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Rayleigh-Taylor instability in drop impact experiments
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Consider a drop of radius Rd and density ρd falling on a pool of a liquid of density ρp. The drop
strikes the pool surface at a velocity vd , which results in the formation of a transient crater of mean
radius R(t ). Though easy to conduct, this experiment hosts a wealth of fluid dynamics phenomena,
involving a variety of hydrodynamical instabilities. It is also of interest in geology and planetology,
drop impacts being in some respects surprisingly good analogs of crater-forming planetary impacts
[1]. In most previous studies, the drop is made of the same liquid as the pool (see, e.g., [2–4]). New
phenomena appear when the drop and pool liquids have different densities.

Figure 1 shows two snapshots obtained from experiments involving a drop whose density is
either equal to [ρd/ρp = 1, Fig. 1(a)] or higher than [ρd/ρp = 1.8, Fig. 1(b)] that of the pool.
In the experiment with ρd/ρp = 1.8, the drop is made of a dense salt aqueous solution. We have
also conducted a few experiments at ρd/ρp = 0.8 using ethanol in the drop. The experiments are
characterized by similar values of a modified Froude number Fr∗ = ρdv

2
d/ρpgRd and Bond number

Bo = ρd gR2
d/σ , where g is the acceleration of gravity and σ the surface tension. Here Fr∗ is the

parameter governing the maximum size of the crater. It can be interpreted as the ratio of the kinetic
energy of the drop at impact (approximately ρd R3

dvd ) to its gravitational potential energy just before
impact (approximately ρd gR4

d ). In addition, Bo is the ratio of buoyancy forces to interfacial tension at
the air-liquid interface. The two snapshots show the crater at the time at which its size is maximum.

Though the density ratio ρd/ρp affects the shape of the crater and crown (Fig. 1), its most striking
effect concerns the fate of the drop liquid. When ρd/ρp = 1, the liquid from the drop is observed
to spread at the floor of the crater, forming a layer whose thickness decreases with time in response
to crater expansion, the liquid from the drop being redistributed over an increasingly large surface
area. A similar behavior is obtained when ρd/ρp < 1. The behavior is markedly different when
ρd/ρp > 1. In this case the layer formed from the drop liquid develops mushroom-shaped structures
penetrating radially into the water pool [Fig. 1(b)]. Figures 2(a) and 2(b) show snapshots from
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FIG. 1. Craters produced by the vertical impact of a drop onto a pool of water with (a) ρd/ρp = 1, Fr∗ =
977, and Bo = 0.96 and (b) ρd/ρp = 1.8, Fr∗ = 976, and Bo = 1.34. The original video is available online at
https://doi.org/10.1103/APS.DFD.2020.GFM.V0019.

experiments using, respectively, direct visualization, with the drop liquid being dyed, and laser-
induced fluorescence. Close inspection of these time sequences shows that the drop liquid first
spreads over the crater floor to form a layer of approximately uniform thickness, before small-
scale corrugations of the interface develop and gradually evolve into radially growing plumes. The
fine-scale structure of the layer made of the drop liquid is reminiscent of mixing layers observed in
Rayleigh-Taylor experiments in planar configurations (see, e.g., [5]). Measurements of the thickness
of the mixing layer show that it first decreases with time before increasing until the crater reaches
its maximum size.

These observations can be rationalized as follows. During crater opening, the rate at which
the crater grows gradually decreases with time, which results in the deceleration of the boundary
between the drop layer and the surrounding liquid. This situation is unstable with respect to
Rayleigh-Taylor instability when the liquid in the layer is heavier than its surroundings. The
deceleration Ṙ = dR/dt of the crater boundary can be estimated from conservation of energy (see,
e.g., [2,3]). For a significant fraction of the crater opening phase, the energy balance is dominated
by the kinetic energy of the flow surrounding the crater, which is approximately ρpR3Ṙ2. Equating
this with the impact kinetic energy, which is approximately ρd R3

dv
2
d , and taking the derivative with

respect to time gives R̈ ∼ −gFr∗(Rd/R)4. When Fr∗ � 1, the deceleration can therefore be much
larger than the acceleration of gravity. This explains why the dense liquid plumes grow radially

FIG. 2. Time sequences from experiments with ρd/ρp = 1.8 using (a) direct imaging with a dyed liquid
drop at Fr∗ = 976 and Bo = 1.34 and (b) laser-induced fluorescence at Fr∗ = 1030 and Bo = 1.25.
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outward rather than in the vertical direction. The nonmonotonic evolution of the mixing layer
thickness results from a competition between the growth of the instability and the stretching of
the layer associated with the expansion of the crater. The latter effect always dominates at early
time, thus initially inducing a decrease of the layer thickness, but is overcome at later times if the
density ratio is large enough.
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