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A B S T R A C T   

The radial density of planets increases with depth due to compressibility, leading to impacts on their convective 
dynamics. To account for these effects, including the presence of a quasi-adiabatic temperature profile and 
entropy sources due to dissipation, the compressibility is expressed through a dissipation number, D , propor
tional to the planet's radius and gravity. In Earth's mantle, compressibility effects are moderate, but in large rocky 
or liquid exoplanets (super-earths), the dissipation number can become very large. This paper explores the 
properties of compressible convection when the dissipation number is significant. We start by selecting a simple 
Murnaghan equation of state that embodies the fundamental properties of condensed matter at planetary con
ditions. Next, we analyze the characteristics of adiabatic profiles and demonstrate that the ratio between the 
bottom and top adiabatic temperatures is relatively small and probably less than 2. We examine the marginal 
stability of compressible mantles and reveal that they can undergo convection with either positive or negative 
superadiabatic Rayleigh numbers. Lastly, we delve into simulations of convection in 2D Cartesian geometry 
performed using the exact equations of mechanics, neglecting inertia (infinite Prandtl number case), and 
examine their consequences for super-earth dynamics.   

1. Introduction 

The interior of the Earth's mantle and that of other solid planets of 
the solar system are driven by convection. These motions are studied 
numerically using convection codes that often ignore the compressibility 
of the material and use the Boussinesq approximation in which the 
density of the fluid is uniform except for the buoyancy term (see e.g., 
Choblet et al., 2007; Zhong et al., 2008). In some cases, anelastic 
equations are used that consider first-order perturbations around an 
adiabatic state that accounts for the change of parameters with depth 
(see e.g., Zhang and Yuen, 1996; Tackley, 2008; King et al., 2010; 
Kameyama and Yamamoto, 2018). These anelastic codes often used a 
simplified equation of state (the relationship between density, temper
ature, and pressure) and implement some approximations that contra
dict the thermodynamic rules: this happens most often when some 
thermodynamic quantities are given an explicit dependence in depth 
rather than in pressure and temperature. We have shown in a series of 
papers that, when inertia can be neglected, which is the case in the 
mantle of planets, solving the exact mechanical and thermodynamical 
equations for a realistic equation is however not much more difficult 
than implementing an anelastic formalism (Alboussière and Ricard, 
2017; Alboussière et al., 2022; Curbelo et al., 2019; Ricard et al., 2022). 

Large exoplanets have been detected with densities that suggest that 
their composition is probably similar to the telluric planets in our sys
tem. While compressibility effects remain modest in the Earth's mantle 
and core, they become an essential ingredient of Super-Earths' internal 
dynamics. In this paper we study the Rayleigh-Bénard convection when 
the dissipation number is large, by solving the exact set of compressible 
equations without inertia. In a first section we choose an appropriate 
equation of state for condensed materials, in a second section we discuss 
some generic characteristics of the adiabatic conditions, in a third sec
tion we discuss the values of the critical Rayleigh number at the onset of 
convection as a function of the dissipation number and the imposed 
temperature difference and we present various 2D Cartesian cases of 
developed compressible convection depending on these two parameters. 

2. Adiabatic conditions inside a convective planet 

It is well known (see e.g., Braginsky and Roberts, 1995; Schubert 
et al., 2001; Ricard, 2015) that convection of a compressible fluid at 
high Rayleigh number brings the average radial profiles of density, 
temperature and pressure close to their adiabatic and hydrostatic values 
(ρa, Ta, Pa) according to 
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dlnρa

dz
+

αag
ΓaCa

P
= 0, (1a)  

dlnTa

dz
+

αag
Ca

P
= 0, (1b)  

dPa

dz
+ ρag = 0, (1c) 

z being the vertical coordinate (directed against gravity g = − gez). 
In these equations, α is the thermal expansivity, CP is the heat capacity 
(or specific heat) at constant pressure and Γ is the Grüneisen parameter 

Γ =
αKT

ρCV
=

1
ρCV

(
∂P
∂T

)

V
. (2) 

The superscript or subscript ‘a’ in eqs. (1a)-(1b)-(1c) indicates that 
the various quantities are computed along the adiabat itself. 

A reasonable equation of state (EoS) for a condensed planet is based 
on the observation that the Grüneisen parameter is essentially a function 
of density (Anderson, 1979) according to 

Γ = Γ0

(ρ0

ρ

)q
, (3)  

where q is around 1, ρ0 and Γ0 are the density and the Grüneisen 
parameter at standard conditions that we choose to be on the surface of 
the planet. On average, the Grüneisen parameter is between 1 and 2 in 
the mantle (e.g. Stacey and Davis, 2004) or in the core (Alfè et al., 2002). 
In what follows, we will use q = 1. With the additional assumption that 
CV is constant, the EoS is necessarily of the form P = f(ρ)+
α0K0

T(T − T0), i.e. a function of density plus a thermal contribution 
where α0 and K0

T are the thermal expansivity and isothermal incom
pressibility under reference conditions. For condensed materials, a 
suitable function for the pressure-density relationship at constant tem
perature is given by a Murnaghan expression (Murnaghan, 1951) (a 
special case of a polytropic EoS, (Chandrasekhar, 1957)), 

P =
K0

T

n

[(
ρ
ρ0

)n

− 1
]

+ α0K0
T(T − T0), (4)  

where n ≈ 3 − 4 for solid silicates and for liquid silicates or metals. 
Although EoS (4) is simple and empirical, it encompasses the typical 
solid and fluid properties and gives a very good fit to the Earth's radial 
density assuming its adiabaticity, away from the transition zone dis
continuities (Ricard et al., 2022). This EoS implies direct relationships 
between thermal expansivity and incompressibility with density that are 

α = α0

(ρ0

ρ

)n
, (5)  

KT = K0
T

(
ρ
ρ0

)n

, (6)  

and again these two expressions provide realistic expressions of the 
properties measured in laboratory experiments. Since the Grüneisen 
parameter (3) depends only on density, we obtain a simple relation 
between the adiabatic temperature and the adiabatic density by 
combining (1a) and (1b) 

Ta = Tt
aexp

[

Γ0

(
ρ0

ρt
a
−

ρ0

ρa

)]

, (7)  

where Tt
a and ρt

a are the surface (t stands for top) adiabatic temperature 
and density. 

