?'gga Re=63.096
Ha=1.5!
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10° o .' Jz ‘a lA Is u“‘e 0 " .. " " " ke "
10
10 10 10 1,? 10 10 10 10° 10' 10° 10° 10 10° 10°
Trace of the total dissipation for fixed values of n Ha
. FIG. 4. Attractor dimension as a function of Ha for fixed Re.
10"] ' vanaition 20-3D
=+ joule cone transition
11
10 [ . . - . .
" that the overall dissipation is stronger than in the hydrody-
10 rquasi-isotropicSDstate . . .
namic case. Therefore as Re is fixed, fewer modes are
20’ needed to reach a dissipation which balances the expansion
of [ rate n Re due to inertia. Equivalently, turbulence becomes
408 . . . .
g0 more and more anisotropic as vortices are stretched in the

direction of the magnetic field, so if one interprelyg as the
number of vortices in the domain, as in Ref. 10, fewer of
these long vortices are needed to fill thel2x27L X 27L
box, so that the number of degrees of freedom decreases.
This second case corresponds to a set of modes defined by
- “ " the elongated cardioid of Sec. 11l B.
10 10 s 10 Eventually, for even higher values of the magnetic field,
one reaches a region where again, the estimate found for the
(top). Each ison curve exhibits successively? (2D modes, n*? (3D an- attraCtO_r dlmenSIOn_ does not depend on Ha. One can see
isotropic set of modésand n®* slopes(quasi-isotropic set of modesThe from Fig. 4 that this happens when the flow undergoes a
higher the value of Ha, the later the transitions occur. The curves corretransition between 3D and 2D state, or in other words, when
sponding to the five lowest values of Ha are not distinguishable. Trace of the@yen the smallest vortex reaches the size of the box iz the

dissipation operator as a function of Ha for fixad(bottom). The three : : < T -
different kinds of sets of modes appedguasi-isotropic, for low Ha, 2D for direction (kzm 1). The flow then becomes two-dimensional

high Ha. and looks like “rows” of columnar vorticesmodes are on
the k, axis according to the description of Sec. I).BAs
there is no more velocity variation along the magnetic field
relate to the usual picture of turbulent flowsach curve Jines, no current loops are present in the flow so that the
clearly exhibits three distinct regions corresponding to threg orentz force falls to (looking at Eq.(8), d2,u=0 implies
different ranges of Hartmann numbers. Let us follow a giveny x (jXB)=0]. The attractor dimension does not depend on
curve from Ha=0 to high values of Ha. Physically, this Ha anymore but should match estimates found for two-
would correspond to looking at a turbulent flow and increasdimensional turbulence. It does not turn out to be the case

ing the applied magnetic field in a quasi-static way. but we shall leave this point for more thorough discussion in
(1) We first encounter a region where the attractor di-gec. |V.

mension is nearly constant when the Hartmann number in-  Up to now, we have found a set of modes which corre-
creases. This region describes a flow under weak magnetihonds to the actual minimum dissipation and which, under
field, for which the dissipation is essentially due to viscosity,the assumption of finite dissipatiofi2), returns an upper
and therefore does not depend on the magnetic field. Thgound for the attractor dimension of turbulent MHD flows,
flow is in a state of 3D quasi-isotropic turbulence and thewithout any restrictions on the values of Ha and Re. What is
modes are spread within a nearly circular regiohradius  more striking is that although these modes are not solution of
k. ~kg ) of the k. ,k;) plane. the Navier—Stokes equations themselves, their distribution in
(2) For values of Ha above one, the attractor dimensiorthe Fourier space seems to match physical observations for
decreases approximately as Halndeed, for Ha-1 viscous  such turbulent flows. To find out to what extent this is the
and Joule dissipation are of the same order of magnitude stase, we shall now derive some analytical approximations of

