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When a liquid drop strikes a deep pool of a target liquid, an impact crater opens while the
liquid of the drop decelerates and spreads on the surface of the crater. When the density
of the drop is larger than the target liquid, we observe mushroom-shaped instabilities
growing at the interface between the two liquids. We interpret this instability as a spherical
Rayleigh–Taylor instability due to the deceleration of the interface, which exceeds the
ambient gravity. We investigate experimentally the effect of the density contrast and
the impact Froude number, which measures the importance of the impactor kinetic
energy to gravitational energy, on the instability and the resulting mixing layer. Using
backlighting and planar laser-induced fluorescence methods, we obtain the position of the
air–liquid interface, an estimate of the instability wavelength, and the thickness of the
mixing layer. We derive a model for the evolution of the crater radius from an energy
conservation. We then show that the observed dynamics of the mixing layer results from
a competition between the geometrical expansion of the crater, which tends to thin the
layer, and entrainment related to the instability, which increases the layer thickness. The
mixing caused by this instability has geophysical implications for the impacts that formed
terrestrial planets. Extrapolating our scalings to planets, we estimate the mass of silicates
that equilibrates with the metallic core of the impacting bodies.

Key words: buoyancy-driven instability, drops, mixing and dispersion

1. Introduction

Rayleigh–Taylor (RT) instability occurs at the interface between two fluids of different
densities, when the density and pressure gradients are in opposite directions. In a
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gravitational field, an interface separating a dense fluid supported by a lighter one is
unstable (Rayleigh 1899). In this situation, which we refer as static, the average position
of the interface does not vary with time. If the interface is accelerated in the direction
from the lighter to the denser fluid, the configuration is also unstable (Taylor 1950). In this
situation, which we refer as dynamic, the average position of the interface varies over time.
In both cases, infinitesimal perturbations at the interface will grow over time, leading to
the interpenetration of the fluids, and to the reduction of their combined potential energy.

The RT instability was first investigated at planar interfaces using theoretical, numerical
and experimental methods, both in the early-time linear (e.g. Emmons, Chang & Watson
1960; Chandrasekhar 1961; Tryggvason 1988) and the subsequent nonlinear regimes
(e.g. Linden, Redondo & Youngs 1994; Dalziel, Linden & Youngs 1999; Dimonte
1999). However, various phenomena such as inertial confinement fusion experiments
(e.g. Lindl 1998; Thomas & Kares 2012), supernovae explosions (e.g. Arnett et al.
1989; Schmidt 2006), detonation of explosive charges (e.g. Balakrishnan & Menon 2011)
and collapsing bubbles (e.g. Prosperetti 1977; Lin, Storey & Szeri 2002) involve RT
instabilities at spherical interfaces. The spherical configuration was initially investigated
in static and dynamic cases, regarding the early-time linear stability of spherical interfaces
between two inviscid fluids (Bell 1951; Plesset 1954; Mikaelian 1990). Viscosity effects
responsible for energy dissipation at small-scale were also investigated in both cases
(Chandrasekhar 1955; Prosperetti 1977; Mikaelian 2016). Turbulent mixing related to the
late-time nonlinear RT instability dynamics was also investigated for spherical interfaces
(Youngs & Williams 2008; Thomas & Kares 2012; Lombardini, Pullin & Meiron
2014).

The RT instability also enters the dynamics of drop impacts. Above a given kinetic
energy, the drop impact is followed by the formation of a liquid crown above the crater (e.g.
Rein 1993). The interface between the liquid of the crown and the air rapidly decelerates,
which leads to the formation of fluid fingers in part interpreted as an RT instability (e.g.
Allen 1975; Krechetnikov & Homsy 2009; Agbaglah, Josserand & Zaleski 2013).

In our experiment, we investigate another instability that develops under the water
surface when a denser-than-water drop impacts a deep liquid pool of water. Figure 1
shows a snapshot from one such experiment, at a time when the impact of the drop has
produced a sizeable crater. We see on this picture that the liquid from the drop, which
covers the crater floor, has developed mushroom-shaped structures penetrating radially into
the water pool. We interpret these structures as a spherical RT instability associated with
the deceleration of the crater floor. The dynamics of the RT instability depends crucially
on the acceleration history of the interface (Mikaelian 1990; Dimonte & Schneider
2000).

In the case of a drop impact, this acceleration is dictated by the dynamics of the
crater, which depends on the impact parameters, i.e. drop radius, impact velocity, ambient
gravity and physical properties of the fluids such as surface tension, density and viscosity.
Depending on these impact parameters, various impact regimes such as floating, bouncing,
coalescence and splashing may occur (e.g. Rein 1993). In this work, we focus on the
splashing regime. Since the pioneering experiments of Worthington (1895), the splashing
regime has been extensively investigated, regarding in particular the scaling of the
maximum crater size (Engel 1966; Leng 2001), the time evolution of the transient crater
(Engel 1967; Morton, Rudman & Jong-Leng 2000; Bisighini et al. 2010), the evolution and
fragmentation of the fluid crown (Okawa, Shiraishi & Mori 2006; Zhang et al. 2010), the
formation and fragmentation of the central peak (Fedorchenko & Wang 2004; Ray, Biswas
& Sharma 2015) and underwater acoustic properties of the impact (Prosperetti & Oguz
1993). Furthermore, the effects of immiscibility (Lhuissier et al. 2013; Jain et al. 2019),
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1 cm

Figure 1. Crater produced by the vertical impact of a liquid drop onto a less dense liquid pool. A spherical RT
instability develops around the crater when it decelerates, which results in mushroom-shaped plumes growing
radially outward.

viscoplasticity (Jalaal, Kemper & Lohse 2019), impact angles (Okawa et al. 2006; Gielen
et al. 2017) and thickness of the target layer (Berberović et al. 2009) on impact dynamics
have been examined. Based on these experiments, several models of the crater size
evolution and its related acceleration history were developed, using energy conservation
(e.g. Engel 1966, 1967; Leng 2001) or momentum conservation in an irrotational flow (e.g.
Bisighini et al. 2010).

Besides providing an example of an RT instability at a spherical interface, this drop
impact instability and the mixing related to it have geophysical implications. Terrestrial
planets such as the Earth formed 4.5 × 109 years ago by the successive accretion of
increasingly massive bodies composed mainly of silicates and iron (Chambers 2010), the
last giant impact being probably responsible for the formation of the Moon (Canup 2012;
Cuk & Stewart 2012). During this process, planetary materials are heated by the kinetic
energy released during the impacts, the reduction of gravitational potential energy as the
metal of the impactors migrates toward the core, and the decay of radioactive isotopes
(Rubie, Nimmo & Melosh 2015). This energy supply contributes to the production of
deep magma oceans (Solomatov 2015). In addition, accretion models show that most of
the Earth mass was accreted from differentiated bodies (Kleine et al. 2002; Scherstén et al.
2006), i.e. with a separate core and mantle (in contrast, it should be noted that we use drops
made of a single liquid in our experiments). Both the impacting body and the planetary
surface are melted by the shock waves produced by the impact, releasing the liquid metal
core of the impactor into a fully molten magma ocean (Tonks & Melosh 1993). This results
in a situation where the metal core of an impactor strikes a less dense silicate magma
ocean. A spherical RT instability can therefore develop during crater opening, producing
mixing that contributes to the thermal and chemical equilibration between the metal core
of the impactors and the silicates of the magma ocean.

The current dynamics of the Earth is partly inherited from its concomitant accretion and
differentiation. Heat partitioning and chemical fractionation between the mantle and the
core depend on the physical processes involved during differentiation (Stevenson 1990;
Wood, Walter & Wade 2006), which includes in particular equilibration and dispersion
occurring during planetary impacts (Canup 2004; Cuk & Stewart 2012; Kendall & Melosh
2016; Nakajima et al. 2021; Landeau et al. 2021). Heat partitioning sets the initial
temperature contrast between the mantle and the core. It crucially determines the early
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thermal and magnetic evolution of the planet, in particular the formation and evolution of
magma oceans (Labrosse, Hernlund & Coltice 2007; Sun et al. 2018) and the existence of
an early dynamo (Williams & Nimmo 2004; Monteux, Jellinek & Johnson 2011; Badro
et al. 2018). Chemical fractionation has also major geodynamical implications, such as
the nature and abundance of radioactive and light elements in the core (Corgne et al.
2007; Siebert et al. 2012; Badro et al. 2015; Fischer et al. 2015). Geochemical data such as
isotopic ratios and partitioning coefficients between metal and silicates provide constraints
on the timing of accretion and physical conditions of core formation in terrestrial planets
(Li & Agee 1996; Kleine et al. 2002; Righter 2011; Siebert, Corgne & Ryerson 2011).
However, their interpretation depends on the degree of chemical equilibration between the
metal of the impactors’ core and the magma ocean (Rudge, Kleine & Bourdon 2010; Rubie
et al. 2011). Consequently, an estimate of the equilibration produced by the spherical RT
instability during the impact is required in order to properly interpret geochemical data. In
this paper, we examine the spherical RT instability produced during an impact using fluid
dynamics experiments.

The layout of this paper is as follows. In § 2, we introduce the set of non-dimensional
numbers used in this study, and present the experimental procedure. In § 3, we describe the
phenomenology of the cratering process and of the RT instability. In § 4, we obtain a model
for the crater radius evolution from energy conservation. In § 5, we use the acceleration
history of the cratering process to model the evolution of the thickness of the mixing layer
resulting from the RT instability. In § 6, we finally apply this model to the differentiation
of terrestrial planets.

2. Impact cratering experiments

2.1. Non-dimensional numbers
The impact dynamics of a liquid drop released above a deep liquid pool with a different
density and viscosity depends on its impact velocity Ui and radius Ri, the densities ρ1 and
ρ2 of the drop and the pool, the dynamic viscosities μ1 and μ2 of the drop and the pool,
the surface tension at the air–liquid interface σ , and the acceleration of gravity g. Since
these eight parameters contain three fundamental units, the Vaschy–Buckingham theorem
dictates that the impact dynamics depends on a set of five independent dimensionless
numbers. We choose the following set:

Fr = U2
i

gRi
, We = ρ1U2

i Ri

σ
, Re = ρ2UiRi

μ2
, ρ1/ρ2, μ1/μ2. (2.1a–e)

The Froude number Fr is a measure of the relative importance of impactor inertia and
gravity forces. It can also be interpreted as the ratio of the kinetic energy ρ1R3

i U2
i of the

impactor to its gravitational potential energy ρ1gR4
i just before impact. The Weber number

We compares the impactor inertia and interfacial tension at the air–liquid interface. The
Reynolds number Re is the ratio between inertial and viscous forces. The ratios ρ1/ρ2 and
μ1/μ2 compare, respectively, the density and the dynamic viscosity of the drop and the
pool. Although the Atwood number A = (ρ1 − ρ2)/(ρ1 + ρ2) is used widely in the context
of RT instabilities, we use instead the density ratio because it appears more naturally in the
equations governing the crater size evolution (see § 4). Since surface tension depends on
salt concentration, a surface tension ratio between the drop and the pool is also involved.
However, we ignore this parameter because the Weber number is much larger than unity
and the surface tension of the drop varies by less than 20 % compared with the pool.
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We also use a modified Froude number and a Bond number,

Fr∗ = ρ1

ρ2

U2
i

gRi
, Bo = ρ2gR2

i
σ

, (2.2a,b)

which are, respectively, the ratio of the kinetic energy of the impactor ρ1R3
i U2

i to the
change of potential gravitational energy ρ2gR4

i associated with the opening of a crater of
size Ri, and the ratio of buoyancy forces to interfacial tension at the air–liquid interface.
The Bond, Weber and modified Froude numbers are related through Bo = We/Fr∗. In
the following, time, lengths, velocities and accelerations are made dimensionless using
the drop radius and the impact velocity, i.e. using, respectively, Ri/Ui, Ri, Ui and U2

i /Ri.
These dimensionless quantities are denoted with a superscript star. For example, we use a
dimensionless time t∗ = t/(Ri/Ui).