We make two additional approximations when deriving analytical 
expressions for the adiabatic profiles (those approximations will not be 
used in the numerical computations solving the exact equations).  

• We assume the heat capacities at constant volume and temperature 
CV and CP are equal and constant. The heat capacites are indeed very 
close when αT << 1 which is the case for condensed materials, and 
they are both close to the Dulong and Petit values CV ≈ CP ≈ 3ℛ in J 
K− 1 mol− 1 (ℛ is the gas constant) at large temperatures (Petit and 
Dulong, 1819).  

• The surface adiabatic temperature is different from the surface 
temperature, but since α

(
Tt

a − T0
)〈

< 1, the surface adiabatic density 
and the reference density can also be identified, ρ0

a ≈ ρ0 (in other 
words the density of planets is mainly a function of pressure, not 
temperature). 

A last assumption is made on the variation of gravity with depth in a 
generic planet. For simplicity, we assume that gravity is uniform which 
is basically the case in Earth's mantle. 

With these hypotheses it is easy to solve for the adiabatic conditions 
in a layer where z varies between 0 and H (e.g., a mantle of thickness H, 
z = 0 being at the core-mantle boundary, see also Zhang and Yuen 
(1996) starting with a slightly different EoS), and we get 

ρa = ρ0

(

1 +
H − z

h

)1/(n− 1)

, (8a)  

Pa =
n − 1

n
ρ0gh

[(
ρa

ρ0

)n

− 1
]

, (8b)  

Ta = Tt
aexp

[

Γ0

(

1 −
ρ0

ρa

)]

(8c)  

where 

h =
1

n − 1
K0

T

ρ0g
=

1
n − 1

Γ0

D
H. (9) 

In the last equality, we have introduced the dissipation number D 

defined by 

D =
α0gH

CV
. (10) 

This surface dissipation number is only expressed from quantities 
known at the surface, this choice seems to be the only possible choice 
when exploring a new planet. In the Earth the dissipation number is 
around D ⊕ = 0.71 in the mantle and 0.56 in the liquid core (using α0 =

3 × 10− 5 K− 1, H = 2900 km and CV = 1200 J K− 1 kg− 1 in the mantle, 
α0 = 1.8 × 10− 5 K− 1 (Murphy et al., 2013), H = 2300 km and CV = 715 J 
K− 1 kg− 1 (Gubbins et al., 2003) in the liquid core, with g = 9.8 m s− 2). 

In geophysical textbooks (see, e.g., Schubert et al., 2001) D is 
defined with a CP in the denominator which does not make much 
practical difference as their difference is always neglected in the geology 
literature. However we prefer to define the dissipation number with CV 
as in the definition of the Grüneisen parameter. In order to obtain a 
simple expression for the EoS, we have made the choice of a constant CV, 
hence CP cannot be a constant too because their difference has to obey 
Mayer's relation. Assuming the constancy of both heat capacities would 
lead to inconsistencies in the energy conservation (Alboussière and 
Ricard, 2013). 

The preceding Eqs. (8a)-(8b)-(8c) can be used to discuss possible 
characteristics of the adiabatic profiles of large planets. From the variety 
of masses and radii of exoplanets that have been detected, it appears that 
many of them are rocky at least until a radius of order 2.5 times the 
Earth's radius (Otegi et al., 2020). Their observed mass M increases 
roughly as a power 3.45 of their radius R (their large internal pressures 
increase their average densities as ≈ R0.45). We will use this observation 
to scale the gravity in our equations with g∝M/R2 ≈ R1.5 and consider 
that the thickness of the convective layers is proportional to R. With 
these scalings, the dissipation number D varies like gH∝R2.5. Therefore, 
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according to Otegi et al. (2020) dissipation numbers up to 2.52.5 = 10 
times that of the Earth can be expected in fairly common rocky planets, 
and in what follows we will explore dissipation numbers up to D = 10. 
We will use D = D ⊕(R/R⊕)

2.5 when, to fix ideas, we discuss in term of 
planetary radii instead of dissipation numbers; a Super-Earth with a 
radius twice that of the Earth (resp. 3 times) would therefore be assumed 
to have a mantle with a dissipation number around 4.0 (resp. 11.1) and a 
core with a dissipation number around 3.2 (resp. 8.7). 

3. Adiabatic conditions in a Super-Earth 

3.1. The adiabatic density and temperature profiles 

Since incompressibility increases very significantly with density and 
thus with pressure, the adiabatic density and temperature increase only 
moderately with planetary radius. In Fig. 1, we plot the adiabatic tem
perature normalized with its value at the surface according to (8c). We 
use D = D ⊕ = 0.6 (black), D = 2 (red), D = 10 (green). 

The ratio of the adiabatic density between the bottom and the top of 
a convecting mantle is according to (8a) and (9) 

ρb
a

ρt
a
=

(

1 + (n − 1)
D

Γ0

)1/(n− 1)

. (11) 

This ratio is plotted in Fig. 2a as a function of D (bottom axis) and as 
a function of R (top axis, assuming D ∝R2.5). The ⊕ symbol indicates the 
position of the Earth where an adiabatic density ratio of 1.52 is predicted 
through the mantle (due to the phase changes in the transition zone the 
observed density change in Earth's mantle is rather 1.70). 

This adiabatic density ratio controls the adiabatic temperature ratio 
according to (8c) (see Fig. 2b). For the Earth, this ratio should be 1.41 
through the mantle (indicated by the symbol ⊕, say from 1600 K on top 
to 2256 K at the bottom). The maximum bottom temperature Tb

a is, at 
any rate, bounded when ρa→∞ by 

Tb
a

Tt
a
≤ eΓ0 ≈ 2.72. (12) 

Even in very large silicated Super Earth, the bottom adiabatic tem
perature should remain moderate and should hardly exceed a factor of 2 
times the surface adiabatic temperature (Fig. 2b). 

3.2. The adiabatic temperature gradient 

According to (1b), the surface adiabatic gradient is simply 

dTa

dz̃

⃒
⃒
⃒
⃒

t
= D Tt

a, (13)  

where z̃ = z/H is the normalized height in the convective layer. Obvi
ously the heat carried out near the surface, along the adiabat, increases 
with D . However the adiabatic gradient near the bottom is 

dTa

dz̃

⃒
⃒
⃒
⃒

b
= D

(
ρt

a

ρb
a

)n

Tb
a . (14) 

In this expression, Tb
a is bounded by eq. (12) and the thermal 

expansivity (related to the 
(
ρt

a/ρb
a
)n term) decreases faster than 1/D . 

