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A flow of electrically conducting fluid in the presence of a steady magnetic field
has a tendency to become quasi-two-dimensional, i.e. uniform in the direction of the
magnetic field, except in thin so-called Hartmann boundary layers. The condition
for this tendency is that of a strong magnetic field, corresponding to large values
of the dimensionless Hartmann number (Ha � 1). This is analogous to the case of
low-Ekman-number rotating flows, with Ekman layers replacing Hartmann layers.
This has been at the origin of the homogeneous model for flows in a rotating
frame of reference, with its rich structure: geostrophic contours and shear layers.
In magnetohydrodynamics, the characteristic surfaces introduced by Kulikovskii (Isv.
Akad. Nauk SSSR Mekh. Zhidk Gaza, vol. 3, 1968, p. 3) play a role similar to that
of the geostrophic contours. However, a general theory for quasi-two-dimensional
magnetohydrodynamics is lacking. In this paper, a model is proposed which provides
a general framework. Not only can this model account for otherwise disconnected
past results, but it is also used to predict a new type of shear layer, of typical thickness
Ha−1/4. Two practical cases are then considered: the classical problem of a fringing
transverse magnetic field across a circular pipe flow, treated by Holroyd & Walker
(J. Fluid Mech. vol. 84, 1978, p. 471), and the problem of a rectangular cross-section
duct flow in a slowly varying transverse magnetic field. For the first problem, the
existence of thick shear layers of dimensionless thickness of order of magnitude
Ha−1/4 explains why the flow expected at large Hartmann number was not observed
in experiments. The second problem exemplifies a situation where an analytical
solution had been obtained in the past Walker & Ludford (J. Fluid Mech. vol. 56,
1972, p. 481) for the so-called ‘M-shaped’ velocity profile, which is here understood
as an aspect of general quasi-two-dimensional magnetohydrodynamics.

1. Introduction
The relative influence of Lorentz forces versus viscous forces is measured by the

dimensionless Hartmann number Ha. At large Hartmann number, the flow can be
analysed in terms of an inviscid core flow and viscous shear layers. This is very
similar to the case of low Ekman number flows in a rotating frame of reference,
for which two-dimensional models are commonly used. The tendency of flows of
electrically conducting fluids under a DC magnetic field to become two-dimensional
has been known since the work of Hartmann & Lazarus (1937a, b). A number of
analytical (Shercliff 1953; Chang & Lundgren 1961; Hunt 1965) and experimental
(Murgatroyd 1953; Branover 1967) studies have confirmed this trend in the laminar
regime and even in the next stage of so-called two-dimensional turbulence (Lehnert
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1955; Kolesnikov 1972). It was then natural to take advantage of the well-known
structure of the Hartmann layers to construct a model for the two-dimensional flow.
This was done by Sommeria & Moreau (1982), in terms of the core velocity and
pressure. There have been other two-dimensional models using the electrical potential
and pressure as main variables (Molokov & Bühler 1994). However these models
all have in common that the flow is supposed to be contained between two parallel
planes with a uniform transverse magnetic field. This constitutes a very particular
case as the subsequent developments show.

The work of Kulikovskii (1968) brought more generality since he considered
electrically insulating cavities of arbitrary shapes in arbitrary non-uniform magnetic
fields. He shows that there is still a kind of two-dimensionality as the variation of
physical quantities like pressure or electric potential along the magnetic lines can be
obtained from the equations of the core of the flow. In addition, he shows that the
quantity

∫
ds/‖B‖, the integral on a magnetic line of the inverse of the magnetic field

intensity, plays a crucial role. Surfaces made up of magnetic lines with the same value
for this integral are called characteristic surfaces: Kulikovskii shows that the electric
current and velocity have a tendency to lie on these characteristic surfaces at large
Hartmann number. These surfaces can be considered as surfaces of least resistance
to the flow. A flow can be forced to cross them but this will require larger pressure
gradient than in the case of a flow along them: for the same velocity, the ratio of
pressure gradient required to drive a flow across characteristic surfaces is of the order
of a factor Hartmann times the pressure gradient necessary to drive a flow along
these surfaces. In a second paper Kulikovskii (1973) applies his asymptotic structure
to particular configurations, showing the powerful predictions that can be made using
the concept of characteristic surfaces.

The ideas of Kulikovskii have been applied by Holroyd & Walker (1978) in the case
of a transverse magnetic field fringing a circular duct. The transverse magnetic field is
uniform on both sides of a step change. The authors follow Kulikovskii and assume
that in the non-uniform region, the flow follows strictly the characteristic surfaces
and that on each side it would then come back towards a fully developed regime on a
much larger length scale Ha1/2, as shown from scaling analysis, which appears for the
first time in Walker & Ludford (1974). They then re-derive a two-dimensional model
with uniform magnetic field but non-uniform depth of the cavity in the direction of
the magnetic field, in terms of pressure and electric potential. This model is then
solved using expansions in eigenfunctions on both sides, where pressure and potential
are matched in the central non-uniform magnetic field region. They obtain the large-
Hartmann-number asymptotic limit of the duct flow with fringing magnetic field.
Unfortunately, experiments performed under a large Hartmann number by Holroyd
(1979), Ha= 523 based on the radius of the pipe, showed that the observed flow
was significantly different from the predicted one: it is modified in the same way
as expected but much less spectacularly. The reason for this discrepancy could not
be explained satisfactorily by invoking possible viscous effects in the core or inertial
effects since the Hartmann and interaction numbers were both large enough to discard
such effects.