Planetary impacts are generally classified between a strength regime and a gravity
regime, depending on the resistance to deformation of the target material (e.g. Melosh
1989). When the yield stress of the solid planetary surface, or the viscous stress of the
magma ocean, are negligible in comparison with the impact-induced stress, planetary
impacts are in the gravity regime. This typically happens when the impactor is larger than
a few kilometres (Holsapple 1993). In this case, the Reynolds number, the Weber number
and the Bond number are expected to be larger than 1010, due to kilometric impactors
with impact velocities of the order of 10 km s−1. This leads to extremely turbulent impact
conditions where surface tension effects are negligible. Assuming that the impact velocity
is close to the escape velocity of the target planet, i.e. Ui � √

gRt with Rt the radius of the
target, the modified Froude number scales as

Fr∗ � ρ1

ρ2

Rt

Ri
. (2.3)

Here Fr∗ is then of the order of 1 for impactors comparable in size with the target, but
increases by several orders of magnitude for small colliding bodies, e.g. the Froude number
is approximately 104 for a 1 km radius body impacting an Earth-sized planet. From the
perspective of the impactor, small impacts are thus dynamically more extreme than giant
impacts. Since the metal core of the impactor is mainly composed of iron, the density
ratio and the viscosity ratio are, respectively, expected to be of the order of ρ1/ρ2 � 2 and
μ1/μ2 � 0.1 (Solomatov 2015).

Table 1 compares the value of the dimensionless parameters in our drop impact
experiments and in planetary impacts. Since experimental Reynolds numbers (Re �
2500) and Weber numbers (We � 60) are large, viscosity and surface tension are mostly
negligible during crater opening (e.g. Olevson 1969; Macklin & Metaxas 1976). Although
Re and We are much larger during planetary impacts than in our experiments, this
means that the cratering process is governed by inertia and buoyancy forces, in both our
experiments and planetary impacts. We thus focus on the gravity regime (e.g. Melosh
1989), where the cratering dynamics depends mainly on two dimensionless parameters,
the Froude number Fr and the density ratio ρ1/ρ2.

In order to characterise the crater geometry and the RT instability following the impact,
we vary the drop radius, drop density and impact velocity. In our experiments, we
obtain Froude numbers and modified Froude numbers larger than unity, in the range
Fr � 60–1200 and Fr∗ � 60–2100, respectively. We focus on five density ratios ρ1/ρ2 �
{1.0, 1.2, 1.4, 1.6, 1.8}, in comparison with a reference case without density contrast.
We have also conducted a few experiments at ρ1/ρ2 � 0.8 using ethanol in the drop.
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Dimensionless number Experiments Planetary impacts

Fr 60–1200 1–105

Fr∗ 60–2100 1–105

We 60–1300 �1014

Bo 0.7–1 �1010

Re 2500–13 500 �1011

ρ1/ρ2 1–1.8 2
A 0–0.29 0.33
μ1/μ2 0.9–1.2 0.1

Table 1. Typical values of the main dimensionless parameters ((2.1a–e) and (2.2a,b)) in the experiments,
and typical planetary impacts. For planetary impacts, dimensionless numbers are estimated with a density of
4000 kg m−3 for molten silicates and of 8000 kg m−3 for molten metal, a dynamic viscosity of 0.1 Pa s for
molten silicates and of 0.01 Pa s for molten metal (Solomatov 2015). Surface tension between air and molten
silicates, and between air and molten metal, are taken to be 0.3 J m−2 (Taniguchi 1988) and 1.8 J m−2 (Wille,
Millot & Rifflet 2002), respectively. We assume the impact velocity to be one to three times the escape velocity
(Agnor, Canup & Levison 1999; Agnor & Asphaug 2004). We assume the impactor-to-target radius to be in the
range 10−4–1.

The upper limit of our experimental density ratios is close to the density ratio expected
during a planetary impact.

2.2. Experimental set-up

2.2.1. Drop production, fluids and cameras
In these experiments, we release a liquid drop in the air above a deep liquid pool contained
in a 16 cm × 16 cm × 30 cm glass tank (figure 2). The pool level is set at the top of the
tank. The aim is to minimise the thickness of the meniscus on the sides of the tank in
order to obtain an image of the crater all the way to the surface.

We generate the drop using a needle supplied with fluid by a syringe driver at a slow
and steady pace. When the weight of the drop exceeds the surface tension forces, the drop
comes off. We use a metallic needle with an inner diameter of 1.6 mm and a nylon plastic
needle with an inner diameter of 4.7 mm, generating two series of drop size with typical
radius in the range 1.7–2.0 mm and 2.3–2.7 mm, respectively. We estimate the drop size,
which depends on the drop density, for each experiment based on a calibration using mass
measurements of dozens of drops, independent density measurement, and assuming the
drop is spherical. We validate this method using high-speed pictures of the drop prior to
impact where we can directly measure the drop radius.

Typical impact velocities are in the range 1–5 m s−1. We calculate the impact velocity
for each experiment using a calibrated free-fall model for the drop, including a quadratic
drag. We also validate this method using high-speed pictures of the drop prior to impact
where we can directly measure the drop velocity.

We use an aqueous solution of caesium chloride CsCl (ρ1 = 998–1800 kg m−3, μ1 =
0.9 × 10−3–1.2 × 10−3 Pa s) in the drop, and water (ρ2 = 998 kg m−3, μ2 = 10−3 Pa s) in
the pool. In a few experiments, we also use pure ethanol (ρ1 = 790 kg m−3, μ1 = 1.2 ×
10−3 Pa s) in the drop. The density is measured for each experiment using an Anton Paar
DMA 35 Basic densitometer. Since the typical measurement errors on density are less than
0.1 %, we neglect errors on density. We obtain viscosities using data from Haynes (2016).
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Needle

High-speed
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Long-pass
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Backlight

LIF

Sheet

opticLaser Mirror

Water

Drop

(water + CsCl)

(a) (b)

(c)

Figure 2. (a) Schematic view of the experimental set-up, including backlight and LIF configuration set-up.
(b) Snapshot obtained using the backlight configuration. (c) Snapshot obtained using the LIF configuration.

We neglect errors on viscosity since the typical error is less than 0.01 %. The surface
tension at the air–water interface is σ = 72.8 ± 0.4 mJ m−2 (Haynes 2016).

We obtain errors on the velocity and radius of the impacting drop from the variability
in mass measurements and from error propagation in the velocity model, respectively. We
then propagate uncertainties on fluid properties and impact parameters to uncertainties on
the dimensionless numbers ((2.1a–e) and (2.2a,b)).

We use two imaging configurations, backlight and laser-induced fluorescence (LIF)
configurations, most suited to determine the crater shape and characterise the mixing layer
thickness, respectively. In both configurations, we position the camera at the same height
as the water surface. We record images at 1400 Hz with a 2560 × 1600 pixels resolution
(34 μm pixel−1), and a 12 bits dynamic range, using a high-speed Phantom VEO 640L
camera and a Tokina AT-X M100 PRO D Macro lens.

2.2.2. Backlighting
In the backlight configuration (figure 3a), we measure the evolution of the mean crater
radius. The crater is illuminated from behind by a light emitting diode (LED) backlight
panel and it appears dark owing to refraction of light at the air–water interface. Image
processing involves spatial calibration using a sight, background removal, intensity
threshold, image binarisation, and allows us to determine the crater boundary.

We then fit the experimental crater boundary radius Rexp
θ (θ, t), which depends on the

polar angle θ and time t, using a set of shifted Legendre polynomials P̃l up to degree
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z z

Rθ
exp (θ)Rexp hexp

e ′
θ

e′
r

O O
x x

θ θ

(a) (b)

Figure 3. (a) Detection of the crater boundary. The dashed line corresponds to the fitted crater boundary using
a set of shifted Legendre polynomials up to degree l = 5, the degree l = 0 gives the solid line corresponding
to the mean crater radius. (b) Detection of the mixing layer. The solid line corresponds to the fitted crater
boundary using a set of Legendre polynomials up to degree l = 5. The dashed lines correspond to the weighted
average of the mixing layer boundaries, calculated using the second moment of the LIF intensity about the
mean position of the layer. Blue arrows indicate the position of the plumes produced by the instability.

l = 5, as follows:

Rexp
θ (θ, t) =

5∑
l=0

aexp
l P̃l(cos θ), (2.4)

where aexp
l are the experimental fitted coefficients. The shifted Legendre polynomials are

an affine transformation of the standard Legendre polynomials P̃l(x) = Pl(2x − 1), and are
orthogonal on [0, 1], i.e. on a half-space. We obtain the experimental mean crater radius
from the l = 0 coefficient, i.e. Rexp = aexp

0 .
Uncertainties are dominated by the extrinsic variability between experiments in the same

configuration. We repeat each experiment at least four times consecutively in order to
estimate uncertainties on dimensionless parameters and target quantities. This allows us
to include uncertainties resulting from reflections and refraction at the crater boundary.
In comparison, the intrinsic uncertainties related to the spatial resolution of the camera,
spatial calibration and image processing, are small. Spatial resolution of the camera,
30 pixel mm−1, is adequate given the size of the target, allowing this uncertainty to be
neglected. We also neglect spatial calibration errors, typically around 0.2 pixel. Finally,
given the camera resolution and dynamic range, we obtain a good contrast on the crater
and the impacting drop, which allows us to neglect errors related to image processing.

2.2.3. LIF
In the LIF configuration (figure 3b), we measure the thickness of the mixing layer and
the number of plumes produced by the RT instability. The fluorescent dye (Rhodamine
6G, 1.5 mg l−1) contained in the fluid of the drop is excited by a vertical laser sheet
(532 nm). The fluorescent dye then re-emits light between 500 and 700 nm. This emission
signal is then recorded by the camera and isolated from the laser signal with a long-pass
filter (>540 nm). We generate the laser sheet using a 10 W Nd:YAG continuous laser in
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combination with a divergent cylindrical lens and a telescope, producing a 1 mm thick
sheet. We divert the laser sheet vertically using a 45◦ mirror beneath the tank. In order
to isolate the mixing layer, we process images with spatial calibration using a sight,
background removal, and laser sheet corrections, removing sheet inhomogeneities. We
then filter and remove artefacts due to reflections on the surface and on the air–water
interface. In particular, we remove the internal reflection of the mixing layer (e.g.
figure 2c). We eventually obtain a measured LIF intensity field from which we can identify
the mixing layer. Scalar diffusion of the dense liquid is negligible since the diffusion length
during crater opening (typically 50 m s) is approximately 10 μm = 0.3 pixel. During crater
opening, diffusion of Rhodamine 6G is even more negligible.

As for the backlight configuration, we fit the position of the experimental crater
boundary Rexp

θ (θ, t), which corresponds to the inner boundary of the mixing layer, using
a set of shifted Legendre polynomials up to degree l = 5. We then define a local frame of
reference (e′

r, eθ
′), where e′

r is normal to the fitted crater boundary and e′
θ is tangent to it.