This means that the adiabatic gradient at depth (in absolute value), 
initially increases and then decreases with the dissipation number (in
spection of (11) shows that the adiabatic gradient at depth decreases 
with D − 1/(n− 1) ≈ D

− 0.43). This is visible in Fig. 1 (compare the adiabatic 
gradient at the bottom of the three curves). This implies that, as the 
dissipation number increases, the effects of compressibility become 
confined to shallow depths, while at depth, the fluid appears more and 
more incompressible. Unexpectedly, as the effects of compression in
crease (as the planet radius increases), deep convection appears more 
and more incompressible! 

Another way to understand this is to consider that the compressible 
effects that affect convection are not related to D , which is based on the 
reference thermal expansivity but to D =

∫H
0 D dz̃, where the dissipa

tion number (10) is averaged over the layer thickness. Using the ex
pressions (5) and (8a), as shown in Ricard et al. (2022), one gets 

D ≤ Γ0, (15) 

i.e., the average dissipation number is never larger than the Grü
neisen parameter which is about 1. The weak variation of the average 
dissipation number with planetary size was also noticed by Miyagoshi 
et al. (2015). 

4. Convection in the mantle of super-Earths 

4.1. Compressible convection 

In situations where compressibility is important and the physical 
parameters vary strongly with depth, the use of a simple Boussinesq 
convection model and correction of the results by adding an adiabatic 
contribution a posteriori are not sufficient. Using anelastic formulations 
(Ogura and Phillips, 1962; Jarvis and McKenzie, 1980; Braginsky and 
Roberts, 1995; Lantz and Fan, 1999) may also be tricky, as it is easy to 
inadvertently contradict the basic thermodynamic rules (see e.g., Leng 
and Zhong, 2008; Alboussière and Ricard, 2013). In a previous paper 
(Ricard et al., 2022), we explained how to solve the fully compressible 
equations without approximations, when inertia is neglected (the 
infinite Prandlt number approximation), which is appropriate for mantle 
convection, i.e., how to solve the following equations 

Dρ
Dt

+ ρ ∇⋅u = 0, (16a)  

η ∇ 2u+
η
3

∇ ∇⋅u − ∇P+ ρg = 0, (16b)  

ρT
DS

Dt
= ε̇ : τ+ k∇2T, (16c)  

where the viscosity η and thermal conductivity k are assumed to be 
uniform. Following exactly the rules of thermodynamics and starting 
from the EoS (4), the entropy can be expressed and by integration of 
TdS = CVdT − αKTTdρ/ρ2 and writes 

Fig. 1. Normalized adiabatic temperature for D = 0.6, 2, 10 (black, red, 
green). In the case D = 10, the dashed lines are conductive profiles that will be 
discussed below, one is with ΔT = ΔTa (dark green), one with a gradient equal 
to the bottom adiabatic gradient (orange), the last one (blue) carries at the 
surface the same heat flow as the adiabatic gradient at the surface. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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S = CV ln
T
Ta

+ α0K0
T

(
1
ρ −

1
ρa

)

. (17)  

which cancels, at it should, when the density and temperature are those 
of the adiabatic conditions. The adiabatic density and temperature are 
calculated from (1a) and (1b) (see Ricard et al., 2022, for details) where 
the heat capacity at constant pressure that appears in the adiabatic 
profile is exactly given by Mayer's relation 

CP = CV

[

1+Γ0α0T
(ρ0

ρ

)n+1
]

. (18)  

4.2. Marginal stability and Schwarzschild criterion 

When heated from below, a fluid begins to convect when two con
ditions are realized. First the local temperature gradient ∣dT/dz∣ must be 
larger than the adiabatic gradient ∣dTa/dz∣. This is the Schwarzschild 
criterion (Schwarzschild, 1906): the temperature of a rapidly moving 
upward parcel of fluid follows the adiabatic gradient and must become 
warmer (i.e., less dense) than the surrounding medium to be gravita
tionally unstable. This criterion defines a necessary condition for con
vection. Second, the total temperature drop ΔT = Tb − Tt across the 
convective layer must be large enough so that a dimensionless number, 
the Rayleigh number, exceeds some critical value. In the simple case 
where the top and bottom boundaries are free slip, Rayleigh (1916) 
proved that this last condition can be expressed as 

Rac =
α0ρ2

0CPgH3ΔT
ηk

≥
27
4

π4 = 657.51 (19) 

This sufficient condition for convection was obtained in the Boussi
nesq approximation where all the parameters α0, ρ0, η and k are uniform. 
In a compressible fluid α and ρ are depth dependent and (19) is not 
necessarily in agreement with the Schwarzschild criterion. As we are 
accustomed to thinking of the adiabatic gradient as more or less uniform 
(this would be exactly true if the fluid were a perfect gas and which is 
approximately true in the Earth's mantle), a superadiabatic Rayleigh 
number Rasa is usually defined where the temperature drop ΔT is 
replaced by the superadiabatic temperature drop ΔTsa = ΔT − ΔTa, the 
temperature drop in excess of the adiabatic temperature drop 

Rasa =
α0ρ2

0CPgH3ΔTsa

ηκ
= Ra

ΔTsa

ΔT
, (20)  

where α0 and ρ0 are now some characteristic values of the depth- 
dependent thermal expansivity and density. With this definition, Rac

sa⩾ 

657.51 is in agreement with both what is found in the Boussinesq 
approximation and with the Schwarzschild criterion (Malkus, 1954; 
Jeffreys, 1930; Grossmann and Lohse, 2001), at least, if Ta is assumed to 
vary linearly with depth (i.e., if dTa/dz is uniform with dTa/dz = −

ΔTa/H). Various relations obtained in the Boussinesq approximation, 
for example between heat flow and Rayleigh number, are often taken to 
be valid in the compressible case when the superadiabatic Rayleigh 
number is used. We will show that the situation is more complex in 
super-Earth cases where the adiabatic gradient is large and with a large 
curvature. 