In a second attempt, Hua & Walker (1989) derive two-dimensional equations not
only for variable depth but also for a non-uniform magnetic field. The assumption of
so-called parallel magnetic lines is made, whereby the magnetic field is supposed to be
pointing nearly in the same direction (z), although its intensity depends on the other
two directions (x and y). This model could be solved numerically without the need
to match the pressure and potential in the non-uniform magnetic field region. The
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results were consistent with experimental observations at comparable values of the
Hartmann number. Moreover, the numerical solution could be obtained for higher
values of the Hartmann number, up to 7000. The authors remark that, even at this
large value of the Hartmann number, the computed flow is far from the asymptotic
prediction of Holroyd and Walker. As they expect the asymptotic regime to be
reached when the square root of the Hartmann number is large compared to unity
they conclude rather unconvincingly that

√
7000 � 84 is not large enough compared

to unity to approach the asymptotic regime.
A closely related problem is that of a cylindrical duct with expansion in a uniform

transverse magnetic field Walker & Ludford (1974). The topology of the characteristic
surfaces is identical to that of the duct of constant diameter with varying transverse
magnetic field. This study is purely analytical, based on matching solutions on both
sides of the region of varying diameter.

Another important case where the characteristic surfaces play a crucial role is
that of the so-called entrance problem for rectangular duct flows. When the flow
enters a region of varying transverse magnetic field, the flow appears to concentrate
along the sides of the duct parallel to the magnetic field, forming a so-called M-
shaped velocity profile. This was reported from experimental observations in a range
of papers (Slyusarev, Shilova & Shcherbinin 1970; Branover & Shcherbinin 1966;
Holroyd 1979, 1980). For this configuration again, Walker and co-workers played a
major role in the analysis of the flow (Walker, Ludford & Hunt 1972; Walker &
Ludford 1972; Sellers & Walker 1999).

Throughout this paper, the question of the relevance of a two-dimensional
magnetohydrodynamic (MHD) model will be addressed. It is hoped that the reader
will be convinced that two-dimensional equations of the type presented in Holroyd &
Walker (1978); Hua & Walker (1989) do represent MHD flows correctly, but that
their scaling analysis has not received enough attention. Such analysis provides a
global understanding of MHD flows. In particular, it will be shown how some known
results can be rederived (e.g. the M-shaped profile) and how an open question arising
in the case of a transverse magnetic field fringing a circular duct can be clarified. Also,
a comparison with the case of rotating flows will be made. As the two-dimensional
analysis is more advanced and better understood for rotating flows, this comparison
should give support to the proposed MHD analysis. In addition, strong magnetic fields
are becoming widely available for research and industrial purposes, and understanding
the asymptotic limit of large-Hartmann-number flows is becoming increasingly useful
in metallurgy and other processes involving liquid metals, like liquid metal cooling or
spallation neutron sources.

2. Three-dimensional asymptotics
In this section the different types of three-dimensional boundary layers appearing in

MHD flows or flows in rotating systems of reference are reviewed briefly. These well-
known features are recalled here for comparison in § 3 with typical two-dimensional
structures and to stress the analogy between MHD and rotating flows: the theory of
rotating flows is more advanced than that of MHD flows and the main point of this
paper is to show that the diversity of scaling laws found in the homogeneous model
of rotating flows also exists for MHD flows.

2.1. MHD three-dimensional asymptotics

The dimensionless vector position x, magnetic field B, velocity field u, electric current
density j , pressure field p and electric potential field φ are derived from their



128 T. Alboussière

corresponding dimensional quantities using the scales H , B0, ν/H , νσB0/H , ρν2/H 2

and νB0 respectively, where H is a length scale of the configuration, B0 a typical value
of the applied magnetic field, ρ the density of the fluid, ν its kinematic viscosity and σ

its electrical conductivity. The magnetic field is imposed externally and the magnetic
Reynolds number is assumed to be small so that the dimensionless magnetic field B
is divergence-free and curl-free according to Maxwell’s equations. Moreover, inertia is
also neglected so that the dimensionless expressions for the Navier–Stokes equation
and Ohm’s law take the following form:

0 = −∇p + Ha2 j × B + ∇2u, (2.1)

j = −∇φ + u × B. (2.2)

In addition, the velocity field u and electric current density j must be divergence-
free and on the boundary of the cavity enclosing the fluid the velocity must be
zero as well as the component of the electric current density parallel to the normal
vector, since only electrically insulated cavities are considered in this paper. One could
consider a field of volume forces in the Navier–Stokes equation, like buoyancy forces
in the Boussinesq approximation, without affecting the analysis of the structure of
the flow, provided this force field does not vary on a short length scale. In the set of
equations (2.1) and (2.2), the Hartmann number Ha=

√
σ/ρνB0H is the single dimen-

sionless parameter.
Asymptotic analysis refers to the limit of infinite Hartmann number Ha. Since

Hartmann’s work, it has been known that the flow can be divided into so-called core
regions of finite size and layers of small thickness. A simple way to demonstrate these
structures is to perform a local analysis of the governing equations (2.1), (2.2), so
that one can consider that the magnetic field is uniform. Let us denote z the local
coordinate aligned with the magnetic field and x, y other coordinates such that (x, y, z)
is a direct orthonormal system of reference. Taking twice the curl of (2.1) and
substituting ∇ × j using the curl of (2.2) leads to the following equation for the
velocity field:

Ha2
l

∂2u
∂z2

− (∇2)2u = 0, (2.3)

where Hal = Ha ‖B‖ represents the local Hartmann number. The electric current
density j can be shown to obey the same equation. The three-dimensional structures
of MHD flows can be derived from the differential operator† Ha2

l ∂2/∂z2 − (∇2)2.