For each polar position θ about the crater boundary, we calculate the local mean position
of the mixing layer 〈r′〉, using the position of the pixels in the local frame of reference
(r′, θ) and the corresponding LIF intensity field I:

〈r′〉(θ) =
∫

r′I(r′, θ) dr′∫
I(r′, θ) dr′ . (2.5)

We then calculate the local standard deviation σr′ about the local mean position of the
mixing layer:

σr′(θ) =
√∫

[r′ − 〈r′〉(θ)]2 I(r′, θ) dr′∫
I(r′, θ) dr′ . (2.6)

We eventually obtain the experimental mixing layer thickness hexp with

hexp =
∫ π/2
−π/2 2σr′(Rexp

θ )2| sin θ |w(θ) dθ∫ π/2
−π/2(R

exp
θ )2| sin θ |w(θ) dθ

, (2.7)

using a weighted average where w = 1/[1 + exp{k(|θ | − θ0)}] is a symmetric logistic
weight function whose steepness is k = 30 and whose sigmoid midpoint is θ0 = π/3.
The logistic function allows us to give more weight to the bottom of the crater, between
θ = 0 and θ = θ0, and less to the top of the crater, close to θ = ±π/2. The use of such a
weight function is motivated by the polar dependency of the LIF signal quality. The crater
is indeed illuminated from below, so that the laser sheet undergoes absorption (due to the
fluorescent dye) and refraction (due to small scale variations of the index of refraction)
as it goes through the mixing layer. Imaging of the mixing layer may also be perturbed
directly by the air–water interface, causing reflection of the laser sheet. Consequently,
close to the surface, i.e. at θ = ±π/2, imaging of the mixing layer may undergo significant
perturbations, leading to a poor estimate of its extent. All these effects are amplified when
the crater slightly deviates from a hemispherical shape. When the drop is denser than the
pool, the crater is stretched downward, leading to an ellipsoidal crater centred below the
surface of the pool. At low Weber and Froude numbers, the crater is also deformed by the
propagation of a capillary wave which is superimposed on the density effects. The path
of the laser sheet through the mixing layer thus increases, and is more likely to cross the
air–water interface.

We also count manually the number of plumes produced by the RT instability for each
experiment at the same dimensionless time t∗ ∼ 10 (figure 3b, inset). This time was chosen
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from visual inspections, which suggest that at this time the plumes have not yet interacted
significantly with each other, which is relevant since this number of plumes is to be
compared with a scaling of the early-time instability wavelength (Appendix A).

As in the backlight configuration, uncertainties are dominated by the extrinsic variability
between experiments in the same configuration, and hence, we repeat each experiment
at least four times consecutively. We neglect intrinsic uncertainties related to the spatial
resolution of the camera, the spatial calibration and image processing, since as in the
backlight configuration they are still comparatively small.

3. Phenomenology

In our experiments, the development of the RT instability is governed by the crater
evolution following the impact, and particularly by its acceleration history. Using both
backlight and LIF configurations, we characterise the air–water interface evolution and
the mixing layer evolution. From these measurements, we describe the observed RT
instability. We base our description on two typical experiments, with and without density
contrast, with similar evolution of the crater radius, in the backlight (figure 4a,c) and the
LIF configurations (figure 4b,d). Experiments without density contrast are also available
as animations in supplementary movie 1 (backlight configuration) and supplementary
movie 2 (LIF configuration), while experiments with density contrast are available
in supplementary movie 3 (backlight configuration) and supplementary movie 4 (LIF
configuration) – available at https://doi.org/10.1017/jfm.2022.111.

3.1. Crater geometry
The impact of the drop first causes the formation of an impact crater with a flat bottom
due to the spreading of the drop (figure 4a, i). The liquid of the drop is deformed and
accumulated on the crater floor (figure 4b, i) on a time scale t∗ � 2–3, akin to previous
results (e.g. Engel 1961, 1962). As the crater grows, the cavity becomes hemispherical, on
a time scale t∗ � 10, as a result of the overpressure produced at the contact point between
the impacting drop and the surface (figure 4a, ii,iii). The liquid of the drop then spreads
over the crater sides toward the surface, producing a layer with an approximately uniform
thickness at the surface of the crater (figure 4b, iii,iv).

The impact also produces a cylindrical fluid crown (Fedorchenko & Wang 2004)
(figure 4a, i–iv), along with a surface wave propagating radially outward from the crater on
the horizontal surface (Leng 2001). As can be seen from the LIF intensity field (figure 4b,
i–iv), the fluid of the drop mostly accumulates on the surface of the crater, leaving
the crown mainly composed of fluid from the pool. As soon as the crown decelerates,
the cylindrical sheet produces liquid ligaments around the crown rim, which eventually
fragment into drops (figure 4a, ii,iii) (Krechetnikov & Homsy 2009; Zhang et al. 2010;
Agbaglah et al. 2013).

When the crater reaches its maximum size, the crater is almost hemispherical (figure 4a,
iv). When ρ1/ρ2 > 1, the crater cavity is entrained downward, which stretches vertically
the crater (figure 4c, iv). After reaching its maximum size, the crater starts to collapse due
to buoyancy forces (figure 4a, v). The resulting converging flow leads to the formation of
a thick upward jet which, in view of the LIF intensity field (figure 4b, vi), appears to be
made mostly of liquid from the drop.
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(a)

(b)
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(d)

Figure 4. Liquid drop impact onto a deep liquid pool without density contrast (ρ1/ρ2 = 1) in the backlight
(Fr = 483) (a) and the LIF (Fr = 481) (b) configuration. Liquid drop impact onto a deep liquid pool with
density contrast (ρ1/ρ2 = 1.8) in the backlight (Fr = 542) (c) and the LIF (Fr = 572) (d) configuration. The
liquid drop impact sequences are also available as animations in supplementary movies 1 (a), 2 (b), 3 (c) and
4(d).

3.2. RT instability
The presence of an instability at the interface between the drop and target fluids is
particularly clear when comparing experiments without and with a density contrast
between the two liquids (figure 4). We will also base our description on figure 5,
which shows composite images obtained from sequences of LIF images from these two
experiments. They are built by extracting from each LIF image a column of pixels centred
on the crater vertical axis of symmetry, before juxtaposing them to show the LIF intensity
as a function of vertical position and time. This provides a qualitative picture of the
evolution of the radial dispersion of the liquid drop.

The early-time evolution of the drop liquid is similar in both experiments up to
t∗ ∼ 10. The liquid from the drop spreads over the crater floor and forms a thin layer
of approximately uniform thickness (figure 4 (all subpanels i,ii) and figure 5). In the
experiment with no density contrast (figure 4a,b and figure 5a), the thickness of the layer
keeps decreasing with time as the crater grows. This is a direct consequence of the crater
expansion, the liquid of the drop being redistributed over an increasingly large surface
area.

The behaviour of the layer is markedly different when the drop is denser than the pool.
Figure 4(c,d) and figure 5(b) show that the thickness of the mixing layer initially decreases
up to t∗ � 10, but it then increases over time while small scale corrugations of the interface
evolve into radially growing plumes. The fine scale structure of the layer as seen from
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Figure 5. Composite images showing the LIF intensity as a function of vertical position and time, on the crater
axis of symmetry (θ = 0). The two panels have been build from experiments without (a) (ρ1/ρ2 = 1.0) and
with (b) (ρ1/ρ2 = 1.8) a density contrast between the drop and the pool. The surface of the pool prior to impact
is at z = 0.

the LIF intensity field (figure 4d, iii,iv) is reminiscent of the structure of mixing layers
observed in RT experiments in planar configurations (e.g. Dalziel et al. 1999).

These observations can be rationalised as follows. During the crater opening phase,
the rate at which the crater grows gradually decreases with time, which results in a
deceleration of the boundary between the mixing layer and the surrounding liquid. This
situation is known to be unstable with respect to the RT instability when the liquid from
the drop is heavier than the liquid from the pool (Taylor 1950). Measurements of the crater
acceleration as a function of time (figure 7c of § 4.2) shows that the deceleration of the
crater boundary can be more than 10 times larger than the acceleration of gravity, which
explains why the dense liquid plumes grow radially outward rather than in the vertical
direction. The growth of the RT instability tends to increase the thickness of the mixing
layer. However, the expansion of the crater spreads the dyed liquid over an increasing large
surface area, which tends to make the layer thinner. The competition between these two
effects explains why the thickness of the mixing layer first decreases as the crater expands
and then increases when the RT instability dominates.

The instability first goes through a stage where the perturbations of the interface are
small in comparison with the radius of the crater and the wavelength of the instability
(figure 4d, i,ii). The growth of the RT instability competes with the geometrical expansion
of the crater, which stretches the instabilities, hence reducing the amplitude of the
perturbations and increasing their wavelength. This initial stage is dominated by the fast
vigorous crater expansion, which contributes to decrease the mixing layer thickness by
spreading the volume of the layer over an increasingly large surface area. Considering the
resolution of our experiments, we are not able to observe the small initial perturbations
that could exist in spite of the vigorous crater expansion. We observe that the amplitude of
the perturbations eventually reaches the same size as the instability wavelength at t∗ � 10.
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Rayleigh–Taylor instability in impact cratering experiments

The two fluids involved being miscible, i.e. surface tension is zero, all wavenumbers
are expected to be unstable with respect to the RT instability (Chandrasekhar 1955). In
addition, owing to larger velocity gradients at large wavenumbers, viscosity is responsible
for the energy dissipation of short wavelengths. The growth rate of the instability then
decreases as the inverse of the wavenumber (Chandrasekhar 1961). Consequently, a mode
of maximum instability depending on the acceleration history and impact parameters is
expected to develop. This mode likely determines the typical number of plumes and the
corresponding wavelength. The growth rate of the instability and the wavelength selection
are also possibly influenced by the thin layer configuration, with a stabilising effect, if the
mixing layer thickness is much smaller than the typical instability wavelength (Keller &
Kolodner 1954; Villermaux 2020).

At longer times (t∗ � 10), geometrical effects produced by crater expansion loose
intensity and become comparable with the instability. This coincides with a stage where
the instability is strongly influenced by three-dimensional effects, leading to the formation
of plumes below the hemispherical surface of the crater (figure 4d, iii). As the instability
grows towards a more turbulent layer, the mode of maximum instability is modified by
nonlinear interactions. Plumes then start interacting with each other, producing a mixing
layer (figure 4d, iv).

The importance of the density ratio is apparent in figure 6, which shows the LIF intensity
when the crater reaches its maximum size, as a function of the Froude number and density
ratio. For density ratios smaller than unity (first column), no instability is observed. For
density ratios about unity (second column), small corrugations are observed between the
dyed liquid and the ambient, possibly resulting from a large-scale shear instability in the
layer. During crater opening, the air–water interface is not exactly hemispherical and the
velocity field is not exactly radial (Bisighini et al. 2010). This creates a velocity shear
across the interface, which may lead to the development of a Kelvin–Helmholtz instability.
For density ratios larger than unity (third and fourth columns), the thickness of the dyed
liquid layer is significantly larger than in other cases, as a consequence of the development
of the RT instability. For a given Froude number, the mixing layer thickness obtained when
the crater reaches its maximum size increases with the density ratio. For a given density
ratio, the mixing layer thickness does not change significantly with the Froude number
(figure 6).

A point of terminology may be in order here. The configuration of our experiments
falls somewhat in-between the canonical RT configuration, in which the acceleration is
constant, and incompressible Richtmyer–Meshkov instability, in which the acceleration
changes impulsively (Richtmyer 1960; Meshkov 1969; Jacobs & Sheeley 1996). Since in
our experiments the acceleration varies continuously during the crater opening phase, we
have chosen to refer to it as an RT instability, as has been done before in the literature (e.g.
Mikaelian 1990, 2016). However, the magnitude of the acceleration decreases quite fast,
by almost two orders of magnitude, (figure 7c of § 4.2), giving it a somewhat impulsive
nature. This suggests that the development of the instability may share some similarities
with the Richtmyer–Meshkov instability.

