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S U M M A R Y
The numerical simulations of convection inside the mantle of the Earth or of terrestrial planets
have been based on approximate equations of fluid dynamics. A common approximation
is the neglect of the inertia term which is certainly reasonable as the Reynolds number of
silicate mantles, or their inverse Prandtl number, are infinitesimally small. However various
other simplifications are made which we discuss in this paper. The crudest approximation
that can be done is the Boussinesq approximation (BA) where the various parameters are
constant and the variations of density are only included in the buoyancy term and assumed to
be proportional to temperature with a constant thermal expansivity. The variations of density
with pressure and the related physical consequences (mostly the presence of an adiabatic
temperature gradient and of dissipation) are usually accounted for by using an anelastic
approximation (AA) initially developed for astrophysical and atmospheric situations. The
BA and AA cases provide simplified but self-consistent systems of differential equations.
Intermediate approximations are also common in the geophysical literature although they
are invariably associated with theoretical inconsistencies (non-conservation of total energy,
non-conservation of statistically steady state heat flow with depth, momentum and entropy
equations implying inconsistent dissipations). We show that, in the infinite Prandtl number
case, solving the fully compressible (FC) equations of convection with a realistic equation of
state (EoS) is however not much more difficult or numerically challenging than solving the
approximate cases. We compare various statistical properties of the Boussinesq, AA and FC
simulations in 2-D simulations. We point to an inconsistency of the AA approximation when
the two heat capacities are assumed constant. We suggest that at high Rayleigh number, the
profile of dissipation in a convective mantle can be directly related to the surface heat flux.
Our results are mostly discussed in the framework of mantle convection but the EoS we used
is flexible enough to be applied for convection in icy planets or in the inner core.

Key words: Equations of state; Mantle processes; Numerical modelling; Planetary interiors;
Dynamics: convection currents, and mantle plumes; Heat generation and transport.

1 I N T RO D U C T I O N

The equations of fluid dynamics that control the fully compressible (FC) convection are also the same equations that control the propagation
of sound waves. In most geophysical cases, the huge difference of timescales between convection velocities and sound celerity makes an
exact numerical simulation impracticable. Various levels of approximations are therefore usually considered. The earliest, most extreme and
well known approximation is the Oberbeck–Boussinesq approximation (BA), where the density of the fluid is uniform except in the buoyancy
term (Oberbeck 1879; Boussinesq 1903). Some parameters of the equations are sometimes varied (i.e. the thermal expansivity, the thermal
conductivity, the viscosity, etc.) while the density is still assumed uniform in the mass and energy conservation equations. We will call
these approximations as quasi-Boussinesq, QB (sometimes called extended Boussinesq, King et al. 2010). These approximations, BA or QB,
are not thermodynamically consistent as the density cannot be uniform if the buoyancy is non-uniform. Furthermore, the thermodynamic
Maxwell relations imply that the effect of thermal expansion causes not only the thermal buoyancy but also the adiabatic compression. In
geophysical and astrophysical situations (interiors of stars and planets, oceans and atmospheres), compressibility is an essential ingredient
and the variations of density are rather controlled by pressure than by temperature. To avoid the propagation of sound waves in the convective
medium, the anelastic approximation (AA) has been introduced. The approximation was initially proposed for situations with large Reynolds
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Fully compressible convection 933

numbers such as the atmosphere (Ogura & Phillips 1962), the liquid core (Braginsky & Roberts 1995) or the stars (Lantz & Fan 1999) and
was later applied to low Reynolds number situations. The rich bibliography of numerical studies of convection applied to planetary interiors
is based on Boussinesq models (e.g. Blankenbach et al. 1989; Busse et al. 1994; Bunge et al. 1997; Parmentier & Sotin 2000; Choblet et al.
2007; Zhong et al. 2008) or anelastic models (e.g. Jarvis & McKenzie 1980; Glatzmaier 1988; Bercovici et al. 1989, 1992; Tackley 2008;
Rolf et al. 2012; Kameyama & Yamamoto 2018). A comprehensive presentation of the fluid dynamic equations and their approximations
when they are applied to planetary interiors is found in Schubert et al. (2001).

The basic assumption of the AA, is that the bulk of the convective fluid is well mixed and in a thermodynamic state close to isentropy.
The equations are thus expressed as an expansion of the thermodynamic variables around the isentropic state (usually coined as the ‘adiabatic
state’). The AA can itself be subdivided into various levels of approximations depending on the terms kept in the expansion (Schubert et al.
2001; Anufriev et al. 2005). The thermodynamic consistency of these AA equations has been discussed in several papers (e.g. Leng & Zhong
2008; King et al. 2010; Trubitsyn & Trubitsyn 2015; Verhoeven et al. 2015; Yoshida 2017; Gassmoller et al. 2020), and below, we will come
back to this point in more details. However, we think that the papers on AA convection applied to the mantle have used assumptions on the
equation of state (EoS) or on the thermodynamic parameters that are not entirely appropriate for a terrestrial planet. For example, a well-known
ingredient of compressible convection is the presence of an adiabatic temperature gradient; a fluid parcel entrained in a descending flow
undergoes a temperature increase during adiabatic compression, and a temperature decrease in upwellings. However the adiabatic gradient is
expected to decrease with pressure (hence with depth) for any EoS appropriate for a planetary interior while assumptions on the constancy
of some parameters made in the available simulations imply rather an increase of the adiabatic gradient with depth (this is the case for all the
simulations of the benchmark paper of King et al. 2010). This may become problematic particularly when considering large exoplanets in
which the pressure is very large. In addition, it remains very difficult to know exactly what are the aspects of convection that may be missed
when the AA equations are used instead of the FC formalism.

In this paper, we consider convection in silicate planetary mantles. However some of our results would also apply in liquid or solid metallic
layers (core or inner core) and icy satellites and their possible inner oceans (with the appropriate addition of their specific characteristics
such as the presence of Coriolis and magnetic forces). Starting from a realistic EoS for the mantle, which seems to be flexible enough to be
applied to metallic or icy layers, we show that solving the equations of FC convection at infinite Prandtl number, is feasible and not much
more difficult than solving the approximate equations. Moreover, it allows us to assess the appropriateness of approximate models, to discuss
the mechanisms of heat transfer and to suggest a profile of dissipation at high Rayleigh number.

2 M U R NA G H A N E O S F O R P L A N E TA RY I N T E R I O R S

2.1 Basic thermodynamics

A very important quantity in the thermodynamics of planetary materials is the Grüneisen parameter

� = αKT

ρCV
= 1

ρCV

(
∂ P

∂T

)
V

, (1)

where P, T, α, KT, ρ and CV are the pressure, temperature, thermal expansivity, isothermal incompressibility, density and heat capacity at
constant volume. The Grüneisen parameter is dimensionless and can reasonably be considered as independent of the temperature at first order
(Anderson 2000). An empirical law (Anderson 1979) relates � to density,

� = �0

(
ρ0

ρ

)q

, (2)

where q is around 1, ρ0 is a reference density and �0 is the Grüneisen parameter at standard conditions. On average, the Grüneisen parameter
is between 1 and 2 in the mantle (e.g. Stacey & Davis 2004) or in the core (Alfe et al. 2002). The Grüneisen parameter can also be related to
the microscopic vibrational properties of crystals (Stacey 1977). At high temperature, above the Debye temperature, all solids have more or
less the same heat capacity at constant volume CVm = 3R per mole of atoms, independent of the nature of the material (R is the gas constant).
This approximated rule was proposed by Petit & Dulong (1819). From the typical mole per unit mass of the mantle, CV = 1247 J K−1 kg−1

[the 3R rule seems also to hold approximately for the liquid core, Gubbins et al. (2003)]. The approximate constancy of CV and the fact that
� is only a function of ρ allow us to integrate (1) as

P = F(ρ) + α0 K 0
T (T − T0)

(
ρ

ρ0

)1−q

, (3)

where α0 and K 0
T are the thermal expansivity and incompressibility at standard conditions (that we choose to be P0 = 0 Pa, T0 = 273 K) and

where F(ρ) is a density dependent integration constant. A rather simple but acceptable choice for the function F(ρ), is the Murnaghan EoS
(Murnaghan 1951) at constant T that allows us to write an EoS for solids of the form

P = K 0
T

n

[(
ρ

ρ0

)n

− 1

]
+ α0 K 0

T (T − T0)

(
ρ

ρ0

)1−q

. (4)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/230/2/932/6551894 by IN

IST-C
N

R
S IN

SU
 user on 13 April 2022



934 Y. Ricard et al.

The exponent n expresses the variations of KT with pressure at reference temperature T0 as KT (P, T0) = K 0
T + n P . The value of n (also

sometimes referred to as K ′
0) is ≈3−4 for most mantle materials (Stixrude & Lithgow-Bertelloni 2005). Eq. (4) has been used implicitly in

various models of mantle convection (e.g. Glatzmaier 1988; Bercovici et al. 1989, 1992; Bunge et al. 1997). It can easily be used to derive
any thermodynamic property like the thermal expansion coefficient α(P, T) or the incompressibility KT(P, T).

Mayer’s relation between the two heat capacities CP − CV = T(∂P/∂T)V(∂V/∂T)P will be useful later. It can be straightforwardly deduced
from the definitions of the heat capacities using the chain rule for partial derivatives. Introducing the Grüneisen parameter, this relation writes

CP = CV (1 + �αT ). (5)

Since � ≈ 1 and αT � 1, the two heat capacities are very close together although we will argue that this difference should not be neglected
(see also Alboussière & Ricard 2013).