FIG. 3. Trace of the dissipation operator as a functiomdbr fixed Ha
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the “exact” results found in this section and compare them 2

n

to broadly accepted results derived from heuristic arguments. F = 7sin4 O s (27)
a

IV. ASYMPTOTIC RESULTS AND COMPARISON WITH Tr(DyaPn) w2 "

HEURISTICS The 3 SI O (28

A. Integral formulation of the eigenvalue problem
9 9 P Let us recall tha®,, is defined by sirg,,=+—\/Ha, hence

We go back to the point where the setrofess dissipa-  Eq. (28) allows us to express,, as a function of:
tive modes is calculated, at the end of Sec. Ill B, and we aim

at finding some analytical approximations for the results ob-
tained numerically in Sec. Il C, should it be at the price of
working only in asymptotic regimes of the flow parameters.
At this stage, the problem of finding the setrofigenmodes

which minimize the dissipation can be mathematically for-
mulated as follows: for givem and Ha, we look for the set 2.2

2
xm=£ Ha'/2n'”, (29)

and Eq.(28) allows then to express the trace of the dissipa-
tion in terms ofn:

_ 3024 AL02
of n points (;);—; » in N3—(0,0,0) which achieves the Tr(DpaPn) = 37 " Ha'?, (30)
minimum of the functional:
2 -\
S a3 m
TH(DuPan) =2 > —\(Ky). (24 SiN Oy = \/; nYHa = (3D)

ie{l.n}

The study of this set of modes in Sec. Ill has shown that thd'he value ofn for which the trace of the total evolution
(ki)i1..n are located inside the volumé, located “under”  Operator is zerdi.e., Tr((Dyat B(.,u)Py))=0] is an upper

the manifold of equation (ky K, ,k,) =\, which defines it P0ound for the attractor dimension, so using Et):

uniquely (see note at the beginning of Sec. I)).B'he prob- 972 Re

lem then comes down to expressihg, as a function ofn dys 32 Ha (32

and Ha. To this end, we notice that the dimension of the

attractor associated with a turbulent flow is an enormoud he geometrical shape of the cardioid which defines the set
number, for which the sunfsuch as the one in E4)] can of n minimal modes yield the maximum values reached by
be safely replaced by integrals over the continuous Fouriek. andk;, respectively:

space. Under this approximation, the fact the modes are on a 1/4
discrete set implies that each of them fills a unit-volume in k, =V—Ap= Tz”lmHam’ (33
the Fourier space, so that the volume contained under the " ™

manifold A (X,Y,z) =\, should ben/8:

Am 1
k, =— — nY2Ha V2 (34)
16f dk, dk, dk,=n. (25) m o 2Ha g2
\
hm The bounds for the size of the small scales are obtained by
The trace ofDy P, similarly expresses as replacingn by dy,, Egs.(33) and(34), respectively:
_ 3
Tr(DyaPn) =16 y N(Kky Ky ko) dk, dk, dk, . (26) k, < 7Re, (35)
Am m

Equations (25) and (26) allow to derive both\, and 3 RE
Tr(DyaPy) as functions oh and Ha only. This can be done Kz, = 8 Ha’ (36)

analytically all the way through for each of the types of i ]
minimal set ofn modes found in Sec. Il A. The next two Graphs of relationg32), (35), and(36) are plotted on Figs. 4
sections are devoted to this task, as well as to comparing tH&d 5, respectively, along with the numerical results of Sec.
obtained results with heuristic considerations on MHD!IC and bring confirmation that the discrete Fourier space

turbulence. can be accurately approached by a continuum.
B. Anisotropic turbulence under strong magnetic 2. Heuristics on MHD turbulence of Kolmogorov type
field under strong field

Now, it is worth underlining again that these results are
exact, and come exclusively from the mathematical proper-