To begin with a simple case where the adiabatic gradient is uniform, 
we consider a perfect gas with EoS P = ρℛT. This EoS is certainly not 
appropriate for a planetary mantle but it corresponds to the prototypical 
case of compressible convection. For a perfect gas, αT = 1 and CP is 
constant in (1b) so that dTa/dz = − αaTag/CP = − g/CP. Using the 
surface temperature T0 and the height H of the convection layer to non- 
dimensionalize the variables, we obtain dTa/dz = − D /γ where γ = CP/

CV is the heat capacity ratio (also known as adiabatic index or Laplace's 
coefficient). A bottom temperature rT0 is then considered to be imposed, 
in which case the conductive geotherm is dTc/dz = − (r − 1). The 
Schwarzschild criterion imposes therefore that convection cannot exist 
when D ≥ γ(r − 1). 

In a previous paper, we give the general equations verified by the 
marginally stable solution and how to compute the critical Rayleigh 
number for any EoS (eqs. 5.5–5.8 in Alboussière and Ricard (2017) and 
following comments). We therefore calculate the critical Rayleigh 
number Rac(D , r) for Rayleigh Bénard convection of a perfect gas and 
plot the result in Fig. 3a. As expected, convection can only occur below 
the D = γ(r − 1) line. The cyan line corresponds to Rac= 657.51, and 
indeed for D →0 and r→0, the critical value obtained for the Boussinesq 
case is recovered. Increasing the temperature jump r − 1 decreases the 
critical Rayleigh number, increasing the dissipation number D increases 
the critical Rayleigh number. 

The situation is obviously very different in a planet with a Murna
ghan EoS. The motionless diffusive and hydrostatic state still has a linear 
geotherm dTc/dz = − (r − 1) but the adiabatic gradient appearing in the 
Schwarzschild criterion depends on depth (see also Kameyama and 
Yamamoto, 2018). This adiabatic gradient is dTa/dz = − D ρ− n

c Tc/γc, i. 
e., the slope of the adiabat under the conditions corresponding to the 
diffusive state with temperature Tc, density ρc and heat capacity ratio γc. 
We have tested the conductive profiles over an extensive range of input 
parameters α0T0, Γ0, r, D , n, and observed that the minimum value of 
the adiabatic gradient is attained at the bottom of the layer in most 
cases. In other cases, the minimum is at the top of the layer, only when 
the dissipation number is small and the temperature ratio large, so that 

Fig. 2. Ratio between bottom and top adiabatic density (panel a) and temperature (panel b) in a compressible planet as a function of dissipation number D (n = 3.3, 
Γ0 = 1). The symbol ⊕ indicates the situation for the Earth. The horizontal axis is either labelled in dissipation numbers (bottom) or in Super-Earth radii (top). 
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the adiabatic gradient is smaller than the conduction gradient all along 
the vertical profile (this can also be analytically proven if one assumes 
that the adiabatic gradient cannot be much different from dTa/dz ≈ −

D ρ− n
a Tc, i.e., that ρc ≈ ρa (see (8a)) and γc ≈ 1). This implies that con

vection cannot occur when the diffusive gradient ∣dT/dz∣ is lower than 
that of the dashed orange line in Fig. 1 (tangent to the adiabatic profile 
at the bottom where the adiabatic gradient is minimal in absolute 
value). When the adiabatic gradient is smaller than the conduction 
gradient only in the lower part, convection can start in the deep layers 
although ΔT ≤ ΔTa, i.e., although the superadiabatic Rayleigh number 
is negative. This is confirmed by the computation of the critical Rayleigh 
number shown in Fig. 3b. There is a large domain in blue, where the 
conductive temperature gradient is in between that of the dark green 
curve and that of the orange curve of Fig. 1, where convection can start 
in the deep layer while the critical superadiabatic Rayleigh number is 
negative. Notice that again, when D →0 and r→0, the critical value 
computed for the Boussinesq case is recovered (Rac

sa→657.51, a value 
shown by a cyan line). This limit is indeed independent of the chosen 
EoS. 

A negative superadiabatic Rayleigh number is surprising at first 
sight. We could have discussed our results in terms of the total Rayleigh 
number only (see (20)), which remains positive or define another 
superadiabatic Rayleigh number that will necessarily be positive when 
the fluid convects (e.g., we could replace ΔTa in (20) by −

H(dTa/dz)(z = 0), so that a convective Schwarzschild criterion is 
reached at the bottom only when the superadiabatic Rayleigh number is 
positive). However, changing the expression of the superadiabatic 
Rayleigh number each time a new EoS is considered, seemed to us to add 
more complexity than to clarify the physics. We prefer to stick to the 
usual definition of the superadiabatic Rayleigh number involving ΔT −

ΔTsa and, therefore, we must consider the possibility of convection with 
negative superadiabatic Rayleigh numbers. 

4.3. Convection simulations 

With the same numerical code as in Ricard et al. (2022), we solve the 
mass, momentum and energy conservation system (16a)-(16b)-(16c) 
with the software Dedalus (Burns et al., 2020, www.dedalus-project.or 
g), which handles coupled partial differential equations that are 

solved using a spectral decomposition for the horizontal direction and 
Chebyshev polynomials for the vertical direction. The variables are 
advanced in time by a Runge–Kutta scheme of four-stage and order 3. 
We choose the number of points so that the top and bottom thermal 
boundary layers are described by at least 10 Chebyshev collocation 
nodes. In our simulations, the surface temperature is Tt = T0 and the 
bottom temperature Tb = rT0. We assume that the surface pressure is 
Pt = P0 = 0 (hence that the surface density is ρ0). 

As discussed in Ricard et al. (2022), it is tricky to work with a 
compressible fluid on a fixed numerical grid. Indeed, we do not know 
what the total mass in the convective layer must be to ensure that when 
convection is well established, the surface pressure is zero. We therefore 
perform our simulations for given Ra, r and D , starting with different 
initial masses (the initial mass is the integral of an initial adiabatic and 
hydrostatic profile which itself depends only on the choice of a surface 
adiabatic density or temperature) until the average surface pressure is 
statistically zero (the local surface pressure itself remains a function of 
space and/or time and is commonly interpreted as equivalent to express 
the presence of a dynamic topography induced by convection). 