2.1.1. Core regions

When the Hartmann number tends towards infinity, the bi-Laplacian term cannot
compete in finite-size regions and one obtains a region where the second derivative of
the velocity vanishes. In the absence of a strong electric current along the magnetic
lines, it can be shown that a two-dimensional velocity field develops in these regions
of finite extent. Even in the general case of a non-uniform magnetic field, a kind of

† For completeness, it is recorded that this operator can be decomposed into two operators
as follows: Ha2

l ∂2/∂z2 − (∇2)2 = (Hal ∂/∂z − ∇2) ◦ (Hal ∂/∂z + ∇2), where each of these operators
governs its corresponding Shercliff variable (Shercliff 1953). These variables are linear combinations
of the velocity and (induced) magnetic field, although they are a different linear combination than
Elsasser variables (Elsasser 1950). One must introduce another dimensionless number, the magnetic
Prandtl number Prm = µσν, where µ is the magnetic permeability. While Elsasser variables are
u ± A, with A the Alfvén velocity B/

√
ρµ, Shercliff variables are u ± Prm

−1/2 A.
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two-dimensional state exists, since the variations of velocity along the magnetic lines
are readily obtained from the governing equations.

2.1.2. Hartmann layers

Where the magnetic field is not parallel to the wall, a Hartmann boundary layer
develops. Obviously, the direction of maximum variation is the normal direction to
the wall n and equation (2.3) can be simplified into:

Ha2
l (B · n)2

∂2u
∂n2

− ∂4u
∂n4

= 0, (2.4)

where n is the distance to the wall. Hartmann layers are solutions to this equation
and the tangent velocity varies exponentially in them on a typical length scale
Ha−1 (B · n)−1.

2.1.3. Parallel layers

Viscous terms represented by the bi-Laplacian term in (2.3) can also play a role in
thin regions (boundary or free-shear layers) containing the magnetic field direction.
In this case, equation (2.3) takes the following form:

Ha2
l

∂2u
∂z2

− ∂4u
∂n4

= 0, (2.5)

where n is again a coordinate perpendicular to the layer. The solutions to this equation
are parallel layers. It is difficult to obtain a general solution in these layers, but a
scaling analysis shows that if they stretch a distance of order unity along the magnetic
field lines, their thickness must be of order Ha−1/2

l . Parallel layers were first analysed
by Shercliff (1953).

Interestingly, another result can be derived from equation (2.5) in the case when
the cavity is of infinite length in the direction of the magnetic field. This gives a
limit to the size of the core region where the flow is two-dimensional. There can
be variations along the magnetic lines on a large length scale: if the typical cavity
length scale perpendicular to the magnetic lines is of order 1, the two terms in (2.5)
can balance provided the length scale along the magnetic lines is of order Hal . This
situation arises typically when an object of size of order unity is placed in an infinite
region: its effect on a flow around it stretches along the magnetic lines a distance of
order Ha.

In the case of parallel layers and when the magnetic field is non-uniform, the local
analysis is not rigorous as one has to consider variations of the velocity on a length
scale of order unity or more along magnetic lines. Equation (2.5) is therefore not
correct. However the scaling analysis remains valid: in Todd (1968), rigorous analysis
of parallel layers developing along curved magnetic lines is performed and it is shown
that these layers still lie on magnetic lines and are still of typical thickness Ha−1/2.

2.1.4. Roberts layers

Roberts layers develop as a curved wall approaches a point where it becomes
tangent to the magnetic lines. The Hartmann layer solution presents a singularity
as its thickness diverges. The divergence is resolved by a so-called Roberts layer
(Roberts 1967). If the curvature is of order unity at the point of contact, a small region
elongated in the magnetic field direction must satisfy the geometric constraint that its
thickness across magnetic lines scales as the square of its length along these lines. By a
scaling analysis of equation (2.5) the only possibility is a thickness of order Ha−2/3

l

and a length of order Ha−1/3
l along the magnetic lines.



130 T. Alboussière

2.2. Rotating flows: three-dimensional asymptotics

Now, instead of applying a steady magnetic field B, it is supposed that the reference
system considered is rotating with the rate Ω around the z-axis. A Coriolis force
replaces the Lorentz force in the momentum equation. The same dimensionless
variables are used for distance, velocity and pressure as in § 2.1. The governing
equation can then be written as follows:

0 = −∇p + 2E−1u × ez + ∇2u, (2.6)

where E = ν/(ΩH 2) is the dimensionless Ekman number. Taking the curl of equa-
tion (2.6) leads to an equation involving u alone:

0 = 2E−1 ∂u
∂z

+ ∇2(∇ × u). (2.7)

One can even differentiate this equation with respect to z to eliminate the curl operator
and obtain a form suitable for analytical investigation:

0 = 4E−2 ∂2u
∂z2

+ (∇2)3u. (2.8)

Using the form (2.7) or (2.8), one can extract the possible structures for the velocity
field using scaling analysis (see Greenspan 1968 for a classical treatment). When a
boundary layer develops on a wall that does not contain the direction of rotation, a
layer of dimensionless thickness E1/2 develops: this is an Ekman layer and corresponds
to the Hartmann layer in MHD. It can also be seen that shear layers containing
the direction of rotation can develop. If the dimensionless length of the cavity in the
direction of the rotation is of order one, these layers must have a thickness of order
E1/3: they are the strict equivalent to the MHD parallel layers. When an object of
dimensionless size one is held in place in an infinite domain, then its ‘wake’ extends a
distance E−1 in the direction of the rotation. Finally, similar regions to Roberts layers
develop at the point of a curved wall where it becomes tangent to the direction of
rotation: these regions have a typical length scale of order E1/5 and E2/5 in the same
direction and perpendicular to the direction of rotation respectively, if the curvature
is of order unity. They correspond to a singularity of diverging Ekman layers.

At this point, it can be seen that there is a close correspondence between the
possible structures in MHD and in rotating flows according to the three-dimensional
equations (see figure 1 for a pictorial summary). However, it is not clear how one could
extract the typical E1/4 main component of Stewartson’s layers from the scaling of
the differential operator 4E−2∂2/∂z2 +(∇2)3 appearing in equation (2.8). This becomes
obvious when two-dimensional equations are derived.