Let us first tackle the case where the modes are locateties of the Navier—Stokes equations, without the involvement
within an elongated cardioid, i.e., Ha—\,,<H&’, which  of any physical approximation. There is therefore consider-
corresponds to a 3D anisotropic flow with dominant electro-able interest in comparing them with orders of magnitude
magnetic effectgsee Sec. Il ¢ After integration in cylin-  obtained from heuristic considerations. Let us recall how the
drical coordinates for & < 6,,, Eqs.(25) and(26), respec- smallest scales can be obtained in a more physical manner:
tively, take the form: in a 3D periodic flow where Joule dissipation is stronger than

1. Analytical estimates
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viscosity except at small scal¢sla>1), it is usual to con-  solution of Tr((Dya+ B(.,u))P,) =0. This suggests that the
sider that a vortex in the inertial rangiee., not destroyed by  exponent of is optimal in Eq.(14), whereas the exponent of
viscosity results from a balance between inertial and Lor-Re is somewhat too high to match heuristic results valid for

entz forces, which implies MHD turbulence of Kolmogorov typéi.e., with an estab-
K oB2L |\ 12 lished turbulent spectrumNote thatd,,~Re/Ha and Eq.
k—z ( 0 ) (37)  (31) yield sing,~+/Re/Ha which matches the prediction of
L pRLUy

Ref. 5 for the Joule cone angle, whereas the rigorous esti-
Moreover, one usually assumes that anisotropy remains theate(32) again yields an overestimated exponent for Re but
same at all scaléspver the inertial range. Under this as- the right one for Ha.

sumption, Eq.(37) implies U,(k,)=Ugk.*, where U,

stands for a typical large scale velocity. This is usually ex-C. 3D turbulence under weak magnetic field — (Ha<1l)

pressed in terms of the energy spectrum as 1. Analytical estimates
=112\t 123 Let us now investigate the case where\,,/Ha?>1
Bk~ Uy (k) ~Ugk, (38) (and 6,,= 7/2) which relates to weakly anisotropic turbu-
and allows to rewrite Eq(37) as lence, as mentioned in Sec. Ill. After integration in cylindri-
ng,z cal coordinates, for €0<w/2, Egs.(25 and (26) rewrite,
ﬁ - — N2 (39) respectively:
k, Ha '
n T 1
Re, is a Reynolds number scaled &, and L, the ratio 5% 51 \/I—1—2\/I—1+3I2arctar< ))
Ha?/Rey=N is the corresponding interaction parameter. Ha VI=1
Eventually, the small scales are heuristically defined as the (44)
smallest possible structures of the inertial range which are  trp,p) 14 4 )
not destroyed by viscosity, which means that they result from — e —1-—| VI=1——4Il-1
AR . . o 7 Ha® 15 45 45
a balance between inertia and viscosity. This yields
2 1
Kz, = + = 1% arctan—, (45)
5 ~Ha " (40) 3 N/
1
" o _ with 1=—X\,,/H&. It is here more difficult to the extract
Now combining Eqs(39) and (40) yields analytical expression for THy,P,) as a function ofn and
k. ~Re2 (41) Ha. However, equations can be expanded in powelsitof
+max ’ the limit | —oo. This corresponds to a flow where inertia is
Re large compared to electromagnetic effects. Keeping only the
Zma” Ha’ (42 terms inl®? and |2 in the expansion of Eq44), | can be

expressed as a function afHa®>. Assuming this latter pa-
from which the number of degrees of freedom of the flowrameter is large as well and keeping the leading two terms
can be estimated by counting the number of vortices of sizgields
L/k, XL/k, XL/k, inaLXLXL box:
12 o3 1

R& ~Am=7 —n*%+ g HE. (46)
N¢~k2k,~ T (43

a Also, keeping the two leading powers bin the expansion
When comparind\; to dy, and the heuristic small scales to of Eq. (45) and using Eq(46) yields
Egs. (35 and(36), we see that our mathematical estimates 3
are loose when compared to heuristics because they exhibita Tr(DyPy,)= E(
higher exponent of the Reynolds number than the heuristic
relations. However, exponents of the Hartmann numbeAs in the case of strong fields, the upper bound for the at-
match, which suggests that the mathematical study actualliyactor dimension is obtained by looking for the valuenof
captures well the electromagnetic effects in turbulence. Thigvhich annihilates the trace of the evolution operator:

™

6 2/3
—) n®3+ §Ha2n. (47)

is confirmed by the fact that the sizes of the smallest scales 32 312

: 5 4 Ha?
for a given number of modes are exactly matched by heu- dys=—=\5RE|1- - —| . (48)
ristic results presented in this sectidfgs.(33) and(34) can 162 3 RE

indeed be recovered from Eq@l0) and (43), consideringn | 5 quasi-isotropic flow the set of minimal modes spread in

~ N vortices in a bok This, together with the fact that our 4 gljipsoidlike volume of the phase space so that the maxi-
estimate for the trace of the dissipation corresponds to ag,um values ok, andk, are obtained fod=0 and §=m/2
achieved extremum suggests that the latter is optimal. Ber‘espectively:

sides, if one considerd, ~N;~ Re?/Ha as the order of mag-

nitude expected for the attractor dimension, then one should Ki = V—Am, (49)
expect the trace of the operator defined by inertial terms to _
be of the order of Tr(53(.,u))|~n Re fordy,~Re*/Ha to be K=V ="Am~ Ha?. (50
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w6 ofthe smallst scales s functions of Ha forfixed values of Re poses some heuristic estimates which suggest that the size of
} / the small scales if of this order of magnitude, and tends to
L’ slightly increase under the effects of small eletromagnetic
_ 7. Bex15849 effects. To this regard, the mathematical estimé&s (51),
'":::}.'--.Rg-ﬁooo and(52) again exhibit higher exponents of Re than heuristic
T P Re=630.96 results which suggests inertial effects are overestimated. In-
E e eo-- B3 deed, as in the case of strong magnetic fields, our estimate
T e oo Re2S110 for the trace of the dissipation is optimal, so if one is to trust
£ Y K== === FE15849 heuristic values of the small scales, then a better estimate for
R ) -mmmowo . Bl the trace of the inertial terms is expected to be of the order of
w0k - = = - De-63.0% n Re¥2, which is smaller than Eq14). As for strong fields,
XOXNCNC -------:::z:?:; the exponent of in Eq. (14) seems to be optimal, whereas
i O . o Y e o Wt the exponent of Re is overestimated. It is however remark-
% -x -\ - A- A- A A - - - Ber15849 able that the exponent expected from heuristic considerations
: . . for a weak field is different than the one which would be

0 10° expected for strong fields. This suggests finding a better es-
Ha timate than Eq(14) for the trace of the inertial terms would
FIG. 5. Size of the smallest scales in the direction of the magnetic field and€quire to account for the mode distribution in the Fourier

perpendicular to the magnetic field. Dotted: Ha-1 slope, daskggdana- space.
lytical, dash-dot: Joule cone transitiéamnalytica), dashedquasi-horizontal

lines): kimax (numerig solid: kzmax (numerig. D. The 2D case

For two-dimensional flowsi.e., A ;<2 Ha), the motion
The bounds for the size of the small scales are obtained bduations reduce to the 2D Navier—Stokes equations without

replacingn by dy, in Eq. (46) and using Eqs(49) and (50) magnetic field, as the Lorentz force falls to zero. The dissi-
respectively: ’ pation operator is a simpler two-dimensional Laplacian op-

i erator, for which the trace of anydimensional subset of the
J5 4 H& 323 phase space is bounded ksee, for instance, Ref. 15, or
m 2% 35/6R 1- 3R\ 5 ' (5D using the approximation of a continuous Fourier space as all
along this section
V5 e( 4 Ha2< 32’3) ) 12 2

" axae L 3RelTE ®2 TDwPI=5, 53

These final results on the dimension of the attractor and asyhich together with Eq(14) leads to an upper bound for the
sociated small scales match well the properties of the flowitractor dimension:

put in light by the numerical results of Sec. Il C: in the limit
of low Ha, bothdy, k, , and kZm are weakly dependent on

electromagnetic effects. The flow is indeed almost isotropic
apart from a slight vortex elongatlon_ n tlze_d|re_ct|on. AI§0, The estimaté11) presented in Ref. 15 fat), is based on an
the upper bound for the attractor dimension in classical 3D . ) .