2.2 The adiabatic profiles

When convection is vigorous, the motion of fluid parcels is fast enough so that heat diffusion becomes negligible. In the absence of local
sources of entropy (when the presence of radiogenic sources and the viscous dissipation are ignored) the temperature of an ascending or
descending parcel is only changed by adiabatic expansion or compression. This hypothetic isentropic state is classically called the hydrostatic
adiabatic state. In this situation, the thermodynamic variables denoted with a subscript a are solutions of the following equations:

d ln ρa

dz
+ αa g

�aCa
P

= 0, (6a)

d ln Ta

dz
+ αa g

Ca
P

= 0, (6b)

dPa

dz
+ ρa g = 0, (6c)

z being the vertical coordinate (directed against gravity g = −gez).
Since the Grüneisen parameter (2) is only density-dependent, by combination of (6a) and (6b), one gets

Ta = T 0
a exp

{
�0

q

[(
ρ0

ρ0
a

)q

−
(

ρ0

ρa

)q]}
, (7)

(or Ta = T 0
a (ρ/ρ0

a )�0 in the specific case q = 0) where T 0
a is the surface adiabatic temperature, also called the foot of the adiabat, and ρ0

a the
surface adiabatic density (i.e. the density at T 0

a and zero pressure). As αa can be obtained from the EoS (4) as a function of Ta and ρa, as Ca
P

is then given by (5), the three adiabatic profiles, solutions of (6a), (6b) and (6c), can be obtained numerically as soon as a surface adiabatic
temperature is chosen.

If we apply eq. (7) to the whole Earth mantle from the surface to the core–mantle boundary (CMB) with, for example �0 = q = 1,
ρ0 ≈ ρ0

a = 3200 kg m−3, ρCMB
a = 5500 kg m−3 and a surface adiabatic temperature T 0

a = 1600 K, we predict a mantle adiabatic temperature
increasing by a factor 1.52 from the surface to the CMB (i.e. T C M B

a = 2432 K). Of course the actual CMB temperature is obtained by adding
to this adiabatic estimate the non-adiabatic temperature increase through the bottom boundary layer of the mantle, likely ≥1300 K, (see e.g.
Boehler 1993), indicating a temperature for the top of the core of about 4000 K.

2.3 Validity of the Murnaghan EoS based on the comparison with seismic observations

The different convecting layers of the Earth, mantle, core or inner core are not strictly adiabatic (see e.g. Bunge et al. 2001) but should not
be far from it. We can therefore check that the EoS (4) is in agreement with the seismologic profile inside the Earth, in both cases where the
temperature follows the adiabatic profile (7) computed with q = 0 or with q = 1. The fit to the Preliminary Reference Earth Model (PREM)
is tested for the lower mantle in Fig. 1 and is very precise. We have assumed an adiabatic temperature on top of the lower mantle of 1970 K
(Katsura et al. 2010). Note that the same EoS is flexible enough to also give an accurate fit to the pressure–density relations in the fluid
core or the inner core (Fig. 2a). The corresponding adiabatic temperatures (Fig. 2b) are also in agreement with what is commonly accepted
from mineralogical experiments at 670 km depth (Katsura et al. 2010), at the CMB (Boehler 1993) or at the core/inner core phase change
(Anzellini et al. 2013).

Although the pressure-density of PREM can be obtained with either q = 0 or q = 1 in (4), the choice of q has a stronger effect on the
thermal expansivity (see Fig. 3). However the experimentalists do not provide a very stringent criterion to prefer one of the two values as
shown by the various observations reported in Fig. 3 (Anderson et al. 1992; Brown & Shankland 1981; Chopelas & Boehler 1992; Duffy &
Ahrens 1993; Funamori et al. 1996; Wolf et al. 2015). In the following, we will therefore use q = 1 which is a reasonable assumption that
simplifies the equations (although for a modest increase in the algebra complexity, q �= 1 could be considered). The pressure is therefore
given by

P = K 0
T

n

[(
ρ

ρ0

)n

− 1

]
+ α0 K 0

T (T − T0), (8)
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Fully compressible convection 935

Figure 1. Density as a function of pressure in the lower mantle. The three curves, PREM (thick black) and the predictions using (4) and (7) with q = 0 (green)
or q = 1 (red) are all superimposed. When q = 1 we use ρ0 = 4180 kg m−3, K0 = 256 GPa, n = 3.29, T 0

a = 1849 K, �0 = 1.22. When q = 0 we use ρ0 =
4173 kg m−3, K0 = 244 GPa, n = 3.26, T 0

a = 1847 K, �0 = 1.17.

Figure 2. Density as a function of pressure in the Earth according to PREM (thick grey line, panel a). Very accurate adiabatic fits can be obtained using (4)
and (11) with q = 1. For the lower mantle (thin black) the EoS uses the values of Fig. 1, for the liquid core (red) we use ρ0 = 7900 kg m−3, K0 = 210 GPa,
n = 4.2, �0 = 1.5 and for the inner core (green) ρ0 = 7913 kg m−3, K0 = 175 GPa, n = 4.0, �0 = 1.25. The adiabatic temperatures extrapolated at zero
pressure are 1970, 3150 and 3450 K, respectively. The corresponding adiabatic temperatures (panel b) correspond to what has been suggested by mineralogical
experiments.

Figure 3. Thermal expansivity αa as a function of density in the Earth mantle using the parameters of Fig. 1. The predictions are with q = 1 (solid red) and
q = 0 (green). Various experimental observations with conditions appropriate for the top of the lower mantle or for the CMB are indicated by dots or vertical
ranges.
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936 Y. Ricard et al.

which allows us to express the density with the simple equation,

ρ = ρ0

[
1 + n

(
P

K 0
T

− α0(T − T0)

)] 1
n

. (9)

From this EoS, the incompressibility and thermal expansivity coefficients are easily deduced

KT = K 0
T

(
ρ

ρ0

)n

, (10a)

α = α0

(
ρ0

ρ

)n

, (10b)

and therefore αKT = α0 K 0
T is a constant. The adiabatic temperature (7) expressed as a function of density, becomes

Ta = T 0
a exp

[
�0

(
ρ0

ρ0
a

− ρ0

ρa

)]
, (11)

where the adiabatic density at the surface ρ0
a , from (9), is

ρ0
a = ρ0

(
1 − nα0(T 0

a − T0)
)1/n

. (12)

The surface density is of the same order but smaller than ρ0 as the surface adiabatic temperature is larger than T0.
The EoS also implies simple expressions for the entropy S and the enthalpy H, expressions that we will need in discussing the convection

equations. Using the differentials T dS = CV dT − αKT T dρ/ρ2 (see e.g. Ricard 2015) and dH = T dS + dP/ρ, we obtain

S = AS + CV ln T + α0 K 0
T

ρ
, (13a)

H = AH +
(

CV + α0 K 0
T

ρ

)
T + K 0

T
(n−1)

ρn−1

ρn
0

, (13b)

where AS and AH are two integration constants that will be discussed later.

2.4 Approximate expressions of the adiabatic profiles

In the simulations (see below), we compute the adiabatic profiles from the exact expressions (6a), (6b) and (6c). However, it is useful to derive
approximate forms of these profiles, in particular to discuss implications when considering planets with thicker, hotter or colder mantles than
the Earth. As Ca

P and Ca
V only differ by a few per cent [as (Ca

P − Ca
V )/Ca

V = �0α0Ta (ρ0/ρa)n+1 � 1, see eq. (5)] adiabatic profiles can be
obtained analytically by identifying the two heat capacities and assuming that g is uniform which is roughly the case for the Earth mantle.
The approximate solution of eq. (6a) becomes

ρa = ρ0
a

(
1 + H − z

h

)1/(n−1)

, (14)

where z is measured from the bottom of the mantle z = 0 to the surface z = H, and

h = 1

n − 1

K 0
T

ρ0g

(
ρ0

a

ρ0

)n−1

. (15)

For the Earth, h ≈ 2500 km.
The pressure deduced from (6c) is then

Pa = n − 1

n
ρ0

a gh

[(
ρa

ρ0
a

)n

− 1

]
, (16)

and the temperature remains given by (11) so that both pressure and temperature are direct functions of ρa (14).
Assuming that the adiabatic density is given by (14), the ρa, Pa and Ta profiles, for a mantle of arbitrary thickness of 3500 km and a

uniform gravity comparable to that at Earth’s surface, are shown in Fig. 4 using the numerical values of Fig. 1. Although the choice of the
EoS parameters is in perfect agreement with the lower mantle of PREM, these depth dependent profiles are not exactly similar to the Earth
profiles deduced from seismology (black thick lines of Fig. 4) as the EoS does not account for the upper mantle phase transitions. The profiles
of Fig. 4 correspond therefore to a planet where a mineralogical phase similar to that of the Earth’s lower mantle is also present in the lighter
shallow layers. These models have therefore a slightly larger density and pressure than PREM.

In Fig. 5, adiabatic profiles of density [using the approximation (14), bottom row] and temperature (top row) are depicted for different
possible planets (gravity is assumed uniform, proportional to the thickness of the mantle and equal to Earth’s value for a mantle thickness
of 3000 km). We choose a surface top temperature Tt arbitrarily equal to T0 = 273 K although in general, the reference temperature T0 of
the EoS and the surface temperature of the planet Tt are not identical (and are also different from the surface adiabatic temperature T 0

a ). The
situation for the Earth is roughly comparable to that depicted by the red curves. In the left-hand column, the mantle thickness H changes from
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Fully compressible convection 937

Figure 4. Adiabatic density (a), pressure (b) and temperature (c) as a function of depth using for the EoS the numerical values obtained by fitting the Earth
lower mantle and assuming CP = CV. The density and pressure of PREM are shown in black. Since this model assumes a unique EoS for the upper and lower
mantle, using values of Fig. 1 (red line) fitted to the lower mantle and disregarding the different phases of the upper mantle, the predictions have a higher
density and consequently, a higher pressure than PREM.