3. Two-dimensional models
A cavity of dimensionless length scale unity in the direction of the imposed magnetic

field or rotation is considered. As we have seen above in § 2, the largest three-
dimensional structures in the direction perpendicular to the magnetic field or rotation
direction are of order Ha−1/2 or E1/3. Hence, if only larger perpendicular scales are
considered, the flow consists simply of a two-dimensional core bounded by Hartmann
or Ekman layers. This is at the origin of the two-dimensional models.

3.1. MHD two-dimensional model

In most cases, MHD core flows are two-dimensional, except when the forcing and
boundary conditions are such that an odd velocity profile is generated along a
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Figure 1. Sketch of three-dimensional structures in MHD and rotating flows: (a) Hartmann/
Ekman layers and MHD parallel layer/inner Stewartson layer; (b) Roberts layer/singular
Ekman layer; (c) MHD wake/‘Taylor’ column.

magnetic field line (a linear variation in the core). In this case, the MHD braking
is very strong: this is the case referred to as ‘singular symmetry’ in Alboussière,
Garandet & Moreau (1996). The other symmetry, called ‘regular symmetry’, cor-
responds to an even velocity profile (which is nearly uniform in the core) along
magnetic lines, and the MHD braking is Ha times weaker. Hence, the general case
bears a resemblance with the ‘regular symmetry’ and corresponds to the idea of a
two-dimensional flow.

In the following analysis a cavity of general shape and a non-uniform magnetic field
are considered. Following most authors, the approximation of straight magnetic lines
is made here. In this approximation, the curvature of the magnetic lines is ignored: the
intensity of the magnetic field is taken as constant on each magnetic line but can vary
from one line to another. This is clearly an approximation intended to simplify the
analytical calculations, but it has been shown to be valid in the few studies where this
approximation was not made (Kulikovskii 1968; Todd 1968; Alboussière et al. 1996).
This approximation does not affect the qualitative features of the flows, although the
imposed magnetic fields are not physical since they are rotational.

As shown in figure 2, the geometry of the electrically insulated cavity consists of
the space between two surfaces, an upper surface Su and a lower surface Sl ,
defined in a orthonormal coordinate system (x, y, z) by the two functions zu(x, y)
and zl(x, y) respectively. The z-axis is chosen to coincide with the magnetic field
direction, in the straight magnetic lines approximation. Its intensity depends on x

and y, B = Bz(x, y)ez. The functions zu, zl and Bz are dimensionless functions of the
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z

x

y

B = Bz (x, y)

zu (x, y)

z = 0

zl (x, y)

�l

�u

Figure 2. Geometry and magnetic field for the two-dimensional analysis.

dimensionless coordinates x and y, where the arbitrary scales H and B0 for length
and magnetic field intensity defined in § 2 continue to be used.

It is assumed that, in the core of the flow, the velocity and electric current density
components perpendicular to the magnetic field are independent of z. Using for
instance the value of these fields on a reference plane z = 0, one can define the
two-dimensional fields:

u0 =

[
u0x(x, y)

u0y(x, y)

]
, j 0 =

[
j0x(x, y)

j0y(x, y)

]
. (3.1)

Pressure and electrical potential are also independent of the magnetic field direction
z in the core, and their two-dimensional representatives are denoted p0 and φ0.
Considering the restricted versions of the general three-dimensional equations (2.1)
and (2.2) in the plane (x, y) in the core, two-dimensional equations governing u0, j 0,
p0 and φ0 are obtained:

0 = −∇p0 + Ha2Bz j 0 × ez + ∇2u0, (3.2)

j 0 = −∇φ0 + Bzu0 × ez. (3.3)

These governing equations are not sufficient to describe the MHD two-dimensional
flows. First, one needs to take into account the global conservation of mass and of
electric charge. Second, one needs to take into account the contribution due to the
Hartmann layers in these conservation relationships.

The mass and charge conservation laws will be expressed in terms of global two-
dimensional mass and electric charge flux densities Q and I , taking into account
the core and Hartmann layer contributions. The core contribution is obtained by
multiplying the two-dimensional vector fields u0 and j 0 by the length of the magnetic
line within the cavity zu −zl . The Hartmann contribution to the mass flux is neglected
as this corresponds simply to a deficit, as measured by the displacement thickness of
the Hartmann boundary layer. It introduces an error of order Ha−1, comparable to
the approximations already made when assuming a two-dimensional core flow. On the
other hand, the Hartmann layer contribution to the electric charge flux is fundamental
in MHD. It is proportional to the core velocity adjacent to the Hartmann layer and
in the direction perpendicular to both this core velocity and the wall normal vector.
The core velocity adjacent to the Hartmann layer uc must be tangent to the wall and
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B

n

uc

d x

d y dl

n × uc

zu (x, y)

Figure 3. Local tangent wall surface and relationship between the core velocity and total
electric current flowing in the Hartmann layer.

the integral of the electric current over the Hartmann layer thickness IHa depends on
the wall normal unit vector n and uc (see Hunt & Shercliff (1971)):

IHa = −sign(B · n) Ha−1uc × n. (3.4)

This surface electric current density needs to be expressed in terms of the coordinates
x and y which will be used in the following two-dimensional analysis. To this end,
let us calculate the amount of electric current flowing across a small line element
spanned by dx and dy (see figure 3). This line element corresponds to a line element
dl on the tangent plane to the surface and, from the components u0x and uoy of u0,
one can also construct the tangent core velocity:

dl =



dx

dy

dx
∂zu

∂x
+ dy

∂zu

∂y


, uc =




u0x

u0y

u0x

∂zu

∂x
+ u0y

∂zu

∂y


, (3.5)

where the upper surface Su is considered here, the treatment for the lower surface
being similar. The amount of electric current flowing across the line element dl is
proportional to the magnitude of the vector dl × (uc × n). This vector can be shown to
be equal to (dl · uc)n. Hence, with a factor Ha−1, the flux of electric current through
dl is given by

dx

[
u0x + u0x

(
∂zu

∂x

)2

+ u0y

∂zu

∂x

∂zu

∂y

]
+ dy

[
u0y + u0y

(
∂zu

∂y

)2

+ u0x

∂zu

∂x

∂zu

∂y

]
. (3.6)