: .~ accurate estimate for the 2D inertial terms of the order of
turbulence(16) is recovered for Ha0. Note that when Hais 15> 3/a N

. . o nY9G(1+1Inn)*™ Although it is difficult to compare the

progressively increased from 0, the small scales 'n't'a"yGrashof numbeG=|[fl,/v (where|f|, stands for thec?
grow both in the direction orthogonal to the field and in thenorm of the dimensionzal forcing to thze Revnolds number
direction of the field. However, the growth is more important : . y . '
) . . " . . . one can be sure that the estiméid) is rather bad in the 2D
in the direction of the field which results in an early anisot-

: o case, as it features a much higher exponenh dfian the
ropy. It can be seen from Fig. 5 that when Ha is increased UWctimate from Ref. 7. This again supports the idea that a
to a value where Lorentz dissipation is more important than . . .
. o . C ok sharp estimate for the inertial terms must account for the
viscous dissipation, the length scale in the direction orthogo- e . : .
. . modes distributiorfthe estimate by Ref. 7 is derived from
nal to the field saturates at the value found in EBH)

: L . ._the 2D assumption, whereas E4) is a generic 3D result
whereas the length scale in the direction of the field Comm'However, as both Eq11) and our estimate for the transition

ues to grow untl it reaches the typical macroscopic Iengﬂ1)etween 2D and 3D stat@2) are consistent with heuristics
scale. ) L " .
one can expect them to yield a realistic transition curve in the
(G,Ha) plane. The latter is obtained by noticing that the iso
—\(k, ,k;,) curves fork,=0 are circles centered on the ori-
gin so that under the approximation of a continuous Fourier
When eletromagnetic effects are small compared to inspace, the number of 2D modesni§D=27-rk§D (the factor 2
ertia, the turbulence is almost 3D isotropic, so one expects due to the fact that eigenspaces are of dimensjoiset-
the size of the small scales to be close to the valljé  ting n,p to the value ofd,p given by Eq.(11) and using Eq.
~Re ¥4 obtained from the K41 theory.Indeed, Ref. 4 pro- (22) yields the transition curve:

Ky

YA

dy < gRez. (54)

2. Heuristic considerations in quasi-isotropic MHD
turbulence of Kolmogorov type
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(V2 Ha— 1)2=2C—71Tg2’3(1+ Ing)¥3. (55)

The fact that the transition is expressed using Ha é&nd
makes it all the more applicable to experimental configura-
tions as it only depends on the control parameters, unlike the
Reynolds number which involves a velocity which can be
hard to define and sometimes to measure.

V. CONCLUDING REMARKS o
k \perp
We have found a rigorous upper bound for the attractor _ _ _ _
dimension in lowRmMHD turbulence. which is valid for all FIG. 6. Recursive process to find the- 1st modes knowing the firstones
. ! ) (located below the solid line, excluding the points on the)lifiehe point

value_s of Ha f_ind Re, a_nd re“?S solely on the NaV'('Z'r_St()l_(el’?m:L which yields the minimal dissipation outside of the set made up with
equations. This bound is obtained for the set of modes whickne firstn modes is found among the points of the solid line. Once it is found
achieves the minimum of the total dissipatibriscous and by looking at all the values of-A for these points, the+2nd mode is
Joule. This particular set of modes exhibits most of the We”searched among the points of the dashed line, obtained by modifying the