2000 km (black), to 3000 km (red) and 4000 km (green) (and gravity increases from 6.5 to 9.8 and 13.1 m s−2) and the bottom temperature
Tb is kept fixed at 3000 K. All the geotherms (panel a) cross at mid-mantle by an arbitrary choice of the reference adiabatic temperature
[Ta(H/2) = (Tt + Tb)/2]. The density increases with the mantle thickness (bottom left). In the right-hand column, the mantle thickness is
constant (3000 km) and the bottom temperature is increased (2000, 3000 and 4000 K for black, red and green curves, respectively). Increasing
the bottom temperature slightly decreases the densities. Note that all the different adiabatic profiles are very different from exponentials
increasing with depth which are often assumed in numerical simulations using eqs (6a), (6b) and (6c) with constant αa, g, �0 and CP (e.g.
King et al. 2010).

Although the difference of CP and CV may not seem to have a major effect as we want to be as rigorous as possible we will account for
their differences in our numerical methods. Furthermore the variations of the heat capacities with pressure and temperature are not negligible
when global balance of energy is discussed. Assuming a uniform CP would lead to the conclusion that the volume-averaged work done against
gravity by the perturbed density exactly balances the volume-averaged viscous dissipation (Hewitt et al. 1975). This has been assumed true
in many other papers although it is incorrect as pointed out by Alboussière & Ricard (2013). In the following, CP will be computed from eq.
(5) and the adiabatic density and temperature from eq. (6a) (assuming g uniform) and eq. (7).
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938 Y. Ricard et al.

Figure 5. Possible density [using (14), bottom panels c and d] and temperature (top panels a and b) adiabatic profiles in various planets. In the left-hand column,
the mantle thickness is increased with a constant bottom temperature. Gravity scales with the mantle thickness. In the right-hand column, the temperature is
increased at constant mantle thickness. The Earth conditions are roughly similar to the intermediate case depicted in red.

Table 1. Scaling of the equations.

Quantity Generic symbol Scaling

Length x, z, h... H

Temperature T T0

Density ρ ρ0

Time t H2

κ

Velocity u κ
H

Thermal expansivity α α0

Pressure or stress P or τ
ηκ

H2

Heat capacity CV or CP CV

Entropy S CV

Enthalpy H CVT0

Table 2. Dimensionless numbers.

Name Expression Typical values Values used
in the paper

Gru"neisen parameter �0 = α0 K 0
T

ρ0CV
1–2 1

Dissipation number D = α0gH
CV

0.3–2 1

Thermal density variations ε = α0T0 10−3–2 × 10−2 10−2

Top temperature Tt
T0

0.1–3 1

Bottom temperature r = Tb
Tt

1–20 10

R number R = ρ0gH3

ηκ
103–1010 105–109

2.5 Dimensionless EoS and reference profiles

In the next section, where we write the FC convection equations for a fluid obeying a Murnaghan EoS, we work with dimensionless quantities.
We use the mantle thickness H, the surface temperature and density, T0 and ρ0 to define length, temperature and density units (see Table 1).
We introduce several dimensionless numbers in addition to the Grüneisen parameter (see Table 2), among which the dissipation number
D = α0gH/CV (note that our hypothesis of a constant CV leads us to define D with CV while classical papers rather use CP), the thermal
density factor ε = α0T0 and a number R = ρ0gH 3/ηκ [the viscosity η and the thermal diffusivity κ = k/(ρ0CV) are used to scale the pressure
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Fully compressible convection 939

with ηκ/H2]. With the fit of the EoS using the PREM profile, we get D ≈ 0.57, ε ≈ 6.7 × 10−3, �0 ≈ 1.22. The introduction of the R
number closely related to the Rayleigh number will become obvious when we will introduce the convection equations. With these units and
definitions, the dimensionless EoS writes, from (9)

ρ =
[

1 + n

(
P

D
R�0

− ε(T − 1)

)] 1
n

(17)

or

P = R�0

D

(
ρn − 1

n
+ ε(T − 1)

)
, (18)

and the adiabatic conditions (6a) and (6b) are

dTa

dz
= − DTa

ρn
a γa

, (19a)

dρa

dz
= − D

�0γaρn−2
a

, (19b)

where γ a is CP/CV on the adiabat

γa = 1 + �0ερ
−n−1
a Ta . (20)

We emphasize that both CP and CV are necessary for a correct thermodynamic description: assuming a uniform CP instead of a uniform
CV, and using CP in the definition of the dissipation D would remove γ a from (19a) to (19b), but it would reappear in the EoS [γ a would
divide the D/R�0 factor present in (17)−(18)].

Before writing the entropy and enthalpy in dimensionless variables, we choose their integration constants. For the enthalpy, the constant
AH will never appear in our conclusions and can be taken equal to zero. For the entropy, we know that convection at high Rayleigh number
leads to an isentropic mean state. We can choose the entropy to be zero along the adiabat (Ta, ρa). We have not yet explained how the surface
adiabatic temperature T 0

a which defines the temperature and density reference profiles is chosen but let us assume here that this choice is
made. In that case, we therefore write in dimensionless form,

H =
(

1 + �0

ρ

)
T + �0

(n − 1)ε
ρn−1, (21)

S = ln
T

Ta
+ �0

(
1

ρ
− 1

ρa

)
. (22)

In Table 2, we indicate the range of values that the dimensionless parameters can reach in planetary mantles. Note that R is different
from the Rayleigh number which is classically defined in the Boussinesq case by Ra = Rε�T , where �T = Tb − Tt is the difference between
the bottom and top temperatures, or in the compressible case by Ra = Rε(�T − �Ta), where �Ta is the adiabatic temperature jump across
the layer. The vigour of convection in the simulations discussed in the next paragraphs corresponds to Rayleigh numbers Ra about 14 times
smaller than R as we use ε ≈ 10−2, �T − �Ta ≈ 7 T0. With the FC equations and the EoS (17), using Ra instead of R would not have led
to simpler expressions.

The dissipation number D = α0gH/CV is perhaps a quantity which might be less known to non-specialists. Of course, as α0 and CV

are constants in our model, and mantle thickness and gravity roughly scale with the planetary radius, very large dissipation numbers could be
obtained for massive exo-planets. However this might be misleading. One can argue that the compressible effects in convection are related to
an average dissipation number

〈D〉 = 〈α〉gH

CV
(23)

(assuming like for Earth’s mantle, that g is mostly uniform and CV constant). As α decreases with density (see (10b)) and therefore pressure,
〈α〉 decreases with the size of the planet, the average dissipation number can never reach very large values. More precisely, using the expression
of α, (14) and computing the density from (10b) assuming h∝1/g∝1/H (see eq. 15), one can express 〈α〉 and show that

〈D〉 ≤ �0, (24)

(we have assumed a uniform g but the fact that 〈D〉 is bounded by a quantity that cannot be much larger than �0 is also valid if g is linearly
increasing with the radius). Although near the surface, the compressibility effects are very important and the dissipation number can be huge,
the fact that the mantle becomes more and more incompressible as pressure increases (i.e. as g or H increases) makes the average dissipation
at most of order of the Grüneisen parameter.
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940 Y. Ricard et al.

3 E Q UAT I O N S O F C O M P R E S S I B L E C O N V E C T I O N U N D E R D I F F E R E N T L E V E L S O F
S I M P L I F I C AT I O N

3.1 Starting set of equations of compressible convection

The FC equations of convection with infinite Prandtl number (no inertia) and uniform dynamic viscosity η, thermal conductivity k and gravity
g, are in dimensional variables

Dρ

Dt
+ ρ∇ · u = 0, (25a)

η∇2u + η

3
∇∇ · u − ∇P + ρg = 0, (25b)

ρT
DS
Dt

= ε̇ : τ+ ∇2T, (25c)

where u is the velocity, ε̇i j = 1/2(∂ j ui + ∂i u j ) is the strain rate tensor and τi j = 2ηε̇i j − (2/3)η δi j∇ · u the stress tensor with zero bulk
viscosity. In addition to the quantities already discussed (see Table 1), we non-dimensionalize time and velocities with H2/κ and κ/H. Finally,
using the chosen EoS and the entropy expression (13a), we get, without dimensions,

Dρ

Dt
+ ρ∇ · u = 0, (26a)

∇2u + 1

3
∇∇ · u − ∇P − Rρez = 0, (26b)

ρ
DT

Dt
+ �0T ∇ · u = D

Rε
ε̇ : τ+ ∇2T . (26c)

This system is supplemented by the EoS, that is, by the pressure definition (18). Finally, the non-dimensional top and bottom temperatures
must be defined. We choose indeed to define their ratio r = Tb/Tt, and the top dimensionless temperature Tt/T0.