4. Evolution of the crater size

Experiments in the backlight configuration provide the time evolution and the maximum
of the mean crater radius, a required step in the understanding of the RT instability. We
derive an energy model for the evolution of the crater radius, velocity and acceleration and
compare it with experiments, from which we obtain scaling laws for the maximum crater
radius and the crater opening time.
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Figure 6. Snapshots of the LIF intensity field when the crater reaches its maximum size, as a function of the
Froude number and the density ratio.

4.1. Energy conservation model
We use an energy conservation model (Engel 1966, 1967; Leng 2001) accounting for the
density difference between the impacting drop and the targeted pool. We assume the
crater shape to be hemispherical, and the flow around the crater to be incompressible
and irrotational. Since the crater opening dynamics is mainly driven by impactor inertia
(Re � 2500) and gravity forces, viscous dissipation is not included in the model. The
formation of the crown and the surface wave during the impact, in particular their potential,
kinetic, and surface energies, are not explicitly included in the model.

On the basis of these assumptions, the sum of the crater potential energy Ep, the crater
surface energy Eσ and the crater kinetic energy Ek, at any instant of time is equal to the
impacting drop kinetic energy Ei just before the impact. The potential energy of the crater
is

Ep =
∫∫∫

ρ2gz dV =
∫ R

0
ρ2gπ(R2 − z2)z dz = 1

4πρ2gR4, (4.1)

where R is the mean crater radius (§ 2) and z is the depth. The crater surface energy
corresponds to the formation of new surface due to crater opening. It is equal to the
difference of surface energy between the initially planar surface area of the pool πR2

and the hemispherical surface area of the cavity 2πR2, i.e.

Eσ = σ(2πR2 − πR2) = σπR2. (4.2)

The crater kinetic energy corresponds to the kinetic energy of the pool fluid below the
initial surface and is related to the flow velocity potential. A radial velocity potential of
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Rayleigh–Taylor instability in impact cratering experiments

the form Φ = −A/r, the solution of the Laplace equation ∇2Φ = 0, is able to satisfy the
boundary conditions at r = R. At the crater boundary, the radial velocity is ur(r = R) =
(∂Φ/∂r)r=R = Ṙ, giving A = ṘR2 and

Φ = − ṘR2

r
. (4.3)

The radial velocity, the tangential velocity and the resulting velocity are, respectively,

ur = ṘR2

r2 ,

uθ = 0,

‖u‖ =
√

u2
r + u2

θ = ṘR2

r2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4)

The crater kinetic energy is then

Ek =
∫

1
2
ρ2‖u‖2 dV =

∫ +∞

R
πρ2Ṙ2R4 1

r2 dr = πρ2R3Ṙ2. (4.5)

The impacting drop kinetic energy is

Ei = 2
3πρ1R3

i U2
i . (4.6)

Energy conservation between Ep, Eσ , Ek and Ei gives

1
4ρ2gR4 + σR2 + ξρ2R3Ṙ2 = 2

3φρ1R3
i U2

i , (4.7)

where φ and ξ are fitted parameters. The coefficient φ corresponds to a correction
parameter accounting for the terms not included in the model, i.e. viscous dissipation
and crown energy terms. The coefficient ξ is a correction parameter accounting for the
difference between the deliberately simplified velocity field used in the model and the true
flow.

Normalising the crater radius and opening velocity by the impacting drop radius Ri and
velocity Ui, respectively, energy conservation becomes

1
4

1
Fr∗ R∗4 + 1

Fr∗Bo
R∗2 + ξ

(
ρ1

ρ2

)−1

R∗3Ṙ∗2 = 2
3
φ, (4.8)

where R∗ = R/Ri and Ṙ∗ = Ṙ/Ui are dimensionless.
For each experiment, we calculate φ as follows. Assuming that the velocity field

vanishes simultaneously in the pool (Prosperetti & Oguz 1993), the crater kinetic energy
vanishes when the crater reaches its maximum size, which, taking R∗ = R∗exp

max and Ṙ∗ = 0
in (4.8), gives

φ = 3
2

1
Fr∗

(
R∗exp

max

)2
[

1
4

(
R∗exp

max

)2 + 1
Bo

]
. (4.9)

Knowing φ, we then fit the time evolution of the mean crater radius to the experiments
with (4.8) using a least squares method, the kinetic energy correction parameter ξ being a
fit parameter. Fitting φ and ξ for each experiment shows that both parameters depend on
the Froude number (see Appendix B for details). Knowing φ and ξ , we solve the ordinary
differential equation (4.8) using the boundary condition R∗(1) = 1. This assumes that the
crater radius is initially the same as the drop radius, at t = Ri/Ui.
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Figure 7. Time evolution of the normalised mean crater radius R∗ (a), the normalised mean crater velocity
Ṙ∗ (b) and the mean crater acceleration R̈ normalised by the acceleration of gravity g (c), for two impact
parameters. Circles and solid lines correspond, respectively, to experimental data and fitted energy model
(4.8). Dashed lines and dashed–dotted lines correspond, respectively, to early-time power-law solution (4.10)
and late-time quadratic solution (4.13) with ρ1/ρ2 = 1.8 and Fr = 542.

4.2. Time evolution
Figure 7 shows the evolution of the mean crater radius (figure 7a), the mean crater velocity
(figure 7b) and the mean crater acceleration (figure 7c). This figure compares the fitted
energy model with experimental data, in two reference cases, with and without density
difference between the impacting drop and the pool. In both cases, the fitted mean crater
radius, opening velocity and acceleration are in close agreement with the experimental
data. In the ρ1/ρ2 = 1 case, φ = 0.40 and ξ = 0.35. In the ρ1/ρ2 = 1.8 case, φ = 0.39
and ξ = 0.34. Experimental data are consistent with the qualitative observations of § 3.
The crater first opens, before it reaches its maximum size and eventually starts to collapse.

At early times, the crater potential and surface energies are negligible in comparison
with the crater kinetic energy. This implies that the kinetic energy of the impactor is
converted exclusively into kinetic energy of the flow around the crater. We thus neglect
the two first terms on the left-hand side of (4.8), which in this limit gives

R∗ = [
Q(t∗ − 1) + 1

]2/5
,

Ṙ∗ = 2
5

Q
[
Q(t∗ − 1) + 1

]−3/5
,

R̈∗ = − 6
25

Q2 [Q(t∗ − 1) + 1
]−8/5

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.10)

where

Q =
(

25
6

φ

ξ

ρ1

ρ2

)1/2

. (4.11)

This consistently verifies the imposed boundary condition R∗(1) = 1, and depends on the
density ratio ρ1/ρ2, and on the correction parameters φ and ξ . It is in agreement with
experimental data at early times (figure 7, dashed lines) and similar scaling laws from
previous works (Leng 2001; Bisighini et al. 2010).

At late times, the crater velocity becomes very small. If surface tension can be neglected,
taking the time derivative of (4.8), and then making the assumption Ṙ∗ = 0 gives

R̈∗ = −1
2

1
Frξ

. (4.12)
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Rayleigh–Taylor instability in impact cratering experiments

Using R∗(t∗max) = R∗
max and Ṙ∗(t∗max) = 0 as boundary conditions, we obtain a quadratic

solution:

R̈∗ = −1
2

1
Frξ

,

Ṙ∗ = −1
2

1
Frξ

(t∗ − t∗max),

R∗ = R∗
max − 1

4
1

Frξ
(t∗ − t∗max)

2.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.13)

This is in good agreement with experimental data at late times using the experimentally
determined values of R∗

max and t∗max (figure 7, dash–dotted lines). Using scaling laws for
R∗

max and t∗max (to be obtained in § 4.3), the late-time quadratic evolution of the mean crater
radius can be fully predicted as function of φ and ξ .

4.3. Maximum crater radius and opening time
We first consider the limit of no surface tension (Bo → +∞), which amounts to neglecting
the second term on the left-hand side of (4.8). The maximum size of the crater is then
obtained by taking Ṙ∗ = 0 in (4.8), before solving for R∗ to obtain

R∗
max|Bo→+∞ =

(
8
3

)1/4
φ1/4Fr∗1/4

. (4.14)

Figure 8(a) shows the maximum crater size in our experiments as a function of a least
squares best-fit power law scaling in the form

R∗lsq

max = c1Fr∗c2
. (4.15)

The exponent c2 = 0.23 ± 0.004 for Fr∗ is close to the theoretical 1/4 prediction of (4.14),
and is in agreement with previous works on liquids (Prosperetti & Oguz 1993; Leng 2001;
Bisighini et al. 2010) and granular materials (Walsh et al. 2003; Takita & Sumita 2013).
The prefactor c1 = 1.07 ± 0.03 is close to the value predicted by the model (4.14): since
φ = 0.38 ± 0.04 in our experiments, the predicted model prefactor is indeed equal to
1.0 ± 0.03. The prefactor c1 is also consistent with those obtained in previous works (e.g.
c1 = 1.1 in Leng (2001)).

We now turn to estimating the crater opening time, defined as the time t∗max at which
the maximum crater size is reached. Having neglected surface tension, we integrate
equation (4.8) between t∗ = 0 and t∗ = t∗max|Bo→+∞ to obtain

t∗max|Bo→+∞ = ξ1/2
(

ρ1

ρ2

)−1/2 ∫ R∗
max|Bo→+∞

0

R∗3/2(
2
3
φ − 1

4
R∗4

Fr∗

)1/2 dR∗. (4.16)

Using (4.14) for R∗
max|Bo→+∞ and integrating, we obtain

t∗max|Bo→+∞ = 1
2

(
8
3

)1/8

B
(

1
2
,

5
8

)(
ρ1

ρ2

)−1/2

φ1/8ξ1/2Fr∗5/8
, (4.17)

where B is the beta function.
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Figure 8. (a) Experimental normalised maximum crater radius R∗exp

max, as a function of the least squares best-fit
power-law scaling R∗lsq

max (4.15). (b) Experimental normalised crater opening time t∗exp

max , as a function of the least
squares best-fit power-law scaling t∗lsq

max (4.18). Colours scale as the density ratio ρ1/ρ2. Circles and crosses
correspond, respectively, to large and small drop size series.

Figure 8(b) shows the opening time in our experiments as a function of a least squares
best-fit power law scaling in the form

t∗
lsq

max = c3(ρ1/ρ2)
c4Fr∗c5

. (4.18)

The exponent c4 = −0.53 ± 0.03 for ρ1/ρ2 agrees with the theoretical −1/2 prediction of
(4.17). The exponent c5 = 0.61 ± 0.01 for Fr∗ is also close to the 5/8 = 0.625 prediction
of (4.17), and agrees with previous works at ρ1/ρ2 = 1 (Leng 2001; Bisighini et al. 2010).
The prefactor c3 = 0.87 ± 0.06 is close to the value predicted by (4.17): since φ = 0.38 ±
0.04 and ξ = 0.34 ± 0.03 in our experiments, the prefactor predicted by the model is
indeed equal to 0.79 ± 0.04. The prefactor c3 is also consistent with prefactors obtained
in previous works (e.g. c3 = 0.59 in Leng (2001)).

In the above paragraphs, we develop a leading-order model that neglects surface tension.
We now consider the effect of surface tension on the maximum crater size and crater
opening time. With only the kinetic energy term set to zero in (4.8), we obtain the
maximum crater radius including surface tension:

R∗
max = R∗

max|Bo→+∞

[√
1 + 3

2
(
√

Fr∗φBo)−2 −
√

6
2

(
√

Fr∗φBo)−1

]1/2

. (4.19)

This scaling depends on the dimensionless parameter (
√

Fr∗φBo)−1, which brings in
the effect of surface tension on the cratering dynamics. When Bo → +∞, we have
(
√

Fr∗φBo)−1 → 0 and we retrieve the scaling without surface tension (4.14).
Figure 9(a) shows the maximum crater radius normalised by the maximum crater

radius scaling without surface tension R∗exp

max/R∗
max|Bo→+∞, as a function of (

√
Fr∗φBo)−1.