4.4. Heat flux in compressible convection 

The efficiency of heat transport by convection is expressed by the 
Nusselt number, the ratio of the heat flux actually transported to that 
which would be transported by conduction alone. Since the adiabatic 
temperature gradient must be established before convection can begin, 
it is natural to subtract the heat conducted along the adiabat from both 
the actual heat transport and the conductive heat transport used in the 
definition of the Nusselt number (e.g., Malkus, 1954; Tilgner, 2011; 
Jones et al., 2021). A superadiabatic Nusselt number is therefore defined 
with 

Nusa =
Q − Qa

ΔT − ΔTa
, (21)  

where Q and Qa are the surface heat flux and the adiabatic surface heat 
flux (in (21), heat fluxes and temperatures are dimensionless, heat fluxes 
are normalized by kT0/H and temperatures by T0). Although this defi
nition has been used for perfect gas EoS, where the adiabatic gradient is 
uniform, it is also the expression used in solid Earth geophysics when 

Fig. 3. Isocontours of the critical superadiabatic Rayleigh number as a function of the surface dissipation number D , and the ratio between top and bottom 
temperatures r. In the left panel, the EoS of the convective fluid is that of a perfect gas (with γ = 5/3), in the right panel we consider the Murnaghan EoS, 
appropriated for condensed matter. While for the perfect gas, a large dissipation number D decreases the domain where convection can occur, for the Murnhagan 
solid, convection can easily start in the deep layers even when the imposed temperature difference is lower than the adiabatic temperature difference. The dashed 
green and orange lines corresponds to the conductive slopes of Fig. 1. The cyan lines in both panel are for Rac

sa = 657.51, the value obtained by Lord Rayleigh in the 
Boussinesq case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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this gradient is non-uniform (e.g., Bercovici et al., 1989), and the widely 
used benchmark comparison of compressible anelastic codes by King 
et al. (2010) also removes the adiabatic gradient in the definition of the 
Nusselt number. For compressible convection at infinite Pr number, the 
superadiabatic heat flux and the superadiabatic Rayleigh number are 
related by 

Nusa∝Ra1/3
sa , (22)  

in agreement with what is found in the Boussinesq approximation 
(Malkus, 1954; Grossmann and Lohse, 2001). 

The relation (22) is usually proposed in situations where ΔTa is 
smaller and often much smaller than ΔT which is not necessarily verified 
when D is large, as convection can occur even with ΔTa ≥ ΔT. Notice 
also that, as shown by the blue dashed line in Fig. 1, the adiabatic heat 
flow at the surface may be very large and Q − Qa may be negative even 
in the case where ΔTa ≤ ΔT. The”adiabatic” Nusselt number, Nua = Qa/

ΔTa = D Tt
a/ΔTa (see (13)) is of order D as Tt

a/ΔTa ≈ 1. For D = 10, 
this is already a large heat flow which requires a Rayleigh number of 
105 − 106 in the Boussinesq case. Previously we had to consider the case 
with negative superadiabatic Rayleigh number, now we can have a 
negative superadiabatic Nusselt number. We could of course alter the 
definition of the Nusselt number but this would be a cosmetic change 
that would not change the basic physics. 

This situation where the convective heat flow can be less than the 
adiabatic heat flow, is not unknown and may actually happen in the 
Earth's core (although inertial, electromagnetic and rotational effects 
not accounted for in our model become crucial in the core). The con
ductivity of iron is sufficiently large (Stacey and Loper, 2007; de Koker 
et al., 2012; Gomi et al., 2013) that in the top part of the core, the heat 
transported along the adiabat may be larger than that transported by 
convection (Labrosse et al., 1997; Lister and Buffett, 1998). This would 
imply the presence of a stratified layer in which the superadiabatic 
temperature carries the heat flow downward to balance the upward 
transport along the adiabat. How deep convection interacts with a 
shallow layer with a large adiabatic gradient can now be discussed using 
some numerical simulations. A very large number of quantities of in
terest could be computed from these numerical simulations. Here, we 
will simply discuss the general pattern of convection and the mean 
temperature profiles, as well as how the energy is transported 
throughout the layer. 

In the Boussinesq approximation used as a reference model, the heat 
flow through the fluid is simply 

QBo = ρwCV T − k
dT
dz

, (23)  

where w is the vertical velocity and T the total temperature. The overbar 
indicates an average of the various quantities horizontally and over 
time; this heat flow is constant with depth. In the Boussinesq approxi
mation, the density ρ is a constant, just as the heat capacity CV and the 
heat capacity at constant volume or constant pressure are not distin
guished. In a compressible fluid (see Ricard et al., 2022, for details), the 
relevant quantity advected by the flow is the enthalpy H that can be 
deduced from (4) by integration of dH = TdS + dP/ρ 

H =

(

CV +
α0K0

T

ρ

)

T +
K0

T

(n − 1)
ρn− 1

ρn
0
, (24)  

and the heat flow can then be written as 

Q = ρwCV Tsa − k
dTsa

dz
+ ρw(H − CV Tsa) − k

dTa

dz
− uτxz + wτzz, (25)  

where we consider separately the adiabatic, Ta, and superadiabatic, 
Tsa = T − Ta, temperatures. 

The first two terms converge to their counterparts in (23) when the 
adiabatic temperature is constant, the third term (which can obviously 

be simplified with the first) is a correction due to the fact that it is 
enthalpy rather than specific heat CVT that is being transported. The 
fourth term is the conduction along the adiabat and the last is the work 
flow (τxz and τzz are the deviatoric stresses, u the horizontal velocity). If 
we had used dimensionless variables, the ratio of this term to the first 
would be D ΔT/(RaT0) and indeed, would become negligible in the 
Boussinesq approximation when D →0. 

4.5. Convection at small dissipation number and large temperature drop 
(D = 1, r = 10) 

In a first simulation at a moderate Rayleigh number Rasa = 108, we 
consider a situation in which the adiabatic temperature drop is small 
compared to the imposed temperature difference, with D = 1 and r =
10 which corresponds more or less to terrestrial conditions. A typical 
snapshot of the superadiabatic temperature field is depicted in Fig. 4. 
This situation remains relatively close to the classical Rayleigh-Bénard 
convection in the Boussinesq approximation but some differences are 
notable. Due to dissipation, the descending and ascending plumes are 
rather discontinuous. They tend to form clusters, which is consistent 
with the suggestion by Schubert et al. (2004) that the two superplume 
regions observed in the deep Earth's mantle may be clusters of smaller 
plumes which coalesced into a large region of hot, buoyant material. 