3.2 Derivation of FC equations in terms of density and temperature variables

Let us replace all variables X by Xa + X
′

where Xa are the values on the adiabatic profiles, and the new variables X
′

are now the differences
with the adiabatic case. However contrary to the usual AA we do not assume that the X

′
are necessarily small. As we have a differential system

with time evolution equations for density and temperature, we also use the EoS to express the pressure and write the whole system in ρ
′
–T

′

variables, with w being the velocity component against gravity:

Dρ

Dt

′
+ ρa∇ · u + w

dρa

dz
+ ρ ′∇ · u = 0, (27a)

∇2u + 1

3
∇∇ · u − R�0

D
[
(ρa + ρ ′)n−1∇ρ ′ + ε∇T ′] −{R�0

D
[
(ρa + ρ ′)n−1 − ρn−1

a

] dρa

dz
+ Rρ ′

}
e3 = 0, (27b)

(ρa + ρ ′)
DT ′

Dt
+ wρa

dTa

dz
+ wρ ′ dTa

dz
+ �0(Ta + T ′)∇ · u =

D
Rε

ε̇ : τ + ∇2(Ta + T ′). (27c)

As we later solve the system of equations with the software Dedalus (Burns et al. 2020), which handles differential equations of the
form

M
∂ X

∂t
+ L X = F, (28)

where the matrices M and L must be linear on the problem variables, all non-linear quantities above are written as the sum of their first order
expansion that will be accounted for by the matrices M and L, and a non-linear correction that will be accounted for by F. For example in the
term containing the density gradient of (27b), we use

(ρa + ρ ′)n−1∇ρ ′ = ρn−1
a ∇ρ ′ + (

(ρa + ρ ′)n−1 − ρn−1
a

) ∇ρ ′, (29)

the first term of the right-hand side being linear in ρ
′

is included in L, the second, non-linear, is included in F (the first term of its Taylor
expansion is (1/2)(n − 1)ρn−2

a ∇ρ ′2). We also define the scale height of the adiabatic density change, m, which is depth-dependent

m = 1

ρa

dρa

dz
= − D

�0γaρn−1
a

. (30)

With this method and definition, the left-hand side (LHS) of the convection eqs (27a)–(27c) becomes
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Fully compressible convection 941

∂tρ
′ + ρa(∇ · u + mw) = F1, (31a)

∇2u + 1

3
∂x∇ · u − R�0

D
(
ρn−1

a ∂xρ
′ + ε∂x T ′) = F2, (31b)

∇2w + 1

3
∂z∇ · u − R�0

D
(
ρn−1

a ∂zρ
′ + ε∂z T ′) − Rρ ′

(
1 − n − 1

γa

)
= F3, (31c)

∂t T
′ − ∇2T ′

ρa
= F4, (31d)

with the right-hand side (RHS) terms

F1 = −∇ · (ρ ′u), (32a)

F2 = R�0
D

[
(ρa + ρ ′)n−1 − ρn−1

a

]
∂xρ

′, (32b)

F3 = R�0

D
[
(ρa + ρ ′)n−1 − ρn−1

a

]
∂zρ

′ +
R�0

D
[
(ρa + ρ ′)n−1 − ρn−1

a − (n − 1)ρn−2
a ρ ′] dzρa, (32c)

F4 = −u · ∇T ′ − mw�0

ρa

ρ ′Ta − ρa T ′

ρa + ρ ′ − �0
Ta + T ′

ρa + ρ ′ (∇ · u + mw)

+ D
Rε

ε̇ : τ

ρa + ρ ′ − ρ ′

ρa

∇2T ′

ρa + ρ ′ + 1

ρa + ρ ′ d2
zz Ta . (32d)

The diffusion d2
zz Ta along the adiabat can be expressed analytically using (19a) and (19b)

d2
zz Ta = D2Ta

γ 2
a ρ2n

a

(
1 − n

ρa

�0

)
− D2T 2

a ε�0

γ 3
a ρ3n+1

a

(
1 − (n + 1)

ρa

�0

)
. (33)

This writing allows us to easily identify the usual anelastic terms (Ogura & Phillips 1962; Jarvis & McKenzie 1980; Braginsky &
Roberts 1995; Lantz & Fan 1999) and the additional terms necessary for the FC set of equations.

3.3 Notes on various AAs in literature

The AA has been mostly introduced to avoid the propagation of sound waves in a convective medium, that would lead to impractically small
time steps in numerical models to be properly solved. The approximation was made in situations with large Reynolds numbers such as the
atmosphere (Ogura & Phillips 1962), the liquid core (Braginsky & Roberts 1995) or the stars (Lantz & Fan 1999). It starts with removing
the ∂ρ

′
/∂t

′
from the mass conservation. However the situation is very different in mantle convection with infinite Prandtl number, where the

generation of sound waves is already impossible by the absence of inertia in the Stokes equation [see e.g. Schubert et al. (2001); Ricard (2015)
for a discussion focused on planetary mantle, or Curbelo et al. (2019)]. Once ∂ρ

′
/∂t

′
is removed, mass conservation becomes ∇ · (ρu) = 0

which is implemented as ∇ · (ρau) = 0. The AA then proceeds by using the first order expansion of the EoS, which in our case would be

ρ ′ = 1

ρn−1
a

( D
R�0

P ′ − εT ′
)

(34)

and by considering that all prime variables are small perturbations around the adiabatic profiles.
The first order expression of the entropy time derivative (25c) is ρa TaDS ′/Dt as Sa is constant along the adiabatic profile [and is even

zero according to eq. (22)]. However, from this point on, several paths have been followed in expressing S ′ as a function of any couple of
variables among T

′
, P

′
or ρ

′
(most previous papers are also written using temperature and pressure variables, T

′
, P

′
contrary to our approach

using T
′
, ρ

′
). In particular the approximations on the constancy or the variability of the various parameters, CV, CP, α, KT, �... are rarely

discussed and sometimes inadvertently made.
Earlier authors use both αT = 1 (which would be valid for an ideal gas) and constant α and CP (Jarvis & McKenzie 1980; Machetel &

Yuen 1989; Solheim & Peltier 1990). In the classic book on mantle convection (Schubert et al. 2001), S ′ is effectively replaced by CPT
′
/Ta

which constitutes the anelastic liquid approximation (ALA) where the entropy is only related to temperature (see also Curbelo et al. 2019).
Schubert et al. (2001) also uses constant and identical heat capacities. This ALA approximation leads to

ρa Ta
DS ′

Dt
= ρaCP

DT ′

Dt
− ρaCP

T ′

Ta
w

∂Ta

∂z
= ρaCP

DT ′

Dt
+ ρaαa gwT ′. (35)

The expression (35) has been implemented in many subsequent codes used in solid Earth geophysics to solve the heat equation in the AA
formalism [in addition to the conduction and dissipation terms of (25c), e.g. Tackley 2008; King et al. 2010]. With our EoS, the term ρaαagwT

′

of the previous equation writes DwT ′/γaρ
n−1
a in dimensionless quantities.
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942 Y. Ricard et al.

Note that although CP does not vary much, the contribution of its variations to the entropy changes is not totally negligible. With the
Murnaghan EoS, and neglecting the pressure dependence of entropy (ALA) like in Schubert et al. (2001), the term

ρa T ′ DCP

Dt
= ρa T ′CV w

∂(�aαa Ta)

∂z
(36)

should be added to (35). After non-dimensionalisation, this omitted term amounts to −(�0εTa/ρ
n+1
a )(1 − (n + 1)ρa/�0) times the term which

has been included, DwT ′/γaρ
n−1
a . The scale of temperature variation ε is indeed small, ≈2 × 10−2, but with n ≈ 3 − 4, Ta ≈ 5 and �0 ≈ 1,

the term that has been neglected is about 30 per cent of the term kept in (35). Both CP and CV appear in the equations so that considering CP

as a constant as was previously done, would not make the problem disappear as CV would then be variable. Although γ a = CP/CV ≈ 1, its
depth derivative appears in the energy equation and does not vary much less than the derivatives of ρa or of Ta.

Bercovici et al. (1992) keep the pressure dependence of the entropy (i.e. use S ′ = CP T ′/Ta − αa P ′/ρa) but they also consider constant
thermodynamics parameters (CP, α, etc.). In the astrophysical literature, the researchers work directly in term of entropy (e.g. Currie
& Browning 2017) which removes some problems but replaces the diffusion of temperature by a diffusion of entropy which is another
approximation (Lecoanet et al. 2014). Of course the high Reynolds number and ideal gas of astrophysics simulations make the applicability
of their approximations remote from the mantle situation.

In the solid Earth community, other approximations are sometimes made with the AA Stokes equation like removing the pressure
dependence of density in the truncated anelastic liquid approximation TALA (see e.g. Tan & Gurnis 2007) or keeping ∇ · u = 0 as a mass
conservation equation [which is sometimes called extended Boussinesq approximation (EBA), see King et al. (2010) for an overall discussion].
They systematically lead to thermodynamic inconsistencies (see e.g. Leng & Zhong 2008). We think that these are suppressed by our approach
where all variables are rigorously defined from the EoS.

3.4 Proposed equations of AA convection

In this section we write our own version of the AA equation, since we do not want to identify CV and CP and since we use ρ
′−T

′
variables

instead of the more common P
′
–T

′
variables. We start in agreement with earlier attempts, by replacing the mass conservation by

∇ · (ρau) = ρa(∇ · u + mw) = 0 (37)

and we express the momentum equations at first order (e.g. Schubert et al. 2001). This simply means cancelling the RHS terms F2 and F3 of
the FC Stokes equation.