) . . solid line so that it “surrounds’k,,,;. Two distinct examples are given:
known features of MHD turbulence: quasi-isotropic turbu-j "~ _
lence close to hydrodynamic turbulence for weak electro-
magnetic force, strongly anisotropic stdteodes inside the
Joule cone in the Fourier spaaghen Joule dissipation is of using a reduced set of these modes in a numerical model.
the order of viscous dissipation, and two-dimensional statgndeed, because of the strong anisotropy which characterizes
when the Joule dissipation is dominant. The related estimatggw-RmMHD turbulence under strong magnetic field, it is in
for the small scales and Joule cone angle show the samginciple possible to fully describe this class of flow using
dependence on Ha as their heuristic counterpart. HoweveRe?/Ha taken from the set of least dissipative modes. This
because the estimate we use for the inertial terms is not opepresents a much smaller set of modes than tHenReles
timal, the exponent of Re in the final attractor dimension isgptained by taking all the Fourier modes of wave number
higher than predicted by heuristic considerations. It is notesmaller tha“&m-
worthy that this discrepancy to the heuristics is not the same
for the three different kinds of turbulence pointed out above,

which are characterized by three very different modes distri\CKNOWLEDGMENT
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2D isotropig. This suggests that a better estimate for thefrom the Leverhulme Trust, under Grant No. F/09452/A.
inertial terms can be obtained by accounting for the mode

distribution in the Fourier space. However, the result found )
for transition (55) between 2D to 3D turbulence does not APPENDIX: NUMERICAL CALCULATION OF THE
S . . . . LEAST DISSIPATIVE MODES

suffer form this limitation on the estimation of the inertial
terms as it is derived from estimates for inertia and dissipa- The sequence af eigenmodes of the dissipation opera-
tion which both match heuristic results. This simple analyti-tor is calculated recursively, in growing order of the eigen-
cal result now needs testing against experiment. values’ modulugwhich represents the dissipation rate of the

The other possible improvement to the results found herassociated eigenmodedVe start from the less dissipative
has to do with the periodical conditions in space. Indeed, irmode(1,0) which corresponds to the eigenvalue of smallest
laboratory experiments, as well as industrial setups, the 2nodule \;=— (or smallest dissipation rate As
state is achieved when the flow is confined between twdk, ,k,)——\(k, ,k,) has a unique absolute minimum, at
walls perpendicular to a strong magnetic field, so that th€0,1) the value of—A(k, ,k,) increases along any direction
dissipation along these wall§n the Hartman boundary originating from this minimum. The following less dissipa-
layern is often the main factor which determines the wholetive values(along the sequence of modes sorted by growing
flow.*® This makes the 2D state obtained under 3D periodicatlissipation rateare to be sought in the closest possible vi-
conditions rather unphysical. A way to improve this resultcinity of this minimum(bearing in mind that botk, andk,
would be to carry out the same study as presented here witspan a discrete set of positive valueBhe second is then
walls in z=0 andz=1. Unfortunately, this will be at the found by looking for the one which yields the smallest value
expense of a more complex calculation for which no analyti-of —X\(k, ,k,) among the points “surrounding” the mini-
cal estimate can be derived. mum. The process is iterated, replacing the point selected

Eventually, the fact that the least dissipative modes alfrom the previous step in the surrounding curve by the set of
ready incorporate many properties of MHD turbulence en-points surrounding itand which are not already in the set of
courages us to investigate their ability to reproduce the enminimal modegas shown on Fig. 6. Note that this algorithm
ergetic properties of MHD turbulence such as tke® requires knowledge of the sequence of valuekpof The
spectrum observed in the 3D anisotropic regftdso, it  latter is calculated using the same process, applied to the
may be possible to reproduce the main properties of the floviunction (k, ,ky)Hk)2(+ k§.

orkp1=Kk,.
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