The time-average temperature profile is depicted in blue in Fig. 5. 
The dots along the temperature profile correspond to the nodes of the 
Chebyshev polynomials used by the Dedalus software. Top and bottom 
boundary layers have comparable thicknesses. The adiabatic profile 
(red) is quasi linear and provides a close approximation to the real 
temperature (Fig. 5). The total mass under the actual temperature pro
file and under the adiabatic profile is the same and leads to a zero 
average pressure at the surface when the convection is statistically 
steady. 

In this simulation the time averaged heat flux is Q = 431, Qa = 4.41, 
ΔTsa = 6.78 and the Nusselt number, Nusa = 62.92 and therefore Nusa =

0.14Ra1/3
sa . The prefactor is in agreement with other simulations per

formed in the Boussinesq regime (Sotin and Labrosse, 1999) or in the 
fully compressible case with an ideal gas Eos (Curbelo et al., 2019). We 
depict the profiles of the various components of the heat flow in Fig. 6 
(see (25)). In the left panel (a), we plot the total heat flow (green), the 
transport of specific heat (red) and the conduction along the super
adiabatic temperature profile (blue) (i.e., the total heat flow Q and the 
first two terms of eq. (25)). The total heat flow (green) would be depth- 
independent when averaged over a very long period. The red and blue 
components (the specific heat transport and the conductive term) are the 
only terms carrying heat in the Boussinesq approximation (see (23)). 
Due to compressibility, other minor contributors to the energy transport 
are present in panel 6b. The transport of H − CVTsa (red), the conduc
tion along the adiabat (blue), and the work flow (green) (i.e., the third, 
fourth and fifth terms of (25)). These different terms tend to increase the 
energy transport near the surface and decrease it at depth. Compress
ibility does not affect the energy transport very much as D remains 
small compared to the applied total temperature difference across the 
layer and the minor components of panel b have amplitudes at most of 

Fig. 4. Snapshot of the superadiabatic temperature in the convective layer with 
Rasa = 108, D = 1 and r = 10. The downwellings and upwellings are less 
stable and less continuous with depth than in the Boussinesq approximation. 
The plumes are not homogeneously distributed but tend to form clusters. 
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≈ 5% of the major components of panel a. 

4.6. Convection at large dissipation number and large temperature drop 
(D = r = 10) 

We can now consider the case where the dissipation number becomes 
comparable to the temperature ratio, D = r = 10. A typical snapshot of 
the superadiabatic temperature is depicted in Fig. 7. When the dissipa
tion number is large, it is difficult for cold plumes to continuously 

traverse the convective layer (Alboussière et al., 2022). As previously 
observed by Hansen et al. (1993), hot instabilities gain buoyancy as they 
rise in the mantle as the thermal expansivity increases. They are stronger 
and more stationary than the cold instabilities that lose buoyancy with 
depth. The temperature profiles are shown in Fig. 8. Due to the large 
heat flow carried out along the adiabat, the cold boundary layer (the 
lithosphere) is poorly defined and its thickness increases compared to 
the Boussinesq case. On the contrary, the bottom boundary layer is much 
less affected because the adiabatic gradient is minimal here. The adia
batic profile (red) and the total temperature (blue) have approximately 
similar curvatures. We recall that both thermal profiles lead to the same 
total mass in the mantle; the red adiabatic curve has not been computed 
to provide a best fit to the observed temperature. Furthermore, the idea 
that the actual temperature profile should be adiabatic is based on the 
assumption that the dissipation is negligible which is not the case when 
D is large. 

In this simulation the heat flow is Q = 270, Qa = 30.75, ΔTsa = 5.56 
and the Nusselt number, Nusa = 43.03 and therefore Nusa = 0.09Ra1/3

sa . 
The prefactor of this equation is smaller than usually found: the Nusselt 
number, which is inversely related to the thickness of the cold boundary 
layer, is small because this thickness is increased by the large flux car
ried by conduction along the adiabat. 

As in Fig. 6, the various components of the heat flow are depicted in 
Fig. 9 when the dissipation number is now D = 10. The transport of 

Fig. 5. Temperature (blue) and adiabatic (red) profile in a convection model 
with Rasa = 108, D = 1 and r = 10. The fluid mass that can be computed from 
the adiabatic and hydrostatic profile is by construction the total mass inside the 
convective fluid. The average pressure at the surface and over time is zero. The 
two boundary layers have similar thicknesses. The temperature overshoot near 
the hot bottom boundary layer is slightly more pronounced than that under the 
lithosphere. The total temperature jump across the layer is r − 1 = 9 and the 
adiabatic temperature jump is 2.22. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Energy flux through the convective layer. In 
panel (a), we plot the total energy flow, averaged over 
time, in green. This flux should become independent 
of depth if we had performed the averaging over an 
infinitely long time window. The two main contribu
tors of the energy flux are the advection of specific 
heat (red) and the conduction along the super
adiabatic thermal profile (blue). The former is effec
tive in the bulk of the fluid, the latter in the boundary 
layers. Other minor contributors to energy transport 
(panel (b)) are conduction along the adiabat (blue), 
work flow (green), the contribution due to enthalpy 
rather than specific heat being transported (red). 
Notice the difference in scale between the two panels. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version 
of this article.)   

Fig. 7. Snapshot of the superadiabatic temperature in the convective layer with 
Rasa = 108, D = 10 and r = 10. The downwellings are still less stable and less 
continuous with depth than the hot plumes but for both hot and cold plumes, 
crossing the mantle becomes difficult. 
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specific heat (red, panel a), as for the previous case, underestimates the 
energy transport in the upper part of the mantle and overestimates the 
energy transport in the lower part. The heat conducted along the 
superadiabatic gradient (blue, panel (a)) is lower across the top cold 
boundary where significant heat (12% of the surface heat flow) is car
ried out along the adiabat (blue curve, panel (b)). Energy transfert due to 
the difference between enthalpy and specific heat (red, panel (b)) and 
work flow (green, panel (b)) are also significant. These three minor 
components added to the two major components in panel (a), lead to a 
global heat flow (green, panel (a)), independent of depth. 