This corresponds to the ratio between the experimental data and the scaling law without
surface tension (4.14). As expected, the scaling without surface tension overestimates the
experimental maximum crater radius because it neglects surface energy. This overestimate
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Figure 9. (a) Experimental maximum crater radius normalised by the maximum crater radius scaling without
surface tension R∗exp

max/R∗
max|Bo→+∞ (4.14), as a function of 1/(

√
φFr∗Bo). The solid line corresponds to the

surface tension correction of (4.19). (b) Experimental crater opening time normalised by the crater opening
time scaling without surface tension t∗exp

max/t∗max|Bo→+∞ (4.17), as a function of 1/(
√

φFr∗Bo). The solid line
corresponds to the surface tension correction of (4.22). Colours scale as the density ratio ρ1/ρ2. Circles and
crosses correspond, respectively, to large and small drop size series.

decreases with (
√

Fr∗φBo)−1, i.e. when surface tension effects become negligible in
comparison with impactor inertia and gravity forces. The difference between experimental
data and the scaling law without surface tension is properly accounted for by (4.19).

We finally obtain an expression for the crater opening time by integrating equation (4.8)
between t∗ = 0 and t∗ = t∗max:

t∗max = ξ1/2
(

ρ1

ρ2

)−1/2 ∫ R∗
max

0

R∗3/2(
2
3
φ − R∗2

Fr∗Bo
− 1

4
R∗4

Fr∗

)1/2 dR∗. (4.20)

Writing R = R∗/R∗
max, this gives

t∗max = t∗max|Bo→+∞
4

B
(

1
2 , 5

8

) ∫ 1

0

f (x)5/4R3/2[
1 − R4 + 2xf (x)(R4 − R2)

]1/2 dR, (4.21)

where f (x) = √
1 + x2 − x and x = (2Fr∗φBo2/3)−1/2. Using a first-order Taylor

expansion in (
√

Fr∗φBo)−1, we obtain

t∗max = t∗max|Bo→+∞

⎡
⎣1 −

√
6

8

B
(

1
2 , 1

8

)
B
(

1
2 , 5

8

)(
√

Fr∗φBo)−1 + O((
√

Fr∗φBo)−2)

⎤
⎦ . (4.22)

Figure 9(b) shows the crater opening time normalised by the crater opening time
scaling without surface tension t∗exp

max/t∗max|Bo→+∞, as a function of (
√

Fr∗φBo)−1.
This corresponds to the ratio between experimental data and the scaling law without
surface tension (4.17). Although this scaling law without surface tension is close to the
experimental opening time, it increasingly overestimates experiments as (

√
Fr∗φBo)−1

increases, i.e. when surface tension effects become significant. When surface energy is
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Figure 10. (a) Experimental mean crater radius normalised by the maximum crater radius scaling
R∗exp

/R∗
max|Bo→+∞, as a function of time normalised by the crater opening time scaling t∗/t∗max|Bo→+∞, with

scaling laws neglecting surface tension. (b) Experimental mean crater radius normalised by the maximum
crater radius scaling R∗exp

/R∗
max, as a function of time normalised by the crater opening time scaling t∗/t∗max,

with scaling laws including surface tension. The thick solid line corresponds to the solution of (4.8) when
1/(

√
φFr∗Bo) = 0, i.e. without surface tension. Colours scale as 1/(

√
φFr∗Bo).

significant, we indeed expect the crater to open at a slower rate. The difference between
experimental data and the scaling law without surface tension is corrected in part by
(4.22), which is in reasonable agreement with the experimental data (the relative error is
±10 %). The residual differences between experimental and predicted crater opening time
may come from our assumption that the correction parameters φ and ξ are independent of
time. This also explains why residual differences of the maximum crater radius are smaller.
Since we obtain the maximum crater radius assuming that the kinetic energy term of (4.8)
vanishes, we predict the maximum crater radius without time integration.

These scaling laws, with and without surface tension, are now discussed by normalising
the time evolution of the crater radius for all experiments (figure 10). Figure 10(a) shows
the crater radius normalised by scaling laws neglecting surface tension ((4.14) and (4.17)).
With this normalisation, we expect the experimental crater radius to collapse on the case
without surface tension (figure 10a, red line). However, we obtain a residual dependency
on the dimensionless parameter related to surface tension (

√
Fr∗φBo)−1. Figure 10(b)

shows the crater radius normalised by scaling laws including surface tension ((4.19)
and (4.22)). We find that the experimental crater radius collapses better when accounting
for surface tension effects (figure 10b).

Although the maximum crater radius collapses in figure 10(b), there is a residual
dispersion on the crater radius evolution at early times when surface tension effects are
significant. This is explained by renormalising the crater radius as R̃ = R∗/R∗

max|Bo→+∞
and time as t̃ = t∗/t∗max|Bo→+∞ in (4.8). This gives

R̃4 +
√

6√
Fr∗φBo

R̃2 + 16

B
(

1
2 , 5

8

)2 R̃3

(
dR̃
dt̃

)2

= 1. (4.23)
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Rayleigh–Taylor instability in impact cratering experiments

The surface tension term depends on (
√

Fr∗φBo)−1, which results in a residual
dispersion of experimental curves at early times. This remains correct when we normalise
equation (4.8) with scaling laws including surface tension, although the surface tension
term depends on (

√
Fr∗φBo)−1 in a different way. We also obtain a residual dispersion

of the crater radius at late times (figure 10b). Since the energy model (4.8) applies only
during the opening of the crater, we expect the experimental curves to collapse only when
t∗ < t∗exp

max.

5. Evolution of the RT instability

Experiments in the LIF configuration allow us to describe quantitatively the evolution of
the thickness of the mixing layer. Using the energy conservation model (§ 4), we derive a
model for the mixing layer thickness evolution, from which we obtain scaling laws for the
maximum mixing layer thickness. We also obtain a theoretical scaling for the early-time
instability wavelength, which we compare with experiments (Appendix A).

5.1. Buoyancy–drag model
In addition to the energy conservation model assumptions (§ 4), we assume the mixing
layer to be uniform with a constant thickness around the crater boundary. We first
consider the situation where no instability develops. In this situation, the volume of the
layer remains constant. As the crater radius increases, the drop liquid spreads over an
increasingly large surface area and the mean layer thickness h thus decreases with time
(figure 5a). Denoting by ū(r, t) the laterally averaged velocity field associated with the
opening of the crater, the time derivative of h is then given by

ḣ = ū(R + h) − ū(R). (5.1)

Since ū = Ṙ(R/r)2 corresponds to the radial potential flow of (4.4), this gives

ḣ = Ṙ
[

R2

(R + h)2 − 1
]

, (5.2)

where the right-hand side will be referred to as a geometrical thinning term. This equation
originates from the mass conservation of the layer in the absence of instability.

We now consider the effect of the RT instability (figures 5b and 11), which we model
as an entrainment process. Assuming that the ambient liquid is gradually incorporated
into the mixing layer at a rate u′(t) (a volumetric flux), the time derivative of h is then
the sum of the geometrical thinning term (5.2) and entrainment rate u′ (figure 11c). The
velocity u′ and length scale h also correspond to the velocity and integral length scale of a
mixing-length turbulent model describing the mixing layer. After non-dimensionalisation,
this writes as

ḣ∗ = Ṙ∗
[

R∗2

(R∗ + h∗)2 − 1

]
+ u′∗. (5.3)

Now u′ can also be seen as the velocity the tip of the RT plumes would have in
the absence of geometrical thinning. With this interpretation in mind, we describe the
evolution of u′ using a buoyancy–drag model of the mixing layer (Dimonte 2000; Oron
et al. 2001; Zhou 2017). We consider that the RT plumes with a density ρ̄ = ρ2 + 	ρ
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Figure 11. Mixing layer evolution. After having spread quickly on the crater boundary to become a thick
layer(a), the liquid layer of the drop gradually gets thinner as the crater grows (b). At some point, crater
expansion becomes weak enough, allowing for the RT instability to develop (c). We decompose the velocity
field into a velocity component ū produced by crater opening, and velocity fluctuations u′ produced by the RT
instability.

penetrate into the less dense surrounding liquid with a density ρ2. The equation of motion
then reads as

ρ̄
du′∗

dt∗
= −β	ρR̈∗ − Cρ2

u′∗2

h∗ , (5.4)

where β and C are the RT buoyancy prefactor and the drag coefficient, respectively.
This equation corresponds to a balance between the fluid inertia on the left-hand side,
buoyancy in the first term on the right-hand side, and inertial drag in the second term on
the right-hand side. The acceleration of the crater boundary R̈ being significantly larger
than g (figure 7), we neglect Earth’s gravity in the buoyancy term.

Using mass conservation in the uniform, hemispherical and thin mixing layer, the
dimensionless density difference is

	ρ

ρ̄
= 1

1 + 3
2

R∗2h∗ ρ2

	ρ0

, (5.5)

where 	ρ0 is the initial density difference between the impacting drop and the pool.
Inserting the density excess (5.5) into the equation of motion (5.4) made dimensionless,
we obtain

du′∗

dt∗
= −β

R̈∗

1 + 3
2

R∗2h∗ ρ2

	ρ0

− C
1

1 + 2
3

1
R∗2h∗

	ρ0

ρ2

u′∗2

h∗ . (5.6)

Together with the crater radius evolution (4.8), (5.3) and (5.6) are coupled ordinary
differential equations. We solve this initial value problem numerically using fixed initial
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Rayleigh–Taylor instability in impact cratering experiments

conditions at t∗ = 1. As in § 4, we choose R∗(1) = 1, which means that the crater radius
is initially the same as the drop radius. We choose the initial mixing layer thickness
h∗(1) by fitting the experiments without density contrast (ρ1/ρ2 = 1) with the system
of differential equations without entrainment ((4.8) and (5.2)). Parameter h∗(1) is a fitting
parameter, as well as the energy partitioning coefficient φ and the kinetic energy correction
coefficient ξ (§ 4). We experimentally obtain h∗(1) = h∗

0 = 0.62 ± 0.15. This value is
larger than the theoretical h∗(1) = 31/3 − 1 � 0.44 obtained when the liquid of the drop
is distributed uniformly around a hemispherical crater with a radius R∗(1) = 1. This may
be explained by the non-hemispherical cavity at the beginning of crater opening, the initial
accumulation of the fluid of the drop on the crater floor and possible initial interpenetration
between the drop and the ambient fluid. We also choose u′∗(1) = 0, assuming that the
amplitude of the velocity fluctuations in the layer are initially small. For each experiment,
using these fixed initial conditions, we use the experimentally measured crater radius R∗exp

and mixing layer thickness h∗exp
to determine the best value for the fitting parameters of

the system of differential equations. This includes the energy partitioning coefficient φ

and the kinetic energy correction coefficient ξ (4.8), as well as the buoyancy prefactor β

and the drag coefficient C (5.6). Fitting β and C for each experiment, we find that C is a
decreasing function of the density ratio, with no resolvable effect of the Froude number.
Also, β shows no resolvable trend with either the Froude number or the density ratio (see
Appendix C for details).

5.2. Time evolution
Figure 12 shows the evolution of the mixing layer thickness (figure 12a), growth rate
(figure 12b) and of the estimated inward flux due to entrainment (figure 12c). This figure
compares the fitted mixing layer evolution model with experimental data, in two reference
cases, with or without a difference of density between the impacting drop and the pool.
Experimental data are consistent with the qualitative observations of § 3. The mixing layer
starts to thin due to crater expansion, with a negative growth rate. Then, when the density
of the drop is larger than the target liquid, it thickens owing to the RT instability, with a
positive growth rate.