The two-dimensional vector flux Iu
Ha in the (x, y) coordinate system that represents

that electric current flux has components:

Iu
Ha =

[
I u
Hax

I u
Hay

]
= Ha−1




−u0y − u0y

(
∂zu

∂y

)2

− u0x

∂zu

∂x

∂zu

∂y

u0x + u0x

(
∂zu

∂x

)2

+ u0y

∂zu

∂x

∂zu

∂y


. (3.7)

The lower surface produces a similar electric current flux. Both contributions are
expressed by a two-dimensional tensor, Fu and Fl for the upper and lower surfaces
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respectively:

Iu
Ha = Ha−1Fu · u0, I l

Ha = Ha−1Fl · u0, (3.8)

with

Fu =




−∂zu

∂x

∂zu

∂y
−1 −

(
∂zu

∂y

)2

1 +

(
∂zu

∂x

)2
∂zu

∂x

∂zu

∂y


, Fl =




−∂zl

∂x

∂zl

∂y
−1 −

(
∂zl

∂y

)2

1 +

(
∂zl

∂x

)2
∂zl

∂x

∂zl

∂y


.

(3.9)

It is now possible to write the total mass and charge two-dimensional fluxes,
including the core and Hartmann layers contributions:

Q = (zu − zl)u0, I = (zu − zl) j 0 + Iu
Ha + I l

Ha. (3.10)

For impermeable and electrically insulated surfaces, these two-dimensional flux
densities are divergenceless, and hence can be expressed in terms of the stream-
functions ψ and h:

Q = ∇ψ × ez, I = ∇h × ez. (3.11)

Taking the curl of the two-dimensional equations (3.2) and (3.3) eliminates pressure
and electric potential fields and yields the following equations, which have only one
component along z:

0 = −Ha2[∇ · (Bz j 0)]ez + ∇2(∇ × u0), (3.12)

∇ × j0 = − [∇ · (Bzu0)] ez. (3.13)

These equations can then be expressed entirely in terms of ψ and h, using (3.11),
(3.10) and (3.8) for substitution. For the sake of concise expressions, let us introduce
d = zu − zl as the depth of the cavity in the direction of the magnetic field and
F = Fu + Fl as the sum of the upper and lower Hartmann electric currents
in terms of the core two-dimensional velocity. In the substitution, because the
Hartmann currents are nearly curl-free while their divergence can be significant,
the contribution of these Hartmann currents to equation (3.13) can be neglected,
while their contribution to (3.12) is retained:

Ha ∇ ·
(

Bz

d2
F · (∇ψ × ez)

)
ez = Ha2∇

(
Bz

d

)
× ∇h + ∇2

[
∇ ·

(
∇ψ

d

)]
ez, (3.14)

∇ ·
(

∇h

d

)
ez = ∇

(
Bz

d

)
× ∇ψ. (3.15)

Both equations have an almost symmetrical structure. The curl of the Navier–Stokes
equation (3.14) has a diffusion term for ψ on the left-hand side: it is related to the
two-dimensional vorticity of the flow. The equation has a term of the form ∇K × ∇h

on the right-hand side, with K = Bz/d . This fundamental term corresponds to the
flow of total electric current crossing the characteristic surfaces. Finally, the last bi-
Laplacian term in ψ represents the effect of viscosity in the two-dimensional flow.
This last term will be shown to be negligible in most cases, and then equation (3.14)
expresses that when the electrical current goes across characteristic surfaces, this
creates vorticity. Equation (3.15) is similar, except that there is no equivalent to the
last term of (3.14). It expresses that when the flow goes across characteristic surfaces,
this creates a region of curl for the electric current.
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It is important to stress that the characteristic function K = Bz/d appears naturally
in these two-dimensional equations, as could be expected from previous analyses
(Kulikovskii 1968; Alboussière et al. 1996). The derivation and results presented
above are close to those presented in Alboussière (2001). This analysis is also very
close to the analysis by Holroyd & Walker (1978) and Hua & Walker (1989), where the
main variables are the pressure and electric potential instead of the streamfunctions
ψ and h considered here. Also, they have neglected from the beginning the viscous
friction in the two-dimensional flow. Although the analysis above of the significance
of the terms is not carried out in Holroyd & Walker (1978), Hua & Walker (1989),
it can be checked after rearranging different terms that equations (17) and (18) in
Hua & Walker (1989) display the same structure as (3.14) and (3.15) of this paper,
with the characteristic function Bz/d playing an important role.

Equations (3.14) and (3.15) will be solved rigorously in § § 4 and 5. Nevertheless, it
is important to perform a scaling analysis of these equations to identify the possible
structures that can be expected in two-dimensional flows. For the purpose of the
scaling analysis, the depth d and magnetic field Bz can be considered to be uniform
and unity in all terms except for the two terms involving the gradient of K , since the
variation of K = Bz/d is crucial. Moreover, in the spirit of a local analysis, a change
of coordinates is introduced, in which (x, y) is replaced by orthonormal intrinsic
coordinates (r, s), where r varies in the direction perpendicular to the characteristic
surfaces, while s varies along the characteristic surfaces. The symbol G is chosen to
denote the magnitude of the gradient of K: i.e. G = ‖∇(Bz/d)‖. With these simplifying
assumptions and notation, equations (3.14) and (3.15) take the form:

Ha ∇2ψ = Ha2G
∂h

∂s
+ (∇2)2ψ, (3.16)

∇2h = G
∂ψ

∂s
. (3.17)

Taking the Laplacian of (3.16) and substituting h using (3.17) provides the funda-
mental differential equation governing the two-dimensional streamfunction:

Ha(∇2)2ψ = Ha2G2 ∂2ψ

∂s2
+ (∇2)3ψ. (3.18)

Using this form, it is convenient to perform a scaling analysis of the two-dimensional
MHD flows. First, in the absence of thin layers, the term with the largest power of
Ha is dominant. Consequently the second variations of ψ along the characteristic
surfaces must be zero. In fact, very often the first variation of ψ will be zero along
theses surfaces, in order to minimize Ohmic dissipation (see equation (3.17)). This
corresponds to the ‘core regions’ of two-dimensional flows. Different type of layers
can appear, depending on whether they develop in a direction parallel to characteristic
surfaces or not. If they develop along a wall not parallel to the characteristic surfaces,
then equation (3.18) becomes

Ha
∂4ψ

∂n4
= Ha2G2 cos2θ

∂2ψ

∂n2
+

∂6ψ

∂n6
, (3.19)

where n is the normal direction to the wall and θ is the angle between the normal to
the wall and the direction of characteristic surfaces. The thinnest structure that can
emerge from equation (3.19) is obtained when the last term (viscous core friction) is
balanced with the first term (Hartmann layer friction). This leads to a typical thickness
of Ha−1/2 and must immediately be discarded as this scale corresponds to the scale of
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the three-dimensional parallel layers. Indeed, the three-dimensional analysis in § 2.1
shows that for a length scale of order Ha−1/2 or less in the direction perpendicular to
the magnetic field, the variations of velocity in the core of the flow are of order unity in
the direction of the magnetic field: hence the two-dimensional model ceases to be valid.
This means that the core friction will always be negligible compared to Hartmann
layer friction at larger scales. The other possibility is to balance Hartmann friction
with the topographic term: this leads to a layer of typical thickness Ha−1/2G−1cos−1θ .
Again, if G and cosθ are of order unity, this two-dimensional layer is not physical
as it is replaced by a Ha−1/2 three-dimensional parallel layer. However, if G cos θ

is very small compared to unity, this thickness Ha−1/2G−1cos−1θ is larger than the
parallel layers and constitutes a valid two-dimensional layer. This type of layer has
been analysed by Walker & Ludford (1974) who started from the three-dimensional
equations. These layers will be examined in § 5 from the easier point of view of the
two-dimensional equations. They are similar to Stommel layers (Stommel 1948) in
rotating flows, as the main balance involves topographic effects and friction in Ekman
layers. However, as will be seen in the next section, the Stommel solution does not
apply, as the core viscous friction turns out to be larger than the Ekman friction in
rotating flows. Hence, Stommel layers are replaced by thicker Munk layers (Munk
1950).

If one considers now a layer developing along a characteristic surface, equa-
tion (3.18) can be written

Ha
∂4ψ

∂r4
= Ha2G2 ∂2ψ

∂s2
+

∂6ψ

∂r6
. (3.20)

Again, it can be seen that the last core friction term will always be negligible on
scales larger than Ha−1/2 and can thus be ignored in this two-dimensional analysis.

The scaling analysis depends on the scale along the characteristic surface. If this
scale is of order unity (∂/∂s ∼ 1), then the balance between the Hartmann friction
term and the topographic term leads to a layer of typical thickness Ha−1/4G−1/2 which
is much thicker than the parallel layers even if G is of order unity. This type of layer
will be discussed in § 4.

Finally, if the cavity is infinite in the direction of the characteristic surfaces and of
size unity in the perpendicular direction, equation (3.20) can provide the typical long
length scale of development of structures along characteristic surfaces. If ∂/∂r ∼ 1,
then the balance between Hartmann friction and topographic effects leads to a scale
Ha1/2G. Walker and co-workers (Walker & Ludford 1974) had found that a distance
of order Ha1/2 was the length scale necessary from the position where the magnetic
field was varying to where it reached a fully developed flow in a pipe with transverse
magnetic field.

There can be other possibilities like the case when a wall becomes tangent to
the characteristic surfaces: similarly to Roberts layers, they would correspond to a
singularity in the Ha−1/2G−1 layer. For a curvature of order unity, from a scaling
analysis of (3.20) when the length scale perpendicular to the wall scales as the square
of the length scale along the characteristic surfaces, one obtains a region of size
Ha−1/3G−2/3 by Ha−1/6G−1/3. The structures discussed above are believed to be the
most typical ones and are illustrated in figure 4.

As discussed above, the core viscous term (∇2)2ψ in equation (3.16) is always
negligible when the two-dimensional equations are valid. Without this term,
equation (3.16) may be multiplied by Ha−3/2, then successively added to and subtracted
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Figure 4. Two-dimensional MHD structures.

from equation (3.17), providing the following equations:

∇2
(
ψ/Ha1/2 ± h

)
= ±Ha1/2G

∂

∂s

(
ψ/Ha1/2 ± h

)
. (3.21)

Those familiar with Shercliff variables will notice that here ψ/Ha1/2 ± h play a cor-
responding role. The preferred direction is that of characteristic surfaces instead of
the direction of the magnetic field for Shercliff variables. This may help in accepting
the typical length-scales derived above. This also indicates that the magnitude of the
electric current (h) is of order Ha−1/2 that of the velocity (ψ) in general.