More attention is deserved for the heat eq. (27c) with a RHS containing six terms in FC expression (32d). We obviously keep the
first advection term. We can remove the ρ

′
from the denominator of the 2nd, 3rd, 4th and 6th terms (associated with 2nd order effects)

and neglect the 5th term (already 2nd order). In the 3rd term we should not remove the ∇ · u + mw term on the argument that we use
∇ · (ρau) = ρa(∇ · u + mw) = 0 as a proxy for mass conservation. Thermodynamics rules cannot be true unless P, T and ρ are exactly related
by the EoS. The ∇ · u + mw in (32d) must be replaced by its true value according to (31a), that is ∇ · u + mw = − (∂ρ ′/∂t + ∇ · (ρ ′u)) /ρa ,
which is a first-order term, otherwise various basic thermodynamic equalities become wrong. For example, thermodynamics requires that the
exchanges of heat verify

CV
DT

Dt
− αKT

ρ2

Dρ

Dt
= CP

DT

Dt
− αT

DP

Dt
, (38)

and this equality will not be verified if Dρ/Dt = −ρ∇ · u is replaced by ρmw.
To sum up, in addition to the approximate mass conservation (37), the RHS of the other eqs (32) becomes in the anelastic formulation

F2 = 0, (39a)

F3 = 0, (39b)

F4 = −u · ∇T ′ − �0mw

ρ2
a

(ρ ′Ta − ρa T ′)

+�0
Ta

ρ2
a

(
∂ρ ′

∂t
+ ∇ · (ρ ′u)

)
+ 1

ρa

D
Rε

ε̇ : τ + d2
zz Ta

ρa
, (39c)

(the ∂ρ
′
/∂t term can also be moved to the LHS). Note that the ALA approximation with constant CP would make the F4 term equal to

F0
4 = −u · ∇T ′ + �0mw

ρa
T ′ + 1

ρa

D
Rε

ε̇ : τ + d2
zz Ta

ρa
. (40)

We will use this expression in one of our simulations.
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Fully compressible convection 943

3.5 The quasi-Boussinesq (QB) equations

The BA consists in using D = 0 in the AA equations. This cancels all depth dependence for the adiabatic profiles. Assuming that the
background density is uniform implicitly implies that ρ

′
/ρa is also neglected. However this does not prohibit the assumption that the thermal

expansivity in the Stokes equation is depth dependent (see e.g. Schmeling et al. 2003) [the thermal diffusivity could also be depth dependent
as in Dubuffet et al. (1999)]. We call this a QB model as the strict Boussinesq model is with a constant thermal expansivity. In the solid Earth
community, it is common, as a first order estimate, to run Boussinesq or QB models to get a temperature model on which the adiabatic gradient
is added a posteriori. This clearly challenges the rules of thermodynamics. However we think it may be useful to add this QB approach to the
AA and FC models, in which case we solve

∇ · u = 0, (41a)

∇2u − ∇P − Rε

ρn−1
a

T ez = 0 (41b)

DT

Dt
− ∇2T = 0. (41c)

In this equation set based on shaky foundations we have implicitly considered that the background density is ρ0 but used ρ ′ = −ρaαa T =
−T/ρn−1

a in (41b) (i.e. α ∝ ρ1−n
a ). One might argue that the Boussinesq model with variable expansivity mimicking a compressible convection

should rather consider a background density related to the average of ρa and should use ρ ′ = −αa T = −T/ρn
a (i.e. α ∝ ρ−n

a ). This alternate
choice and our own choice are truly arbitrary as there is indeed no rigorous way to simulate compressible convection with a QB formalism.

3.6 Boundary conditions

We will use the previous FC, AA and QB systems of equations to perform numerical simulations of convection in a 2-D fixed volume. The
horizontal variable is x and the flow is assumed periodic in a box of aspect ratio 4. In the FC and AA cases, the T

′
temperature (i.e. the total

temperature minus the adiabat) is imposed on top, T
′
(1) = 1 − Ta(1), and at the bottom, T

′
(0) = r − Ta(0), where r is the dimensionless

bottom temperature (see Table 2). In the QB case, the temperature difference is the same non-adiabatic quantity �Tna = r − 1 − [Ta(0) −
Ta(1)].

In the QB case, the other boundary conditions usually adopted for mantle convection are free slip boundary conditions on top and
bottom. To avoid a global horizontal translation of the system that constitutes a trivial solution, a zero average horizontal velocity at the top
can also be imposed. In the QB case, only the pressure gradient appears in the equations and, for example, the average pressure value at the
surface can be chosen if the pressure field is needed. These boundary conditions are implemented in our incompressible QB cases.

For the FC and AA cases, these conditions are unfortunately incompatible with the compressible nature of the fluid when the simulations
are performed in a fixed volume. The total mass M of the convective layer

M =
∫

(ρa + ρ ′) dV, (42)

can indeed be chosen arbitrarily and that choice affects the final pressure needed to squeeze or expand this mass into the convecting volume.
The EoS depending of the pressure, we should also monitor the surface pressure so that its time averaged value is reasonable. For instance,
applying our model to the Earth, we would like the surface pressure to be close to zero (or 1 atm) and not, say, close to 20 GPa which would be
the pressure in the transition zone. The mass M should therefore be chosen so that it ultimately leads to the correct surface pressure. However
without running the convection code until statistical steady state we have no possibility to know the surface pressure. Of course this problem
arises from using a fixed volume. In a simulation using a deformable volume, the thickness of the convective layer would increase or decrease
to contain the mass introduced in the simulation and the difficulty would be to choose the initial mass such that the final mantle thickness is
reasonably close to H.

In the FC case, the conservative nature of the mass conservation eq. (26a), ensures that the total mass is conserved. We can therefore
start our FC simulations with a uniform ρ

′ = 0 so that the total mass remains that computed from the adiabatic density, that is

M =
∫

ρa dV . (43)

This mass is in fact directly related to the surface adiabatic density or adiabatic temperature which is chosen (and even directly proportional
to the surface adiabatic density according to the approximated eq. (14)). The problem is therefore to choose the correct appropriate surface
adiabatic temperature (the foot of the adiabatic), so that the statistical steady-state surface pressure Pa + P ′(1) = P ′(1) is zero (or another
chosen value) and the surface density ρa + ρ ′(1) is ρ0 (overlined quantities represent statistically steady state quantities, averaged in time and
horizontally). Note that the instantaneous average surface pressure (and furthermore the instantaneous local normal stress at the surface) is
not necessarily zero and this is usually interpreted as equivalent to a weak dynamic topography forced by the internal convection (e.g. Ricard
et al. 2014).

Our strategy for the FC case, is therefore the following:

(i) We start from an adiabatic temperature profile such that the temperature at mid depth is T 1/2
a = (1 + r )/2 + β, where β is initially zero.
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944 Y. Ricard et al.

Figure 6. The average surface density in a FC convection model with R = 107 (in percent with respect to ρ0) is computed as a function of time for various
a priori adiabatic profiles with β = −0.5, 0.5 and 0.08 (red, black, and green line, respectively). For β = 0.08, a surface density close to ρ0 is obtained. To
estimate the correct adiabatic profile, we perform two simulations (i.e. for β = −0.5, 0.5), compute the average surface density when a steady state situation is
reached (thin dotted lines) and correct the adiabat by linear interpolation.

(ii) We run the convection code using the corresponding adiabatic density and temperature profiles and compute the surface pressure P ′(1)
at stationary steady state

(iii) If P ′(1) �= 0, we modify the adiabatic profile by shifting the adiabatic temperature by β (see also Curbelo et al. 2019).
(iv) We run again the convection code with the new adiabatic profile until P ′(1) = 0.

This strategy is not numerically too heavy: the relation between P
′
(1) and β appears to be quasi-linear; when simulations with two

different β are performed, the two computed surface densities are generally enough to guess by interpolation the correct temperature shift
that leads closely to an average zero pressure at the surface. We illustrate our method in Fig. 6. Convection simulations have been computed
for R = 107 and the values β = 0.5 (black) and –0.5 (red). We plot the relative difference in per cent of the average surface density
(ρ(1) − ρ0)/ρ0 ≈ P(1)D/R�0, (see eq. 17). When the adiabatic profile is too cold (red curve), a too large mass is assumed in the convecting
box implying a surface excess pressure and a density larger than the assumed surface density ρ0 by ≈0.6 per cent. By contrast a too hot
adiabatic profile (black) would lead to a ≈0.3 per cent too light surface density. By interpolation, we guess that the appropriate adiabatic
temperature reaches at mid depth the temperature T 1/2

a = (1 + r )/2 + β, where β ≈ 0.08 (green line). Shifting the adiabatic profile from
–0.5 to 0.5 changes the surface density and the statistically steady state density profile by around 1 per cent and the steady state temperature
profiles by around 3 per cent. This value of β ≈ 0.08 seems to bring the surface pressure close to zero for all R numbers. In other words the
adiabatic temperature at mid-depth is slightly larger than the average of the top and bottom temperatures.

The adiabatic profiles selected for the FC case are also used for the corresponding AA simulations. However the anelastic mass
conservation (37) does not imply

∫
ρ ′ dV = Constant (44)

and therefore does not imply that the total mass is conserved (see eq. 42). Surprisingly we have not found in the literature an indication on how
the various compressible codes that have been used and benchmarked (e.g. in King et al. 2010) have kept the total mass of their convective
volume constant. Here we enforce mass conservation by imposing the average values of P

′
on the top and bottom boundaries to be equal.

The Stokes equation integrated over the total volume when horizontal periodic conditions are imposed (see Alboussière et al. 2022), implies
indeed that∫ [

P ′(x, 1, t) − P ′(x, 0, t)
]

dx = 0 ⇒
∫

ρ ′ dV = 0. (45)

To summarize, all our simulations use free slip boundary conditions on top and bottom. The time-average surface pressure is exactly zero
(QB case) or very close to zero (FC case). This is obtained by choosing the appropriate surface adiabatic temperature (which is equivalent to
choosing the total mass in the convective layer). The same adiabatic profile is used in the AA case where mass conservation is enforced by
(45).
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Fully compressible convection 945

Figure 7. Snapshots of the non-adiabatic temperature field at R = 109 using the QB, AA and FC approximations. The temperature colour scales are slightly
different in the three cases but over the same imposed non-adiabatic range. The QB temperature is clearly lower than in both other cases.