In figure 12(c), we estimate u′∗ from (5.3) based on experimental measurements of
R∗ and h∗, i.e. u′∗ is the difference between the measured time derivative of h∗ and
the prediction of the model in the absence of entrainment. The model underestimates
u′∗ for dimensionless times typically smaller than 10, for experiments with and without
density difference. This underestimate may be explained by shear instabilities at the
interface between the mixing layer and its surroundings (e.g. figure 6, ρ1/ρ2 = 1.0). These
instabilities increase the growth rate of the layer and are neglected in the buoyancy–drag
model, explaining why the model underestimates the inward flux u′∗. Furthermore, the
liquid of the drop initially accumulates at the crater floor. Since the weighted average of
the mixing layer thickness h∗ gives more weight to the bottom of the crater (2.7), the
initial mean thickness is then larger in the experiments than in the model, where the
layer thickness is uniform. The liquid of the drop then flows on the crater sides. For a
given volume of the mixing layer, the measured layer velocity ḣ∗ is then larger than the
early-time velocity predicted with a uniform mixing layer (5.1). This also explains why
the uniform model underestimates the inward flux u′∗ in comparison with experimental
data.

Figure 13 shows the mixing layer thickness h∗exp
(figure 13a), growth rate ḣ∗exp

/h∗exp

(figure 13b), and the estimated entrainment term u′∗ (figure 13c) as a function of time,
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Figure 12. Time evolution of the normalised mixing layer thickness h∗ (a), the normalised mixing layer
growth rate ḣ∗/h∗ (b) and the normalised inward flux due to entrainment u′∗ (estimated from (5.3)) (c),
for two impact parameters with and without initial density difference. Circles and solid lines correspond,
respectively, to experimental data and fitted buoyancy–drag model ((4.8), (5.3) and (5.6)). Dashed lines and
dotted lines correspond, respectively, to the complete early-time power-law analytical solution (5.7) and the
approximate early-time power-law analytical solution (5.9), calculated for the ρ1/ρ2 = 1.0 and Fr = 481
experiment. Dash–dotted lines correspond to the late-time power-law analytical solution (5.15 with h0 = 0.62,
ḣ0 = −1.14 and C = 0.71), calculated for the ρ1/ρ2 = 1.8 and Fr = 732 experiment.
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Figure 13. Time evolution of the experimental normalised mixing layer thickness h∗exp
(a), the experimental

mixing layer growth rate ḣ∗exp
/h∗exp

(b) and the normalised inward flux due to entrainment u′∗ (c) (estimated
from (5.3)). Experiments are clustered by density ratio group, the extent of which is defined by the standard
deviation of the experiments in that group. Colours scale as the density ratio ρ1/ρ2.

for all experiments, grouped by density ratio. As suggested by figure 6, the mixing layer
evolution, due to the RT instability, is mainly dictated by the density ratio between the drop
and its surroundings. In the entrainment stage (typically t∗ > 15), a larger initial density
difference promotes entrainment by the RT instability through an increased entrainment
term u′∗ (figure 13c), leading to an increased mixing layer growth rate (figure 13a,b). The
local Reynolds number in the mixing layer depends on the density ratio and decreases with
time, but is typically in the range 1–200.

5.3. Thinning stage, entrainment stage and transition time scale
We now focus on the numerical solution of the coupled ordinary differential
equations (4.8), (5.3) and (5.6). Figure 14 shows the geometrical thinning term and the
entrainment term in (5.3), as well as the buoyancy term and the drag term in (5.6), as a
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Figure 14. (a) Geometrical thinning term (first term on the right-hand side), entrainment term (second term on
the right-hand side) and ḣ∗ (left-hand side) in (5.3), as a function of time. (b) Buoyancy term (first term on the
right-hand side), drag term (second term on the right-hand side) and u̇′∗ (left-hand side) in (5.6), as a function
of time. In this numerical solution, ρ1/ρ2 = 1.8, Fr = 572, φ = 0.39, ξ = 0.47, β = 0.33 and C = 1.34.

function of time. Based on this figure, we identify two stages in the evolution of the mixing
layer.

The first stage, referred to as the thinning stage, is defined by a negative growth rate of
the mixing layer, i.e. ḣ∗ < 0 in figure 14(a). Its dynamics is controlled by the geometrical
evolution of the crater, with the geometrical thinning term much larger than the RT
entrainment term in (5.3) (figure 14a). Since the crater deceleration is large at early
times, the buoyancy term prevails over the drag term in the buoyancy–drag equation (5.6)
(figure 14b). However, this does not influence the evolution of the mixing layer since the
geometrical thinning term dominates.

Neglecting the entrainment term u′∗, and assuming h∗(1) = h∗
0 = 0.62 as initial

condition for the thickness of the mixing layer, the solution of the differential
equation (5.3) is

h∗ = (R∗3 − 1 + (h∗
0 + 1)3)1/3 − R∗. (5.7)

Using the power-law solution of R∗ (4.10), we obtain an analytical solution for h∗ in the
geometrical phase (figure 12, dashed lines). Assuming h∗ � R∗, which is reasonable after
a few time units (e.g. figure 4), (5.3) simplifies as

ḣ∗ = −2Ṙ∗ h∗

R∗ . (5.8)

The solution then takes the form

h∗ = h∗
0

R∗2 . (5.9)

These solutions correspond to the conservation of the initial volume of the impactor, i.e.
a sphere of unit dimensionless radius. Using the power-law solution of (4.10), (5.9) also
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gives a power-law solution for the mixing layer thickness, velocity and acceleration:

h∗ = h∗
0[Q(t∗ − 1) + 1]−4/5,

ḣ∗ = −4
5

h∗
0Q[Q(t∗ − 1) + 1]−9/5,

ḧ∗ = 36
25

h∗
0Q2[Q(t∗ − 1) + 1]−14/5,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.10)

where

Q =
(

25
6

φ

ξ

ρ1

ρ2

)1/2

. (5.11)

Consequently, a power-law solution for the mixing layer growth rate is

ḣ∗

h∗ = −4
5

Q
[
Q(t∗ − 1) + 1

]−1
. (5.12)

These solutions (figure 12, dotted lines) depend on the density ratio ρ1/ρ2, and on the
correction parameters φ and ξ , through Q. They explain the early-time evolution of the
mixing layer thickness.

The second stage, referred to as the entrainment stage, is defined by a positive growth
rate of the mixing layer, i.e. ḣ∗ > 0 in figure 14(a). In this stage, spreading and entrainment
are similar in magnitude. The dynamics is then governed by a balance between residual
geometrical effects and entrainment produced by the RT instability. In this stage, the crater
deceleration slows down and hence the buoyancy term quickly decreases. The rate of
entrainment is therefore limited by the drag term (figure 14b). At late times, when the
crater size is close to reaching its maximum, the geometrical thinning term vanishes and
the dynamics is only controlled by the entrainment term (figure 14a).

In this stage, we use the approximation (5.8) for the geometrical term to simplify
equation (5.3). We also neglect the buoyancy in (5.6) assuming

2
3

	ρ0

ρ2
/(R∗2h∗) � 1. (5.13)

These assumptions, respectively, correspond to the vanishing crater deceleration and
	ρ � ρ2 during the entrainment stage. With these assumptions, (5.3) and (5.6) become

ḣ∗ = −2
Ṙ∗

R∗ h∗ + u′∗,

u̇′∗ = −C
u′∗2

h∗ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.14)

Assuming a 2/5 power-law solution for R∗ (4.10), and using h∗(1) = h∗
0 and ḣ∗(1) = ḣ∗

0
as initial conditions, the solution to (5.14) is

h∗ = h∗
0[1 + Q(t∗ − 1)]−4/5{1 + K[[1 + Q(t∗ − 1)]9/5 − 1]}1/(1+C), (5.15)

where

K = 1
9
(C + 1)

(
4 + 5

Q
ḣ∗

0
h∗

0

)
(5.16)

(figure 12, dash–dotted lines). The value C = 0.71 required to fit experimental data is
smaller than the value obtained by fitting experimental data with the full numerical model
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Figure 15. (a) Experimental mixing layer thickness h∗exp
as a function of time, for a single experiment. The

experimental transition time t∗exp

c between the thinning stage and the entrainment stage is defined as the
time at which the mixing layer thickness reaches a local minimum. (b) Experimental transition time scale
t∗exp

c as a function of the transition time t∗c predicted by the buoyancy–drag model ((4.8), (5.3) and (5.6)).
(c) Experimental transition time scale t∗exp

c as a function of the transition time scaling t∗lsq

c (5.19). Colours scale
as the density ratio ρ1/ρ2.

((4.10), (5.3) and (5.6)). We explain this difference with the assumptions made to obtain the
analytical solution, i.e. approximated geometrical term, neglected buoyancy term, 	ρ �
ρ2, and 2/5 power-law for R∗. Using a larger value of C in the analytical solution results
in an underestimate of the layer thickness in the entrainment stage.

The transition time tc between the thinning stage and the entrainment stage is the time
at which the growth rate changes sign and the mixing layer thickness reaches a local
minimum (figure 15a). This corresponds to the time at which geometrical effects exactly
balance the entrainment produced by the RT instability.

We measure the transition time in experiments, and in figure 15(b) we compare the
experimental values with the transition time obtained from the numerical model. Although
uncertainties on the transition time are significant due to the extrinsic variability of
experiments, the numerical model is rather consistent with experimental data.

We now derive an approximate power-law for the transition time. We assume that h∗ �
R∗, and hence we use the approximation (5.8) for the geometrical term to solve (5.3). We
also simplify equation (5.6) assuming

2
3

	ρ0

ρ2
/(R∗2h∗) � 1. (5.17)

These assumptions correspond to 	ρ � ρ2, which is a reasonable assumption at the
transition time. With these assumptions, (5.3) and (5.6) can be combined to give

ḧ∗ + 2(2C + 1)
Ṙ∗

R∗ ḣ∗ + 2(2C − 1)
Ṙ∗2

R∗2 h∗ + C
ḣ∗2

h∗ + 2h∗ R̈∗

R∗ + β
2
3

	ρ0

ρ2

R̈∗

R∗2h∗ = 0.

(5.18)
At the critical transition time tc, ḣ∗(t = tc) = 0. Using the power-law solutions for R∗
(4.10) and h∗ (5.10) in the thinning stage, we obtain from (5.18) a scaling for the
dimensionless transition time t∗c :

t∗
lsq

c = c6

⎧⎨
⎩1 + 1

Q

⎡
⎣
(

4h∗
0

2 C + 1

β
	ρ0
ρ2

)5/6

− 1

⎤
⎦
⎫⎬
⎭ , (5.19)
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Figure 16. (a) Experimental normalised maximum mixing layer thickness h∗exp

max as a function of the maximum
thickness h∗

max predicted by the buoyancy–drag model ((4.8), (5.3) and (5.6)). (b) Experimental normalised
maximum mixing layer thickness h∗exp

max as a function of the least squares best-fit power-law scaling h∗lsq

max (5.20).
Colours scale as the density ratio ρ1/ρ2.

where c6 = 1.36 ± 0.07 is a least squares best-fit prefactor obtained from experimental
data (figure 15c). As observed experimentally in figure 13, the predicted transition time
(5.19) decreases with the density contrast between the fluid of the impacting drop and the
pool. The larger the density contrast, the quicker entrainment effects become comparable
to geometrical effects.