3.2. The homogeneous model of rotating flows

The corresponding two-dimensional model in the case of rotation is called the
homogeneous model. Its derivation can be found in many textbooks (e.g. Greenspan
1968) and is sketched here in order to emphasize the similarity with the MHD model.
At the upper and lower surfaces, the role of the Ekman layer is now to produce a
cross-flow with respect to the core flow direction. The integral of this cross-flow scales
as E1/2 times the core velocity. For this term and for the purpose of this approximate
derivation, the angles between the direction of rotation and the wall normals are
neglected. The total vertically integrated volume flow rate can then be expressed:

Q = du0 + E1/2ez × u0. (3.22)

The core two-dimensional equation is now obtained by restricting equation (2.6) to
the (x, y) components in the core of the flow:

0 = −∇p0 + 2E−1u0 × ez + ∇2u0. (3.23)
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Its curl takes the form

0 = −2E−1(∇ · u0)ez + ∇2(∇ × u0). (3.24)

Again, one can use the streamfunction ψ , defined in (3.11), and substitute it for u0

in (3.24). The Ekman layer cross-flow is neglected in the viscous term and plays a
crucial role in the other term. This results in the homogeneous model

2E−1/2∇ ·
(

∇ψ

d

)
ez = 2E−1∇

(
1

d

)
× ∇ψ + ∇2

(
∇ ·

(
∇ψ

d

))
ez. (3.25)

A change of two-dimensional coordinates similar to that in the previous section is
operated, where the new (r, s) system is defined such that r is constant along lines of
constant depth, the geostrophic contours, and s is changing along these lines. Defining
β = ‖∇(1/d)‖ in accordance to the so-called β-plane approximation†, equation (3.25)
can be written locally:

2E−1/2∇2ψ = 2E−1β
∂ψ

∂s
+ (∇2)2ψ, (3.26)

under the assumption that d is of order unity. Although the order of derivation of the
terms and the powers of the Ekman number are different from those of the Hartmann
number in the MHD case, there is a strong analogy with the MHD equation (3.18).
The term on the left-hand side represents the contribution of the Ekman (resp.
Hartmann) layer, the first term on the right-hand side corresponds to the effect of
topography while the last term is related to shear forces within the two-dimensional
bulk flow.

In terms of boundary-layer structures, equation (3.26) can be used to estimate
the thickness of possible boundary layers arising in rotating flows. For a cavity of
constant depth, there can be an equilibrium between the first and last term in (3.26)
on a typical length scale E1/4. This is the thickness of shear boundary layers between
regions of different core velocity (Stewartson 1957). Along western boundaries, the
equilibrium between the second and third terms contributes a length scale E1/3/β ,
corresponding to Munk layers (Munk 1950; Calderon & Walker 1977; Walker 1975).
The equations are not symmetrical between East and West, owing to the term β∂ψ/∂s

in equation (3.26), and no boundary layer can develop on eastern boundaries. The
development length of a flow along geostrophic contours after a disturbance can be
estimated as E−1/2 (Walker 1974).

4. Circular duct with fringing magnetic field
A long electrically insulating circular duct is subjected to a transverse magnetic

field (figure 5). The axis of the pipe is taken to be the x-direction, while the direction
of the transverse magnetic field is taken to be the z-direction. All dimensions are
made dimensionless using the diameter of the pipe. From x = −∞ to x = −2 the
magnetic field intensity is assumed to be uniform. Its value B0 is used as our scale
for magnetic field, hence its dimensionless value is unity, while from x = 2 to x = ∞,
the dimensionless magnetic field is uniform with an intensity twice as large. Between

† The traditional β-plane approximation corresponds to the linearized variation of latitude, but
this is equivalent to a change in depth, as far as the two-dimensional model is concerned.
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Figure 5. Geometry and magnetic field of a circular duct with a fringing magnetic field.
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Figure 6. Characteristic surfaces, shown on the (x,y)-plane, for half the pipe. The other half
y < 0 is symmetrical.

x = −2 and x = 2, the dimensionless magnetic field is assumed to have the form

Bz = 1.5 +
x

4
+

2

3π
sin

(πx

2

)
+

1

12π
sin(πx), (4.1)

which makes Bz, as well as its first and second derivatives, continuous from x = −∞
to x = ∞. According to the straight magnetic field lines approximation, the other
components of the magnetic field are assumed to be zero, although this field does not
satisfy the condition of a curl-free magnetic field, strictly speaking.

The characteristic surfaces contain the z-direction and are best made visible in the
(x,y)-plane where they appear as lines. On figure 6, some characteristic surfaces are
drawn: they correspond to the case of a circular cylinder and to the distribution
defined by the magnetic field (4.1). However, the x and y coordinates are stretched
differently. The figure is drawn for the particular case of a duct of length 8, but this
is irrelevant since the characteristic surfaces are independent of x when x < −2 or
x > 2. In fact, the length of the cavity used for numerical calculations will be adapted
for each value of the Hartmann number (see § 4.1) so that it is always longer than
the development length of the flow.

This problem has been initially investigated by Holroyd & Walker (1978) and later
by Hua & Walker (1989). In § 4.1 a two-dimensional numerical calculation of the flow
is performed using the two-dimensional model described in § 3.1. This is somewhat
similar to the work done by Hua & Walker (1989), but higher values of the Hartmann
number are investigated here. In § 4.2, an asymptotic model used by Holroyd and
Walker is re-expressed in terms of the streamfunctions ψ and h instead of pressure
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Figure 7. Typical mesh, showing fewer vertices than used in calculations for clarity, for
Ha = 106. Boundary conditions for velocity and electric current streamfunctions ψ and h are
shown.

and electrical potential, and is then solved with a higher accuracy (in effect with more
terms in a series of Chebyshev polynomials). In this model, it is assumed that the
non-uniform region is short enough so that, within it, the flow follows strictly the
characteristic surfaces. It will be shown that the numerical two-dimensional model
and this asymptotic model are in perfect agreement. They both lead to layers of
thickness Ha−1/4 and it will be shown that the two-dimensional numerical results
approach the asymptotic results when Ha−1/4 is small compared to one.