4 N U M E R I C A L S I M U L AT I O N S

4.1 Numerical setup

We can now perform various simulations to compare the approximated simulations (QB and AA) to the FC case. The simulations are
performed in a domain of aspect ratio 4. The Dedalus software is used (Burns et al. 2020, www.dedalus-project.org), whose resolution is
based on Fourier Transform for the horizontal direction and Chebyshev polynomials for the vertical direction. We choose the number of
points so that the top and bottom thermal boundary layers are described by at least 10 Chebyshev collocation nodes by using from 64 × 256
to 256 × 1024 nodes. The variables are advanced in time by a Runge–Kutta scheme of four-stage and order 3 (RK443, Ascher et al. 1997).
Dedalus uses MPI and we distribute the computation so that each computer node handles 8–10 rows of our computation grid. The duration
of a numerical run is around three to four times larger for FC than for QB. The AA simulation is somewhat in between (two times larger than
for QB) and we have not tried to optimize the code which computes and records more ancillary quantities than needed. All the simulations
are performed by varying R from 105 to 109 and keeping constant the values D = 1, ε = 10−2, �0 = 1, n = 3.3 and r = 10 which are in the
range of parameters expected for the Earth mantle (see Table 2; as Tt = 273 K, the bottom temperature is Tb = 2730 K).

4.2 Examples of temperature fields

The subject of this paper will mostly be on the differences between the statistical steady-state and depth-dependent average quantities in
the different approximations. However Fig. 7 depicts snapshots of QB, AA and FC simulations for R = 109. The maps have characteristics
that are shared with previous publications. The decrease of thermal expansivity with depth tends to broaden the thermal structures at depth
(Hansen et al. 1993). As the hot instabilities gain buoyancy as they rise in the mantle (i.e. αaρa increases with height), they are stronger
and more stationary than the cold instabilities that lose buoyancy with depth. This is particularly visible in the QB computation where the
decrease of thermal expansivity is the only addition to the well-known and up-down symmetric Boussinesq case. The AA and FC simulations
are richer in short wavelengths than the QB simulations. They also predict a larger average temperature of the bulk as will be discussed
below. The larger average temperature in the AA and FC cases, by decreasing the buoyancy of hot plumes and increasing that of cold plumes,
reinforces the downwellings (this mitigates the effect of expansivity predicted from QB models). Visually and qualitatively the characteristics
of convection in the AA and FC cases look very similar.

Various quantities could be compared between the different simulations but we will focus here on the average profiles of temperature,
pressure, heat flow and dissipation. When the differences between the QB, AA and FC profiles are small, we plot the FC profiles and the
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946 Y. Ricard et al.

Figure 8. Mean temperature (left-hand column, a and c) and density (right-hand column, b and d) profiles across the convective layer (blue lines). The red
lines correspond to the adiabatic approximation. The dots indicate the vertical positions of the collocation points. Top row (a and b) are for R = 105, bottom
row (c and d) for R = 108.

differences between the approximated profiles and the FC ones. In addition to the figures discussed in the core of this paper, a complete set
of figures is available in the supplementary material, from R = 105 to R = 109.

4.3 Temperature and density profiles

Fig. 8 depicts in blue the temperature (left-hand columns, panels a and c) and density profiles (right-hand columns, panels b and d) for the FC
simulations for R = 105 (top row, panels a and b) and R = 108 (bottom row, panels c and d). The adiabatic profiles are shown in red. The red
and blue dots indicate the vertical position of the Chebyshev collocation points. The total temperature drop �T = r − 1 is 9. The adiabatic
temperature drop is 2.21 reducing the driving temperature difference to �Tna = 6.79. The classical Rayleigh numbers Ra = Rε�Tna are
therefore Ra ≈ 7 × 103 and Ra ≈ 7 × 106.

The temperature is still far from adiabatic when R = 105 (panel a) but very close to it at R = 108 (panel c). Increasing the vigour of
convection brings the bulk of the fluid closer to an isentropic state and the anelastic formalism becomes a better approximation of the FC
case. We do not have a clear explanation of this observation that may be related to the specific EoS that we use. Indeed, although increasing
the R number and the fluid velocity brings each individual parcel of the fluid in a state closer to adiabaticity, the amplitude of the temperature
variations remains constant. Therefore the difference of the local temperature to the average adiabatic temperature (assumed small in the
AA approximation) should not decrease much with R. The density profiles (panels b and d) closely follow the adiabatic estimates except
in the two thermal boundary layers. The decrease of the thermal expansion coefficient with depth makes the boundary layers asymmetrical
in terms of densities with a top cold boundary layer more conspicuous than the bottom boundary layer (see panel d). The pressure profiles
obtained from the convection simulation (not shown) are basically indistinguishable from the adiabatic predictions even in the boundary
layers.

The differences between the profiles are more visible in Figs 9 and 10 computed with a R number of 105 and 108, respectively. The
adiabatic profiles have been subtracted from the computed ones on the left-hand column, with the FC profile in red, the AA and QB profiles in
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Fully compressible convection 947

Figure 9. On the left-hand column mean temperature (top panel) and density (bottom panel) profiles minus the adiabatic contribution are depicted for the FC
(red), AA (blue) and QB (green) cases for R = 105. The different profiles being close together, we plot in the right-hand column (b and d) the differences
between the approximated set of equations and the exact result [i.e. (TAA − TFC)/Ta in blue, (TQB − TFC)/Ta in green], in percentage of the adiabatic temperature
or density (panels c and d) expected at the same depth.

blue and green, respectively. The right-hand column depicts the differences between the approximated profiles with the FC one in percentage
of the adiabatic values [i.e. for the temperature, (TAA − TFC)/Ta in blue, (TQB − TFC)/Ta in green]. In each figure the top row represents
temperature, the bottom one density.

At R = 105, the differences between the different simulations are already small; at most 5 per cent differences in temperature and
0.5 per cent in density for the QB case, and basically five times smaller for the AA case. Increasing the R number (R = 108 in Fig. 10)
brings the AA simulation closer to the FC case. On the contrary the QB simulation does not come closer to the FC and appears colder
and therefore much denser. In a strict Boussinesq case with a constant thermal expansivity, the average temperature would be centred. The
behaviour of the QB case is easy to understand, following the arguments of Malkus (1954). Let us define �Tt, αt and δt for the temperature
jump, expansivity and thickness of the top boundary layer and �Tb, αb and δb for the bottom boundary layer. The conservation of energy
implies �Tt/δt ≈ �Tb/δb as the conductivity is uniform, while Malkus’ hypothesis that the Rayleigh numbers of each boundary layer is
critical requires �Ttαtδ

3
t ≈ �Tbαbδ

3
b . In the QB case, one therefore expects �Tb/�Tt ≈ (αt/αb)1/4 which is also (ρ t/ρb)(n − 1)/4 = 1.35 when

the adiabatic values of densities are computed for our choice of dimensionless parameters. The corresponding increase in thickness of the
bottom boundary layer shifts the bulk temperature to colder values. With �Tt + �Tb = 6.79 and �Tb/�Tt = 1.35, this shift with respect to
the average temperature amounts to –0.51. As in addition, the choice of the adiabatic temperature shifts the FC temperature by 0.08, the bulk
QB temperatures are colder than the FC predictions by ≈–0.6 in good agreement with Fig. 10(a). This temperature difference between QB
and FC profiles does not change when R ≥ 106 but obviously, Malkus’ hypothesis does not apply too close to the critical Rayleigh number
(see Fig. 9a for R = 105). The temperature jumps across the boundary layers and the average temperature cannot be correctly estimated with
QB models.
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948 Y. Ricard et al.

Figure 10. Same as Fig. 9 but for R = 108. The decrease of thermal expansivity with depth thickens the bottom thermal boundary particularly in the QB case
and also decreases the bulk temperature and increases the density (green). The FC (red) and AA (blue) cases are difficult to distinguish except maybe below the
top boundary layer where the AA predicts slightly hotter and denser conditions. We do not plot the differences between QB and FC curves as their amplitudes
are very large.

4.4 Heat transport

4.4.1 Analytical expressions

The transport of heat takes different forms depending on the equations that are used. In the FC case, the horizontal integration of u times the
z-momentum (25b) implies, at all depth,

u · ∇τ − u · ∇P = 0, (46)

as FC mass conservation ensures ρw = 0. When the enthalpy H is introduced in the entropy eq. (25c) (dH = T dS + dP/ρ), one gets (with
dimensionless variables)

dρwH
dz

− D
Rε

u · ∇P = D
Rε

τ : ∇u + d2T

dz2
, (47)

and by combining these last two equations,

d

dz

(
ρwH − D

Rε
uτxz + wτzz − dT

dz

)
= 0, (48)

which expresses the conservation of a quantity that is obviously the total heat flux QFC

QFC = ρwH − D
Rε

uτxz + wτzz − dT

dz
. (49)

The heat is therefore transported by the advection of enthalpy, by a work flow and a conductive term. The enthalpy term, ρwH, involves
ρCV wT present in the Boussinesq case (where ρCV = ρCP is assumed to be constant) and additional contributions from temperature and
density, namely α0 K 0

T wT and K 0
T (wρn/ρn

0 )/(n − 1), see eq. (13b). Besides, CV ρwT is also CV ρwT ′ as from the FC mass conservation
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Fully compressible convection 949

CV ρwTa = 0. When the flow becomes incompressible, D → 0, the density becomes function of temperature only (see eq. 17), the importance
of the work flow vanishes and one also get ρwH → ρCPwT as it should (see eq. 21). The conductive term can also be split into two parts,
the conductive transport of the non-adiabatic temperature dT ′/dz which is only important in the top and bottom boundary layers and the
conductive transport along the adiabat dTa/dz present in the bulk of the fluid.