5.4. Maximum mixing layer thickness
The maximum mixing layer thickness h∗

max first depends on the growth rate of the RT
instability in the entrainment stage, an increased initial density difference leading to an
increased mixing layer growth rate (figure 13). The maximum thickness also depends on
the time window available for the mixing layer to actually grow without being affected by
geometrical effects. The transition time t∗c and the maximum opening time t∗max correspond,
respectively, to the lower and upper limits of the available time window. Since t∗c and
t∗max are, respectively, a decreasing function (5.19) and an increasing function (4.17) of the
density ratio, we expect an increased density ratio to expand the time window available
for entrainment, leading to an increased maximum mixing layer thickness, consistent with
figure 13(a). Since t∗max also increases with the Froude number, we also expect the available
time window and the maximum layer thickness to increase with the Froude number.

We first compare the experimental maximum mixing layer thickness h∗exp

max with the
maximum thickness h∗

max obtained from the model (figure 16a). We obtain a good
agreement. We then fit experimental data with the power-law scaling

h∗lsq

max = c7

(
ρ1

ρ2

)c8

Frc9, (5.20)

where c7 = 0.04 ± 0.02, c8 = 2.3 ± 0.2 and c9 = 0.21 ± 0.06 (figure 16b). We search a
scaling law as a function of ρ1/ρ2 because t∗max and t∗c are strong functions of ρ1/ρ2 ((4.17)
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and (5.19)). Scaling (5.20) is consistent with the predicted influence of the density ratio
and the Froude number on the mixing layer growth rate and the time window available
for entrainment. We indeed obtain a maximum mixing layer thickness increasing with
both the initial density ratio (c8 > 0) and the Froude number (c9 > 0). The fact that c8 is
significantly larger than c9 is also consistent with the qualitative observations of figure 6,
i.e. a maximum mixing layer thickness increasing mainly with the initial density ratio.

6. Geophysical implications

We now apply our results to obtain a prediction of the amount of metal–silicate
equilibration following an impact on a magma ocean. After the impact, the metal core
of the colliding body migrates toward the planetary core due to the density contrast with
the surrounding silicates (Rubie et al. 2015). Part of the migration occurs in a fully molten
magma ocean where the metal is expected to descend as a turbulent thermal and equilibrate
with silicates (Deguen, Olson & Cardin 2011; Deguen, Landeau & Olson 2014). The
metal phase then undergoes a vigorous stirring (Lherm & Deguen 2018), leading to its
fragmentation (Landeau, Deguen & Olson 2014; Wacheul et al. 2014; Wacheul & Le Bars
2018) into centimetric drops (Stevenson 1990; Karato & Murthy 1997; Rubie et al. 2003;
Ichikawa, Labrosse & Kurita 2010). However, these turbulent thermal models assume that
the metal cores are released as a compact volume in the magma ocean. In contrast, recent
investigations show that the impactor core equilibrates with silicates during the impact
stage, prior to the fall in the magma ocean (Kendall & Melosh 2016; Landeau et al. 2021).
Our experiments confirm this result and show that an RT instability develops during the
opening of the crater, possibly equilibrating metal and silicates.

In order to estimate the equilibration produced by the RT instability, we estimate the
mass of ambient silicates entrained by the RT instability that is likely to equilibrate with
the impacting metal core. For the sake of simplicity, we assume that the mass of entrained
silicates fully equilibrates, i.e. mixes, with the metal of the impactor. When an impactor
with a radius Ri, a volume fraction of metal fm, a metal core density ρm and a silicate
mantle density ρs, impacts a planetary target, the dimensionless mass of equilibrated
silicates is 	 = Ms/Mm, where Mm = fmρm(4/3)πR3

i is the mass of the metal core and
Ms = ρs[2πR2

maxhmax − (4/3)πR3
i ] is the mass of entrained silicates (Deguen et al. 2014).

After non-dimensionalisation, the mass of silicates equilibrated with metal during crater
opening is

	 = ρs

ρm

(
3
2

1
fm

R∗2

maxh∗
max − 1

)
. (6.1)

Using scaling laws for R∗
max (4.15) and h∗

max (5.20), we obtain the following scaling law
for the mass of equilibrated silicates:

	lsq = ρs

ρm

(
1
fm

c10

(
ρ̄

ρs

)c11

Frc12 − 1
)

, (6.2)

where c10 = 0.07 ± 0.03, c11 = 2.8 ± 0.2 and c12 = 0.67 ± 0.06. In this scaling, the
density ratio is defined with ρ̄/ρs, where ρ̄ = ρmfm + ρs(1 − fm) is the mean density
ratio of the impactor, because this scaling derives from the crater size and the maximum
mixing layer thickness scaling laws ((4.15) and (5.20), respectively), which indeed use the
mean density of the impactor. We validate this scaling law against experimental data in
figure 17(a), using fm = 1 since the drop is a one-phase fluid. The predicted values of
the dimensionless mass of equilibrated silicates 	lsq are indeed close to the experimental
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Figure 17. (a) Experimental mass of equilibrated silicates 	exp, as a function of the mass of equilibrated
silicates scaling 	lsq (6.2), using fm = 1. Colours scale as the modified Froude number Fr∗. (b) Mass of
equilibrated silicates scaling 	lsq as a function of the target-to-impactor radius Rt/Ri (6.3), for several impact
velocities Ui, and using fm = 0.16 and ρm/ρs = 2. Symbols and lines: triangle, impactor of 10 km in radius
onto a Earth-sized target; circle, impactor of 100 km in radius onto a Earth-sized target; square, canonical
Moon-forming impact with a Mars-sized impactor (Canup 2004); diamond, fast-spinning Earth Moon-forming
impact with a fast (Ui = 2Ue) and small (Ri/Rt = 0.3) impactor (Cuk & Stewart 2012); dashed lines correspond
to an extrapolated range of Froude number, i.e. Fr < 200, which is outside of the experimental Froude number
range.

values 	exp. Relatively large error bars of 	lsq mainly result from the uncertainty on the
prefactor coefficient of h∗lsq

max (5.20). This means that the following geophysical applications
have to be considered carefully given the uncertainties on the scaling law coefficients.

In the context of planetary impacts, the Froude number is given by

Fr = 2
Rt

Ri

U2
i

U2
e
, (6.3)

where Ue = √
2gRt is the escape velocity and Rt is the radius of the target planet. The

impact velocity of colliding bodies during accretion is typically one to three times the
escape velocity (Agnor et al. 1999; Agnor & Asphaug 2004), which means that the Froude
number depends mainly on the target-to-impactor radius.

Using (6.2) and (6.3), we calculate the estimated mass of silicates equilibrated with
the impacting core during crater opening 	lsq as a function of the target-to-impactor
radius Rt/Ri (figure 17b). We use fm = 0.16 and ρm/ρs = 2 to match the internal structure
of a differentiated impactor (Canup 2004). Since the Froude number increases with
the target-to-impactor radius, it means that smaller colliding bodies will produce more
equilibration, relative to their size, than giant impactors. For example, impactors with a 10
and 100 km radius (figure 17b, triangle and circle, respectively) will then equilibrate with
35.5 and 7.2 times its own mass, respectively.

Several giant impact scenarios have been proposed to explain the formation of the
Moon (e.g. Canup 2004; Cuk & Stewart 2012). We expect the canonical impact scenario
with a Mars-sized impactor (Canup 2004) to equilibrate with 0.2 times its own mass
during this crater opening stage (figure 17b, square). In contrast, we predict that the
fast-spinning and smaller impactor proposed by Cuk & Stewart (2012) equilibrates with 1.8

937 A20-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.111


Rayleigh–Taylor instability in impact cratering experiments

times its own mass (figure 17b, diamond). These giant impacts scenarios involve a small
target-to-impactor radius, corresponding to an extrapolated range of Froude number, i.e.
Fr < 200 (figure 17b, dashed lines), which is outside of the experimental Froude number
range used to constrain the scaling. In addition, this small target-to-impactor radius is
very sensitive to the uncertainty on the scaling law coefficients. The mass of equilibrated
silicates extrapolated for large impactor thus has to be considered carefully.

Recent experiments estimate the mass of equilibrated silicates during the impact,
considering both the crater formation, its collapse into an upward jet, and the collapse
of the jet (Landeau et al. 2021). The 10 km impactor, the 100 km radius impactor, the
canonical Moon-forming impactor and the fast-spinning Earth impactor, respectively,
equilibrate with 1155, 74, 1.5 and 12 times the impactor mass. This means that the fraction
of silicates equilibrated during the opening stage of the crater, in comparison with the
whole cratering process including the jet formation and collapse, are 3 %, 10 %, 13 %
and 15 %, respectively. This is in agreement with an impact-induced equilibration mostly
dominated by the collapse of the jet (Landeau et al. 2021).

Experiments including the formation and collapse of the jet (Landeau et al. 2021) have
been done with relatively small density contrasts (ρ1/ρ2 < 1.1), and the effect of the RT
instability was not as important as in the present experiments. At a given Froude number,
e.g. Fr = 300, the fluid of the impactor equilibrates with 4.8 and 13.3 times its own mass
of ambient fluid, if ρ1/ρ2 = 1.1 and ρ1/ρ2 = 1.8, respectively (6.2). This means that the
mass of ambient fluid likely to equilibrate with the impactor is 2.8 times larger in our
experiments close to the metal–silicate density ratio than in the experiments of Landeau
et al. (2021). We thus implicitly assume that equilibration produced by the RT instability
and the jet are independent, whereas the equilibration produced by the jet is actually
promoted by the RT instability and the dispersion of the impactor during crater opening.
In other words, we assume that equilibration produced by the RT instability and the jet
is combined in an additive way, whereas it is likely to be a multiplicative process. This
means that we probably underestimate the influence of the jet on the overall equilibration
for the large density ratios.

7. Conclusion

In this paper, we use a backlighting method and LIF to visualise the crater boundary and
the mixing layer produced around the cavity after the impact of a drop on a deep liquid
pool. We show that crater deceleration after impact is responsible for a density-driven
perturbation at the drop–pool interface. We interpret these perturbations as a spherical RT
instability. We derive an energy conservation model for the crater radius evolution (4.8)
and compare it with backlight experiments. In particular, we obtain scaling laws for the
maximum crater radius ((4.14) and (4.19)) and the crater opening time ((4.17) and (4.22)).
We also derive a mixing layer evolution model ((5.3) and (5.6)) involving two stages. The
mixing layer dynamics is first controlled by the geometrical evolution of the crater, then
by the balance between residual geometrical effects and entrainment produced by the RT
instability. We obtain scaling laws for the transition time scale between stages (5.19) and
the maximum mixing layer thickness (5.20). From our results, we derive scaling laws for
equilibration between metal and silicates during a planetary impact onto a magma ocean.