4.7. Convection at large dissipation number and small temperature drop 
(D = 10 and r = 2.5) 

As we discussed, convection can also occur with a negligible super
adiabatic temperature jump ΔTsa. We therefore perform a simulation, 
always at Rasa = 108 but with D = 10 and r = 2.5. In that case ΔTsa =

0.30. A temperature snapshot is shown in Fig. 10. Rising plumes are 
strong and vigorous but few downwelling currents are visible. In fact, no 
cold boundary exists and on the contrary a significant portion of the 
surface corresponds to a maximum of superadiabatic temperature. These 
characteristics are also obvious in Fig. 11 depicting the average tem
perature profile (blue). The adiabatic temperature (red) has a sligthly 
lower surface temperature than the real surface temperature. 

The various components of the energy transport are shown in Fig. 12. 
The balance between the various terms is very different from the pre
vious cases (see Figs. 6 and 9). In this simulation the heat flow is Q =

19.1, Qa = 10.7, and the superadiabatic Nusselt number as defined in 
(28) is now very small Nusa = 28. When the adiabatic gradient has a 
large curvature with depth, the usual Ra-Nu relation cannot be used. 
Conduction along the superadiabatic temperature profile (blue, panel b) 
becomes less important than along the adiabat (blue panel b). The 
advection of specific heat (red, panel a) transports the energy in the deep 
convective layer, but the main transport occurs at shallow depth, along 
the adiabat (blue, panel b). The work flow (green, panel b) and the 
distinction between enthalpy and specific heat (red, panel b) only 

Fig. 8. Temperature profile (blue) and adiabatic (red) in a convection model 
with Ra = 108, D = 10 and r = 10. The mass of the fluid that can be computed 
from the adiabatic profile is by construction the total mass of the fluid. The total 
average pressure at the surface, average over time is zero. The thickness of the 
top boundary is strongly affected by the ability of the fluid to carry heat along 
the adiabat. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 9. Energy flow across the convective layer. In 
panel (a), we plot the total energy flow, averaged on 
time, in green. The other minor contributors of energy 
transport are the conduction along the adiabat (blue, 
panel (b)), the work flow (green, panel (b)), the 
contribution due to the fact the enthalpy transport is 
not restricted to the CVT term (red, panel (b)). Notice 
the difference in scale between the two panels. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   

Fig. 10. Snapshot of the superadiabatic temperature in the convective layer 
(D = 10 and r = 2.5). The hot rise plumes spread under an even hotter (in 
terms of superadiabatic temperatures) top boundary layer. 
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transports a small excess of energy in the upper part of the convective 
layer. 

4.8. Convection with negative superadiabatic Rayleigh number (D = 5 
and r = 1.5) 

As the marginal stability analysis suggests, convection can also occur 
with a negative superadiabatic Rayleigh number. This is the case when 
D = 5 and r = 1.5 which are parameters that belong to the blue shaded 
area of the phase diagram of Fig. 3. We choose a negative Rayleigh 
number, Ra = − 108, smaller than the negative critical number 
computed in Fig. 3. The resulting convection pattern is typically that 
shown in Fig. 13. The shallow layer now appears as a warm (non adia
batic) stable layer beneath which vanish faint rising plumes, warmer 

than the deep average mantle but colder than the stable surface lid. The 
temperature profile of Fig. 14 (blue) is far away from the adiabat (red). 
The temperature profile is linear in the stable conductive layer 
(0.7 ⩽ z ⩽ 1) but a weak hot boundary still remains at the bottom. The 
heat transport components (Fig. 15) are really dominated by the 
conductive terms along the superadiabatic profile (panel (a)) and along 
the adiabat (panel (b)). These two terms largely cancel each other out 
but together extract the heat flow transported in the deep layers by 
convection at the surface (red, panel (a)). The work flow and the dif
ference between enthalpy and specific heat are totally negligible. In this 
case the Nusselt number is positive with negative numerator and de
nominator; Nu = 12.5 (Q = 0.76, Qa = 3.98, ΔT = 0.5, ΔTa = 0.76), 
but with a negative Rayleigh number. 

5. Conclusions 

In this article, we examined how convection is affected by 
compressibility when the dissipation number, which is a measure of the 
non-Boussinesq effects, is large. This situation occurs in Super-Earths, i. 
e. in solid or liquid planets whose radius is much larger than that of the 
Earth. Such planets are quite common and the surprising large variety of 
exoplanets that have been found so far suggests that planets even larger 
than those considered here (say up to 3 times the radius of the Earth) 
exist. 

The characteristics of compressible flows are controlled by an adia

Fig. 11. Temperature profile (blue) and adiabatic (red) in a convection model 
with Ra = 108, D = 10 and r = 2.5. Except for a bottom boundary layer the 
superadiabatic average temperature (blue) follows the general curvature of the 
adiabat (red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 12. Energy flow across the convective layer. In 
panel (a), we plot the total energy flow, averaged on 
time, in green. The conduction along the super
adiabatic temperature is totally different from the 
previous cases as now, it carries heat downward near 
the surface (blue panel (a)). The advection of specific 
heat (red, panel (a)) dies out at shallow depth. The 
other minor contributors of energy transport are the 
conduction along the adiabat (blue, panel (b)), the 
work flow (green, panel (b)), the contribution due to 
the fact the enthalpy transport is not restricted to the 
CpT term (red, panel (b)). Notice the difference in 
scale between the two panels. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Fig. 13. Snapshot of the superadiabatic temperature in a convection model 
with a negative Rayleigh number Ra = − 108, D = 5 and r = 1.5. As show in 
Fig. 3 convection occurs with these parameters. The colour scale is chosen to 
emphasize the weak rising plumes and saturates near the surface. 
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batic state that provides an approximate reference to the thermody
namic values during developed convection. In a first section we dis
cussed some properties of the adiabatic conditions when the fluid obeys 
a simple Murnaghan EoS with a Grüneisen parameter decreasing 
inversely with density. This EoS is faily simple but faithfully reproduces 
the behavior of solids and liquids at high pressure and temperature. 
Some consequences of this EoS for adiabatic profiles of density or tem
perature are independent of the nature of the fluid (the properties of 
solid silicates or liquid iron properties can be reproduced by this generic 
EoS). This EoS imposes that incompressibility increases rapidly with 
pressure. The effects of compression are therefore concentrated in the 
upper layers while the deep layers can hardly be compressed any 
further. This imposes a strong curvature on adiabatic density and tem

perature. It is unlikely that the bottom adiabatic temperature is more 
than twice the adiabatic temperature at the surface, even in large Super- 
Earths. Although the adiabatic temperature gradient, which plays a 
major role in convection, can be very large at the surface, it remains 
moderate at depth and, surprisingly, it decreases, rather than increases, 
with the dissipation number D . Another way of looking at this is to note 
that, although the surface dissipation number D estimated from the 
radius of a planet can be very large, Murnaghan's EoS requires its mean 
to be less than the Grüneisen parameter, i.e., typically less than about 1. 