In the AA case, the equations are subtly different. In the momentum equation, the anelastic mass conservation only cancels the ρaw = ρaw

of the Stokes eq. (26b) but not the ρ ′w term so that

u · ∇τ − u · ∇P − Rρ ′w = 0. (50)

The enthalpy must then be expressed as a first order expansion of the exact expression (13b)

H ≈ Ha + H(1), (51)

(H(1) is the first order expansion of H′ = H − Ha in terms of ρ
′
and T

′
, and therefore H(1) and H′ are identified in the AA case although they

are slightly different in the FC case which contains higher order terms in temperature and density perturbations). Ha is obtained from (21)
when the temperature and density are adiabatic. Its variation with depth is readily derived using (19a) and (19b), and leads to

dHa

dz
= −D

ε
, (52)

while the first order expansion of the enthalpy (21) writes

H(1) =
(

1 + �0

ρa

)
T ′ + �0

ερ2
a

(
ρn

a − εTa

)
ρ ′. (53)

The integration of the first order entropy equation then leads to

− D
ε

ρ ′w + dρwH(1)

dz
− D

Rε
u · ∇P = D

Rε
τ : ∇u + d2T

dz2
, (54)

which differs from the FC expression (47) as the transport of enthalpy is now divided in a transport along the adiabat and a transport due to
fluctuations. The first term cancels with the extra ρ ′w term of (50), and leads similarly to the FC case

Q AA = ρawH(1) − D
Rε

uτxz + wτzz − dT

dz
. (55)

Again the first term is different from a simple advection of temperature ρaCV wT (see eq. 53) and ρaCV wT = ρaCV wT ′ as now the AA mass
conservation implies ρaCV Taw = 0. Our AA formalism leads, as it should, to a heat flow independent of depth. On the contrary, using the
ALA formalism with constant heat capacities fails satisfying this condition as shown in Section 4.4.3.

Finally, in the QB case, the horizontal integration of the heat equation gives the well-known expression of the heat flow

QQ B = wT − dT

dz
, (56)

that is the convective transport of temperature plus the conductive transport of temperature is constant through the convective layer. This is
the classical Boussinesq balance which also holds for a variable expansivity (QB) that only appears in the Stokes equation, not in the energy
balance.

4.4.2 Average heat transport

Fig. 11 depicts the various components of heat transport for the FC, AA and QB cases when R = 105. In the QB case, the energy is only
transported by temperature advection (mostly in the bulk of the fluid, in dashed–dotted red line) or by temperature conduction (mostly in
the boundary layers, in blue). The sum of the two contributions is uniform with depth (green solid line) and carries a non-dimensional total
heat flow QQB ≈ 23. Usually, the dimensionless heat flow, also known as the Nusselt number, Nu, is relative to the non-adiabatic temperature
difference �Tna = r − 1 − [Ta(1) − Ta(0)]. Here the temperature being normalized by T0 rather than �Tna, the heat flows that we compute
are �Tna/T0 = 6.79 larger than the Nusselt numbers. Adding the conduction along the adiabat to the convective and conductive Boussinesq
heat fluxes (which is clearly non-physical) would increase the total heat flux to the green dotted line.

The situation is different for the FC and AA cases where various transport modes are possible. The enthalpy advection (ρwH for FC,
or ρawH(1) for AA in red dashed lines with large dots) is more intense in the bottom part of the fluid interior. This term differs, although
moderately, from the heat flux transported by identifying the non-dimensional enthalpy and temperature (ρwT or ρawT are depicted with red
dotted lines). The work-flow (green with dots) decreases the energy transport in the bottom half layer and increases it in the top half. Finally
the adiabatic conduction (solid red) is also stronger near the surface where the adiabatic gradient is larger. The sum of the 4 contributors
(enthalpy advection, work-flow, conduction along the non-adiabatic temperature and conduction along the adiabat) yields a uniform flow
through depth (green solid line). The total heat flow of the FC and AA simulations are very similar (QFC ≈ QAA ≈ 28).

Fig. 12 is similar to Fig. 11 but R is now increased to R = 108 (the cases R = 106, R = 107 and R = 109 are shown as supplementary
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950 Y. Ricard et al.

Figure 11. Different components of the heat flow profile across the convective layer. In the QB case the energy is transported by conduction (blue) or
temperature advection (red dotted line). In the AA and FC case, we can distinguish the enthalpy advection (dashed–dotted red lines), the work flow (green dots),
the conduction along the adiabat (solid red) and the conduction of the non-adiabatic temperature (solid blue). The sum of these components should be uniform
with depth in statistical steady state (green line). We arbitrarily figure the adiabatic transport (cyan line) on top of the QB heat flow profile. The advection of
temperature only is shown with thin dotted red lines in the AA and FC cases.

figures). Convection being much more chaotic and short wavelength than previously, it becomes difficult to compute accurately the statistically
steady-state quantities and this explains the wiggles of the different profiles. The Nusselt number is around 185 for the FC and AA simulations,
but like previously the heat flux is slightly lower for the QB case, around 175. The advection of enthalpy (red dashed lines with large dots
for FC and AA, identified with the temperature in the QB case) is the main contributor to the heat flow transport in the three cases. In the
FC and AA cases, this is particularly true in the deep layers. In the compressible FC and AA cases, the difference between enthalpy and
temperature advection (dotted lines) is notable in the top half of the fluid. The work-flow (green with large dots) and the conduction along the
adiabat (solid red) are minor components. Note that convection in the deep layers being more sluggish due to the reduced value of the thermal
expansion coefficient, the conductive transport slightly increases with depth. This effect is balanced in the QB case by a convective transport
of temperature increasing with height, while in the FC and AA cases, the convective transport of temperature only decreases with height (red
dots) and an extra energy is transported by the total enthalpy (dashed–dotted red), work flow (green) and adiabatic conduction (red).

4.4.3 Heat flow assuming a constant CP/CV

To compare our AA equations with the ALA equations with constant CP/CV, we depict in Fig. 13 the total heat flow (see eq. 55) predicted
when the systems of eqs (39c) (blue curves) or (40) (red curves) are used for the RHS of the energy equation. We recall that in the latter case,
the entropy and temperature variations are assumed proportional with S ′ = CP T ′/Ta and CP and CV are identified and uniform. The different
contributions to the heat flow (not shown) are roughly similar, but it is clear that the total heat flux is not uniform in the ALA approximation
with constant heat capacities which confirms that the implemented equations are not consistent. The heat flow is invariably increasing with
height in the bulk of the convective layer and lower in the two boundary layers. This inaccuracy is ultimately related to the fact that the
expression of the entropy in P − T, T − ρ and H − P variables are not consistent unless the proper behaviour of CP/CV is considered. In
addition, the ALA heat flow with constant CP is larger by ≈4 per cent, compared to the AA case.
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Fully compressible convection 951

Figure 12. Similar to Fig. 11 but for R = 108. The convection is short wavelength and very vigorous and it becomes more difficult to get accurate statistical
values. The total heat flow (green lines) is reasonably uniform.

Figure 13. Heat flow profiles. Note the small range of the horizontal scales. The classical anelastic eqs (40) where the entropy is only related to temperature
(ALA) and where the heat capacity ratio CP/CV is approximated as uniform leads to the heat flow depicted with red lines. Our formalism when the heat
equation is (39c), leads to the predictions in blue. The inconsistency in the thermodynamics leads to a non-uniform heat flux increasing with height in the
convective region and a surface heat flow overestimated by ≈4 per cent at large R number.

4.5 Dissipation

4.5.1 Total dissipation

Another interesting quantity within the convection volume is the dissipation. Following Hewitt et al. (1975) we define dissipation as

Diss = D
Rε

ε̇ : τ, (57)

which according to (26c) can be directly compared to the diffusive term of the entropy equation. Dissipation appears locally as an effective
heat source non-uniformly distributed (Trubitsyn & Trubitsyn 2020). Dissipation also plays an important role in localizing the deformation
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952 Y. Ricard et al.

in the lithosphere (Fleitout & Froidevaux 1980) and potentially in controlling the overall rheology of the mantle by limiting the mantle grain
size (Ricard & Bercovici 2009). Dissipation is also a measure of the energy transported in a convective fluid and this has been used to put
bounds on core dynamos (Buffett 2002; Labrosse 2003), although in this case ohmic dissipation dominates viscous dissipation.

The total dissipation in a convective fluid can be expressed by integration of the Stokes or entropy FC equations as

〈Diss〉 = − D
Rε

〈
DP

Dt

〉
=

〈
ρT

DS
Dt

〉
= −

〈
ρS DT

Dt

〉
, (58)

where 〈.〉 is the statistically steady state quantities, averaged in time and integrated over the volume (Verhoogen 1981; Alboussière & Ricard
2013). In the last equality, ρSDT/Dt should be close to ρawS(dTa/dz) as S is close to zero and ρ and T close to the adiabatic reference at
high Rayleigh numbers. One therefore expects that

〈Diss〉 ≈ D
〈

TawS
ρn−1

a γa

〉
. (59)

In the QB case, the integration of u times the Stokes eq. (41b) leads to a simple exact equation

〈Diss〉 = D
〈

wT

ρn−1
a

〉
. (60)

In the classical Boussinesq case where thermal expansivity is uniform, the ρa term is absent from (60) and 〈wT〉 is just the convective heat
flow QBA − �T according to (56), or, if we neglect the conductive contribution at high Rayleigh number 〈wT〉 ≈ QBA. We therefore expect

〈Diss〉
DQ B A

≈ 1. (61)

In the absence of an exact expression relating dissipation and heat flow for the FC case, we may guess that 〈Diss〉/(DQFC ) still remains of
order 1 and presumably lower due to the presence of 1/ρn−1

a ≤ 1 in the averaging (see (60)).
No analytical results are available for the profile of dissipation with depth, Diss, however the eqs (59) suggests a fundamental relation

with the entropy transport in compressible convection that we will now emphasize. In a companion paper (Alboussière et al. 2022) and with
very specific and different EoS, the role of entropy transport is also discussed.