In order to validate the extrapolation of our experimental scaling laws to giant impacts,
experiments at lower Froude number involving large volume impactors (e.g. Landeau
et al. 2021) are required. This would allow us to investigate the possible effect of the
Reynolds number on the mixing layer. Furthermore, several physical aspects neglected
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in our experiments have to be investigated experimentally or numerically, in order to
examine their effect on the cratering and equilibration dynamics. Immiscibility effects may
change the equilibration dynamics, in particular with the fragmentation of the metal phase.
Furthermore, the viscosity and diffusivity contrasts may influence thermal and chemical
transfers between phases, as well as the RT instability wavelength. Compressibility effects
are significant during the opening stage of the crater, with a Mach number larger than
unity (Kendall & Melosh 2016). They include the propagation of an impact shock wave
and melting processes. Experiments neglect these effects with a Mach number much
smaller than unity. Compressibility may influence the crater evolution and equilibration
dynamics following the impact, in particular the evolution of the mixing layer during
crater opening. Nonetheless, the flow velocity becomes very rapidly subsonic because the
kinetic energy of the impactor is quickly distributed over an increasingly large volume,
and because this kinetic energy is converted into gravitational potential energy. Oblique
impact effects are also expected since the probability of a vertical impact is less than the
likelihood of an oblique impact, with a maximum probability for a 45◦ angle (Shoemaker
1961). The asymmetry caused by an oblique impact modifies the dynamics of the mixing
layer with the growth of a shear instability around the cavity. The crater then collapses,
producing an oblique jet with an angle similar to the impact angle, but in the opposite
direction. These features modifying the dynamics of the mixing layer during crater
opening and the properties of the jet following the collapse of the crater crucially affect
the overall equilibration of the metal phase. Differentiated impactors effects are also
expected since most of the Earth mass was accreted from differentiated bodies (Kleine
et al. 2002; Scherstén et al. 2006). Experiments currently fail to reproduce an impactor
with a differentiated fluid core. The existence of a mantle around the impactor’s core
may influence the mixing layer dynamics by changing the distribution of the metal phase
around the crater and the dynamics of the RT instability during crater opening. Depending
on whether the impactor core directly descends in the magma ocean or is entrained into
the upward jet, the equilibration of the metal phase may be modified. The role of impactor
differentiation may be investigated numerically, or experimentally using compound drops
(e.g. Blanken et al. 2021). However, since the compound drop experiments involve
immiscible water–oil drops, it will be challenging to study the mixing properties following
the impact. Finally, pressure and temperature effects are expected during the impact, in
particular regarding large energetic impacts such as the Moon-forming giant impact. These
effects neglected in experiments may result in an increased miscibility of metal and silicate
phases (Morard & Katsura 2010), with potential consequences on the fragmentation of the
metal phase. This may affect chemical equilibration and increase the iron content in the
magma ocean. Temperature contrasts may also slightly influence the buoyancy of the metal
phase, which may affect the impact dynamics in a minor way.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.111.
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Appendix A. Early-time wavelength

We convert the experimental instability wavelength into an equivalent spherical harmonic
degree, and we compare with an experimental scaling law. From the number of plumes
n, counted on the hemispherical section of the density interface at t∗ = 10, we estimate
the instability wavelength as λ = πR/n. We then obtain the corresponding spherical
harmonics degree of maximum instability lmax using the Jeans relation (Jeans 1923):√

lmax(lmax + 1) = 2πR
λ

. (A1)

In a thin layer configuration with no surface tension, the preferred instability wavelength
is the minimum of the layer thickness and of a length scale obtained by balancing
buoyancy, inertia and viscous forces. In the following, we assume that the instability
wavelength depends on the buoyancy–inertia–viscosity balance. On the one hand, the
balance between buoyancy and inertia is valid at small harmonic degrees l, with an
instability growth rate scaling as l1/2 (Rayleigh 1899; Taylor 1950). On the other hand,
the balance between buoyancy and viscosity is valid at large harmonic degrees l, with an
instability growth rate scaling as 1/l (Chandrasekhar 1961). The instability growth rate
thus reaches a maximum when inertia, buoyancy and viscous forces are of the same order
of magnitude. The corresponding instability wavelength is λ ∼ {ν2

2/[(	ρ0/ρ2)R̈]}1/3,
which after non-dimensionalisation gives

λ∗ ∼
(

	ρ0

ρ2
R̈∗
)−1/3

Re−2/3. (A2)

Assuming that R̈∗ and R∗ scale, respectively, as R∗
max|Bo→∞/t∗2

max|Bo→∞ and R∗
max|Bo→∞

(see (4.14) and (4.17)), and using the Jeans relation (A1), (A2) gives a scaling for the
degree of maximum instability:

llsq
max = c13φ

1/4ξ−1/3Fr−1/12
(

ρ1

ρ2

)1/4 (
	ρ0

ρ2

)1/3

Re2/3, (A3)

where c13 = 0.177 ± 0.005 is a least squares best-fit prefactor obtained from experimental
data (figure 18).

Figure 18 shows the harmonic degrees of maximum instability measured in all
experiments, as a function of scaling (A3) for lmax. Experimental data agree with this
scaling, except for Froude numbers smaller than 100. This corresponds to Reynolds
numbers smaller than 4000. In this case, the crater differs from the hemispherical shape
and from the purely radial acceleration assumed in the scaling. Furthermore, the fact that
experimental data scale with the buoyancy–inertia–viscosity scaling (A3) indicates that
the preferred wavelength is indeed set by the buoyancy–inertia–viscosity balance rather
than by the layer thickness.
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Figure 18. Experimental harmonic degree of maximum instability lexp
max, as a function of the harmonic degree

of maximum instability scaling llsq
max (A3). Colours scale as the Reynolds number Re.
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Figure 19. Energy partitioning parameter φ (a), and crater kinetic energy correction parameter ξ (b), as a
function of the Froude number Fr. The solid line gives the best-fit power-law scaling (B1). Colours scale as the
density ratio ρ1/ρ2. Circles and crosses correspond, respectively, to large and small drop size series.

Appendix B. Energy partitioning and kinetic energy correction

Figure 19(a) shows the correction parameter φ as a function of the Froude number. Since
several energy sinks such as crown energy and viscous dissipation are neglected in the
model, we expect φ to be smaller than unity. In our experiments, we find φ = 0.38 ± 0.04,
in agreement with previous works where experimental data are fitted using a partitioning
coefficient in the range 0.2–0.6, depending on the Froude number (Engel 1966; Olevson
1969; Leng 2001).
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Figure 20. Buoyancy prefactor β (a), and drag coefficient C (b), as a function of the Froude number Fr.
Colours scale as the density ratio ρ1/ρ2.

In our experiments, Fr and We are highly correlated since Bo does not vary by a large
amount. The coefficient φ is found to be a decreasing function of both Fr and We, which
scales in particular as

φ = Fr−0.156±0.001, (B1)

and is relatively independent of the density ratio and the drop size. This implies that as
the impactor inertia increases, the relative importance of the neglected energy sink terms
increases. This may be explained by a change in the energy balance between the crater
energy and the crown energy (Olevson 1969). As the impactor inertia increases, the relative
importance of the surface energy of the crater and the crown decreases, while the potential
energy of the crater and the kinetic energy of the crown increases, resulting in a global
increase of the crown energy to the expense of the crater. According to Olevson (1969),
the energy within the crown increases with Fr faster than the energy within the crater,
which would imply that φ is a decreasing function of Fr. The drop deformation upon
impact may also increase with impactor inertia, and with it the energy required for this
deformation, decreasing to this extent the energy delivered to the pool.

Figure 19(b) shows the kinetic energy correction parameter ξ , as a function of the Froude
number. It accounts for the difference between the deliberately simplified velocity potential
used in the model (4.3) and the true flow. Since the crater boundary is not hemispherical
and the crown is necessarily generated by a tangential velocity field, the true velocity
potential cannot be purely radial (Engel 1967; Bisighini et al. 2010). Parameter ξ is very
likely a function of time, but we assume it to be constant. In our experiments, the kinetic
energy correction parameter is smaller than unity with ξ = 0.34 ± 0.03. This means that
the velocity model overestimates the crater kinetic energy in the energy balance. We do
not observe any resolvable trend between ξ , Fr and ρ1/ρ2.

Appendix C. Buoyancy prefactor and drag coefficient

Figure 20 shows the fitted buoyancy prefactor β and drag coefficient C for each
experiment.
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The mean value of the buoyancy prefactor is β = 0.32 ± 0.17. This is smaller than
the value β = 1 found by Dimonte (2000) for plane layer experiments. This difference
may come from the hemispherical shape or the finite thickness of the dense layer in
our experiments. Given error bars, we find that β shows no resolvable trend with the
density ratio or the Froude number. However, variations may exist and require further
investigations.

The mean value of the drag coefficient is C = 1.9 ± 1.1. This value agrees with the
value C = 2.5 ± 0.6 obtained for constant, variable and impulsive accelerations of a plane
mixing layer (Dimonte 2000). We find that C decreases when the density ratio increases
(figure 20b). The mean value of the drag coefficient at ρ1/ρ2 = 1.2 and ρ1/ρ2 = 1.8 is,
respectively, C = 3.1 ± 1.1 and C = 1.1 ± 0.4. As for the buoyancy prefactor, C shows
no resolvable trend with the Froude number.

In order to further compare the values of β and C with the results of (Dimonte 2000),
we now consider two simplified end-member acceleration histories: a constant acceleration
and an impulsive acceleration.

In the case of a plane layer under constant acceleration R̈, the solution to the
buoyancy–drag equation (5.4) is h = α(	ρ/ρ̄)R̈t2 (e.g. Dimonte 2000), where α is an
empirical prefactor and ρ̄ = (ρ1 + ρ2)/2. The parameter α can be expressed as a function
of the parameters β and C by looking for a solution of (5.4). Taking u′ = ḣ, as appropriate
for a plane layer, solving gives

α = β

2 + 8C
ρ2

ρ1 + ρ2

. (C1)

Figure 21(a) shows α, calculated for each experiment, and compares the results to the
homogeneous buoyancy–drag model of Dimonte (2000) for C = 1, C = 2 and C = 3. The
mean value α = 0.04 ± 0.01 in our experiments is smaller than the values α = 0.05–0.07
that are obtained at the same density ratio with immiscible fluids, and under constant
acceleration (Dimonte & Schneider 2000). The observed values of α are also smaller than
the predictions from the homogeneous model of Dimonte (2000), in particular at large
density ratios. For example, at ρ1/ρ2 = 1.8 the drag coefficient found in our experiments
is approximately C = 1 (figure 20b), which leads to an overestimate of α by a factor 2
in figure 21(a). This may be a consequence of the variable acceleration, but also of the
spherical interface, miscibility and the finite thickness of the dense layer.

In the case of an impulsive acceleration, the buoyancy term in (5.4) is negligible since
R̈ = 0. Neglecting geometrical effects, i.e. u′ = ḣ, and assuming that ρ̄ = (ρ1 + ρ2)/2,
the solution is then given by h = h0τ

θ , where τ = u′
0t/θh0 + 1, and h0 and u′

0 are initial
values (e.g. Dimonte 2000). The exponent is then

θ = 1

1 + 2C
ρ2

ρ1 + ρ2

. (C2)

Figure 21(b) shows θ , calculated for each experiment, and compares the results with
the buoyancy–drag model of Dimonte (2000). The mean value θ = 0.4 ± 0.1 is close to
the values θ = 0.2–0.3 that are obtained at the same density ratio between immiscible
fluids, and under an impulsive acceleration (Dimonte & Schneider 2000). The exponent
θ increases with the density ratio, consistently with the homogeneous model of Dimonte
(2000) estimated at consistent values of the drag coefficient C (figure 20b). Since the
acceleration of the crater evolves as t−8/5, the acceleration is relatively close to be

937 A20-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.111


Rayleigh–Taylor instability in impact cratering experiments

0.10 1.0

0.8

0.6

0.4

0.2

1.2

0 1 32 0 1 32

1.4 1.6 1.8 1.2 1.4 1.6 1.8

0

0.08

0.06

0.04

0.02

0

C C

C = 1

C = 2

C = 3

ρ1/ρ2 ρ1/ρ2

α θ

(a) (b)

Figure 21. Constant acceleration prefactor α (a) and impulsive acceleration exponent θ (b) as a function of the
density ratio ρ1/ρ2. Colours scale as the experimental drag coefficient C. Solid lines, dashed lines and dotted
lines correspond to the homogeneous buoyancy–drag model of Dimonte (2000) for C = 1, C = 2 and C = 3,
respectively.

impulsive, explaining the good agreement between our experiments and the impulsive
acceleration model.
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