We then study the marginal stability of compressible convection. For 
the EoS we have chosen, the strong curvature of the adiabat facilitates 
convection in the deep layers and favors conductive heat transport in 
shallow layers. Convection can develop in deep layers even when the 
total temperature difference between the bottom and top surfaces is 
equal to or less than the adiabatic temperature difference. Convection 
with a negative superadiabatic Rayleigh number is therefore possible. 

We then explore different cases of developed convection. Our com
putations are carried out with a moderate superadiabatic Rayleigh 
number (∣Ra∣ = 108), various dissipation numbers and various bottom to 
top temperature ratios. The simulations are carried out for a fluid 
without inertia which is only valid for the creeping convection of 
planetary mantles, but without any further approximation. There is, of 
course, no indication of the appropriate Rayleigh numbers and tem
perature ratios for Super-Earths. This temperature ratio (and the Ray
leigh number) depends on the surface and bottom conditions of the 
planet's mantle. The former depends on atmospheric composition, dis
tance from the star, and the planet's internal dynamics. The latter de
pends on the planet's formation mechanisms, core segregation, mantle 
radioactive content and planet's formation age. It is probably unlikely 
that the temperature ratio imposed across silicate mantles is as small as 
in the cases of sections 4.7 or 4.8 (D ≫r ≈ 1) but there are maybe more 
strange situations than are dreamt in our philosophy. The situation 
discussed in section 4.6 (D ≈ r≫1) could be a more common situation. 
In this case, the top and bottom boundary layers are of very different 
thicknesses, and the concept of a top boundary layer, a lithosphere, may 
lose its meaning as significant conduction along the adiabat may sup
press or dampen convection. The heat transport in the case of large 
dissipation number can occur through various combinations of enthalpy 
transport (which cannot be limited to specific heat), conduction along 
the adiabatic gradient and along the average superadiabatic tempera
ture gradient and a work flow term. 

In this article, viscosity has been assumed to be uniform throughout 
the mantle. The various behaviors that have been described, as a func
tion of temperature ratio r and dissipation number D , are solely due to 
the response of the EoS to thermal forcing. This means that we do not 
expect the large scale behavior of convection to depend on the exact 
rheology. Of course, the rheology can be different – non-newtonian and 
non-uniform – and the precise small-scale flow structures will depend on 
this, however the overall picture of convection is mainly governed by 
the EoS. Numerical experiments of compressible convection in Super- 
Earths with non-uniform viscosity and thermal conductivity profiles 
have were conducted by Kameyama and Yamamoto (2018). They were 
carried out using the truncated anelastic liquid approximations that lead 
to thermodynamic inconsistencies. Solving the exact equations with 
depth-dependent viscosity and conductivity appears straightforward, 
however, using Dedalus and very minor modifications to our code. 

Although our simulations without inertia are valid only for creeping 
flows, i.e., for solid state convection, some of our conclusions hold for 
the case where convection occurs in liquids, including liquid metals. 
First, as already mentioned, the chosen EoS is a much better starting 
point for correctly expressing the thermodynamical equations that 
control the flow than is often done. The characteristics of adiabatic 
properties discussed in this paper remain valid for fluids. Of course, 
other terms, inertia, rotation, electromagnetic effects would have to be 
added. For these cases, anelastic approximations should be used for 
numerical modeling. It remains necessary to start from a realistic EoS 

Fig. 14. Temperature profile (blue) and adiabatic (red) in a convection model 
with Ra = − 108, D = 5 and r = 1.5. The top to bottom temperature ratio is 
now significantly smaller than the adiabatic temperature difference. Convection 
occurs with a negative Rayleigh number. A conductive layer in which the 
temperature gradient is constant fills the upper 20% of the convective layer but 
a weak bottom boundary layer allows the emergence of plumes. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 15. The conduction terms along the superadiabatic temperature, in blue 
panel (a), and along the adiabat, in blue panel (b), largely cancel each other. At 
depth the energy is transported by convection (red, panel (a)). The other terms 
of energy transport are negligible. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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and carefully check the consistency of the approximations. Situations 
like in sections 3.7 or 3.8 where the dissipation number becomes much 
larger than the temperature ratio, are probably common and could 
prevail in the Earth's core. Note that in these cases, an estimate of the 
extracted heat flow based on the adiabatic gradient is meaningless, as 
convection does not develop near the surface (see the difference be
tween the adiabatic transport, blue curve of Fig. 15(b) and the total 
energy flow, green curve of Fig. 15(a)). The superadiabatic temperature 
drives the heat flow down (blue curve of Fig. 15(a)) and the surface heat 
flow remains comparable to what deep convection (red curve of Fig. 15 
(a)) is capable of transporting. 
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de la chaleur. Ann. Chim. Phys. 10, 395–413. 

Rayleigh, J., 1916. On convection currents in a horizontal layer of fluid, when the higher 
temperature is on the under side. London, Edinburgh, Dublin Philos. Mag. J. Sci. 32 
(192), 529–546. 

Ricard, Y., 2015. 7.02 - physics of mantle convection. In: Schubert, G. (Ed.), Treatise on 
Geophysics, second edition. Elsevier, Amsterdam, pp. 31–87. 

Ricard, Y., Alboussière, T., Labrosse, S., Curbelo, J., Dubuffet, F., 2022. Fully 
compressible convection for planetary mantles. Geophys. J. Int. 230 (2), 932–956. 

Schubert, G., Turcotte, D., Olson, P., 2001. Mantle Convection in the Earth and Planets. 
Cambridge University Press. 

Schubert, G., Masters, G., Olson, P., Tackley, P., 2004. Superplumes or plume clusters? 
Phys. Earth Planet. Inter. 146 (1), 147–162. Plumes and Superplumes.  

Schwarzschild, K., 1906. Ueber das gleichgewicht der sonnenatmosphÃ¤re. Nachrichten 
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