4.5.2 A conjecture for the dissipation profile?

The equations that express the heat flow transport (46) and (47) can be reformulated in a way that we have not seen in the literature. Introducing
the Gibbs free energy G = H − TS , the total heat flow (49) is also

QFC = ρwTS +
(

ρwG − D
Rε

uτxz + wτzz

)
− ∂T

∂z
. (62)

From basic rules of thermodynamics one has

ρ
DG
Dt

= −ρS DT

Dt
+ DP

Dt
, (63)

that leads after horizontal integration using mass conservation (and using dimensionless variables)

dρwG
dz

= −ρS DT

Dt
+ D

Rε
u · ∇P. (64)

The expression of u · ∇P derived from this equation can be introduced into (46), and yields

Diss = ρS DT

Dt
− d

dz
(ρwG − D

Rε
uτxz + wτzz), (65)

and finally, using the expression for the adiabatic gradient,

Diss = D wTS
ρn−1γa

+ ρS
(

DT

Dt
− DwT

ρnγa

)
− d

dz
(ρwG − D

Rε
uτxz + wτzz). (66)

We can now compare the equations for the heat flow (62) and the viscous dissipation (66) and discuss the order of magnitude of the
different terms. The conduction (last term of eq. 62) is certainly very small in the bulk, at large values of the Rayleigh number. The second term
on the RHS of eq. (66) is also likely small as S is small and multiplied by a term which cancels in adiabatic conditions. Then, both expressions
include the Gibbs free energy and a work flow that is found very small in our simulations. We propose that at large enough Rayleigh numbers,
the Gibbs energy and work flow contribution are both negligible compared to the entropy transport and that in FC convection, the heat flux
and dissipation profiles become

QFC ≈ ρwTS ≈ ρa TawS, (67)
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Fully compressible convection 953

Figure 14. Normalized dissipations in percent, computed for the QB (a) and FC (b) formalisms, at different R numbers. The stars show the average normalized
dissipations which as expected from eq. (61) are smaller than 100 per cent. The black, red, blue, cyan curves are for R = 105, 106, 107, 109, respectively. The
dashed magenta curve is 1/(ρn

a γa) that might be the limiting case of the dissipation profile in the bulk of the fluid, at very large R. Its average is shown by a
magenta circle.

Diss ≈ D wTS
ρn−1γa

≈ D
ρn−1

a γa
TawS, (68)

where we replaced ρ and T by their adiabatic values as S is close to zero. We therefore suggest that

Diss ≈ D
ρn

a γa
QFC , (69)

meaning that at each depth, the average flux of entropy is dissipated. If this balance, that should hold at large Rayleigh number is true, then,
not only the total dissipation can be related to the surface heat flow (eq. 59), but at each horizontal depth the average dissipation can be
related to the total flux times a function of the adiabatic properties. This depth dependent equilibrium is also in agreement with the volume
integrated condition (eq. 59). The balance expressed by eq. (69) assumes that g is constant, but similar results should be expected when g is
depth-dependent, and a normalized depth dependent gravity should multiply the right-hand side of eq. (69).

Fig. 14 depicts the profiles of the normalized dissipations Diss/DQ in per cent, for the QB and FC cases (the AA cases being quite
similar to the FC cases) computed for R numbers of 105, 106, 107 and 109. The volume averaged dissipations are shown with the stars and
they are smaller than 1 as expected from eq. (59). We suggest that the magenta curve [i.e. g/(ρn

a γa) in per cent] might be the limit of the
dissipation profile of FC convection at high Rayleigh number (panel b). This guess obviously is not valid in the non-convective boundary
layers. If this guess is true, the convergence toward this limit is at any rate, very slow. This asymptotic estimate does not hold for the QB case
(panel a) where the dissipation is larger and seems above the magenta line at high R numbers.

5 D I S C U S S I O N A N D C O N C LU S I O N

In the infinite Prandtl number convection case (convection without inertia) where the sound waves cannot propagate, it does not appear much
more difficult to compute a simulation with the FC equations than using the AA. A choice of an appropriate EoS allows all the terms needed
by the formalism to be computed and the Murnaghan EoS with a Grüneisen parameter varying as the inverse of density seems a flexible and
accurate choice. Although we are certainly not the first ones to start with a Murnaghan EoS (e.g. Glatzmaier 1988; Bercovici et al. 1989, 1992;
Bunge et al. 1997), all previous authors seem to have added additional approximations (such as constant parameters) that were not necessary.
Various ingredients of planetary dynamics are not considered in our 2-D simulations, such as 3-D geometry, sphericity, depth dependence of
gravity, viscosity or conductivity but should be easily implemented (although the computation time would largely increase). Phase transitions
are also an important ingredient of mantle convection. If they can be considered as pure univariant discontinuities they might be included by
matching solutions across the phase transition (e.g. like in Christensen & Yuen 1984; Chambat et al. 2014).

The FC formalism avoids a number of difficulties, the major one being the difficulty to assess properly the quality of the approximations
that are done by implementing the anelastic formalism. In addition to the inconsistencies that were previously pointed to (e.g. by Leng &
Zhong 2008), we met two other problems with the AA. First, we had to impose the conservation of the total mass to avoid a drift of this quantity
during the simulations (see eq. 45). We suppose that mass conservation was also enforced in previous simulations although we have not seen
this subject discussed in the geophysical literature. A second problem was related to the appearance of both CV and CP in the equations.
Although CP and CV have similar values, their ratio cannot be constant and its variation with pressure and temperature should be taken into
account, something already noted by Alboussière & Ricard (2013). When the two heat capacities are confused, a correct interpretation of the
transported heat flow becomes impossible and the heat flow is unphysically varying with depth (see Fig. 13).
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954 Y. Ricard et al.

Another problem that we encountered and appears both in the FC and AA cases, is with the choice of the adiabatic gradient. This choice
constrains the total mass included in the convective layer and as the simulations are done with fixed boundaries, one cannot be sure before a
statistically steady state surface pressure is computed, that the average pressure at the surface, or the average density, are close to the values
required by the boundary conditions. This problem is solved in our models by adjusting the reference temperature in a few iterations.

The QB case is, not surprisingly, rather far away from the FC calculations. The relative thicknesses of the boundary layers are inaccurate
and adding, a posteriori, an adiabatic profile to the non-compressible simulation is incoherent. Furthermore there is no indication on how
to choose an appropriate surface adiabatic temperature. The AA and FC simulations lead to very similar results. Note however that our AA
equations are not those of the usual ALA formalism that we found inaccurate when the two heat capacities are identified. The similarity of
the AA and FC simulations comes from the fact that in the bulk of the convective fluid, the departures from adiabaticity are indeed small
and in the boundary layers where these departures are very large, the behaviour is simply controlled by diffusion and compressible effects
are negligible. AAs are also commonly made with convection heated from within by radiogenic sources (e.g. Schubert et al. 2001). In this
case however, the final temperatures are known to be significantly colder and far from adiabaticity at depth (Bunge et al. 2001). One could
guess that in mantle convection where the importance of internal sources (or of secular cooling) is large, the differences between FC and AA
solutions might be larger.

During the comparisons of the heat flows profiles, we propound that the dissipation profile may be derived directly from the total heat
flow and the adiabatic profile, as both dissipation and heat flow are related to the transport of entropy at high enough Rayleigh number.
We cannot prove this result analytically, however our FC and AA simulations suggest that this equilibrium provides a useful proxy of the
dissipation profile. This behaviour does not seem to be verified by the QB simulations.

The AA remains necessary for the situations where inertia is non-negligible in the momentum equation, that is where sound waves must
be filtered out, such as in the fluid core of the Earth. FC convection with a finite Prandlt number is not considered in this paper. Fortunately the
AA and FC simulations give very similar values particularly with the high Rayleigh numbers of planetary fluid layers. We suggest however
that the Murnaghan EoS remains a rather accurate EoS that should be used to properly express all the thermodynamic terms needed in the
equations. The shape of the adiabatic profiles derived from this EoS are very different from the exponential profiles, that are often used and
derived from (6a) when all the reference adiabatic values are assumed constant (see e.g. King et al. 2010). Working with realistic EoS and
thermodynamic quantities is highly necessary when the results are applied to extrasolar planets where the compressibility effects may be
much larger than on Earth. We however specifically show that with the Murnaghan EoS, the effective dissipation number should never attain
very large values (see eq. 24).
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Supplementary data are available at GJI online.

Figure S1. Quasi-Boussinesq and anelastic approximations. Mean temperature (left-hand column) and density (right-hand column) profiles
for R = 105.
Figure S2. Quasi-Boussinesq and anelastic approximations, fully compressible case. Mean temperature (left-hand column) and density
(right-hand column) profiles for R = 106.
Figure S3. Different components of the heat flow profile across the convective layer for R = 106: for the QB case conduction (blue) and
heat advection (red, dotted), for the AA and FC cases, we plot the conduction along the adiabat (red solid), and along the non-adiabatic
temperature profile (blue), the work flow (green, dotted), the advection of enthalpy (red, dotted) is larger than when the enthalpy is identified
with the temperature.
Figure S4. Quasi-Boussinesq and anelastic approximations, fully compressible case. Mean temperature (left-hand column) and density
(right-hand column) profiles for R = 107.
Figure S5. Same as Fig. A.3 for R = 107

Figure S6. Quasi-Boussinesq and anelastic approximations. Mean temperature (left-hand column) and density (right-hand column) profiles
for R = 108.
Figure S7. Quasi-Boussinesq and anelastic approximations, fully compressible case. Mean temperature (left-hand column) and density
(right-hand column) profiles for R = 109.
Figure S8. Same as Fig. A.5 for R = 109
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