4.1. Numerical two-dimensional results

The two-dimensional equations (3.14) and (3.15) are solved in this section, except
for the two-dimensional viscous term. This is the last term is equation (3.14) and it
has been shown in § 3.1 that the boundary or free layers arising from it are always
as thin as parallel layers, Ha−1/2, and hence cannot be modelled correctly by the
two-dimensional model. Consequently, this term is removed from the equation and
the condition of no-slip on solid boundaries is dropped accordingly. These equations
are re-written here, in the form that is solved numerically:

∇ ·
(

Bz

d2
F · (∇ψ × ez)

)
ez = Ha ∇

(
Bz

d

)
× ∇h, (4.2)

∇ ·
(

∇h

d

)
ez = ∇

(
Bz

d

)
× ∇ψ. (4.3)

The symmetry of the problem with respect to the axis y = 0 is exploited and the
domain of integration is only half of the initial domain: y � 0, −L � x � L, where
L is taken large enough so that the flow is established in the x-direction at these two
ends. The development length scales as Ha1/2 and this is taken to be the length of the
integration domain, L = 0.5Ha1/2. The results show that the flow is independent of x

well before the ends.
A problem with this domain is that its length is large for large Hartmann numbers

and it becomes difficult to build a mesh with a reasonable number of nodes which
can cope with the short and large length scales involved. To overcome that difficulty
a change in x coordinate is made, which maps the long physical domain onto a
fictitious domain of length 2. The change in x-coordinate used here is of the form
x = 2.5 sinh(xf sinh−1(Ha1/2/5)), where xf is a fictitious x coordinate (see figure 7).
This type of stretching creates a distortion that becomes more and more pronounced
towards the ends. The following boundary conditions are applied: on y = 0, ψ = 0
and h = 0; on y = 0.5, ψ = 1 and h = 0; on xf = ±1, ∂ψ/∂xf =0 and ∂h/∂x = 0.
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Figure 8. FreeFem calculations: (a) velocity and (b) electric current streamlines, iso-ψ and
iso-h, for four values of the Hartmann number, Ha = 102, 104, 106, 108. The vertical coordinate
is the y coordinate from y = 0 (centreline of the duct) to y = 0.5, the horizontal coordinate is
Ha−1/2x from − 0.25 to 0.25.

Two types of two-dimensional plots will be shown in this section, neither of them
involving the artificial xf coordinate: one type is a general view of a large part of

the domain where xHa−1/2 will be used while the other type is a limited view of the
physical domain, between x = −2 and x = 2, where coordinate x will be used.

The equations are solved using FreeFem+ (Pironneau et al. 2001), free-licence
software developed at INRIA. This is a two-dimensional finite element solver, coupled
to an anisotropic unstructured mesh generator that can automatically refine the
mesh where solutions have large gradients. Triangular, first-order elements are used.
Typically, after a couple of mesh adaptations, the mesh looks like the one displayed
on figure 7, although the meshes used for the calculations contain many more vertices
(up to 50 000).

It can be seen from figure 8 that the large-scale structure of the flow and electric
current circulation becomes independent of the value of the Hartmann number, at
large Hartmann number, i.e. more than 106 or so. Between Ha= 104 and Ha= 106,
some differences in position of the iso-ψ lines may be observed and also of the iso-h
lines. It is also confirmed from these results that the development length of the flow
upstream and downstream, i.e. along the characteristic surfaces is of order Ha1/2.
However, the plots in figure 8 do not provide clear information on the structure of
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Figure 9. FreeFem calculations: (a) velocity and (b) electric current streamlines, iso-ψ and
iso-h, for four values of the Hartmann number, Ha =102, 104, 106, 108. The vertical coordinate
is the y coordinate from y = 0 (centreline of the duct) to y = 0.5, the horizontal coordinate is
x from x = −2 to x = 2.

the flow around the region of varying magnetic field. This is due to the fact that the
axial coordinate is scaled with a factor Ha1/2 in order to give a global view of the
flow; hence the central region, −2 � x � 2 is greatly squeezed in the x-direction.
Figure 9 shows the same results as figure 8 but with the central part of the duct
singled out. It can also be seen that the flow becomes independent of the Hartmann
number, when it is larger than 106. It can also be seen that, on this length scale of
order unity, the velocity and electric current streamlines become closer and closer to
the characteristic surfaces (compare with figure 4) at large Hartmann number.

It is also interesting to look at the profiles of the x-component of the velocity field
across the duct. On figure 10, the velocity profile is shown between y = 0 and y = 0.5
at the axial positions x = −2 and x = 2 respectively.

One can see that the velocity profile presents a singularity at infinite Hartmann
number. This singularity is situated on the characteristic surface which splits in
the region of non-uniform magnetic field. Hence, its position is at y = 0 for the
velocity profile at x =2, and at yc =0.5 cos(π/6) at x = −2. This critical position yc

corresponds to the y position where the depth of the cylinder in the direction of
the magnetic field is half the diameter of the duct. On figure 11, the velocity profiles
are plotted again, in logarithmic coordinates, to demonstrate the singularity arising
at large Hartmann number. In figure 11(a) (x = −2), only the region yc < y < 0.5 is
shown and the horizontal coordinate used is y − yc. In figure 11(b) (x = 2), as the
singularity is situated at y = 0, no change of coordinate is made. It can be seen that,
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Figure 10. FreeFem calculations: (a) velocity profile (x component) at the position x = −2
and (b) x = 2, between y = 0 (centreline of the duct) and y = 0.5 (edge of the duct), for
Ha = 102, 103, 104, 105, 106, 107, 108, 109, 1010.
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Figure 11. FreeFem calculations: velocity profile (x component) at (a) the position x = −2,
between y = yc and y = 0.5 and (b) x = 2, between y = 0 and y = 0.5, for Hartmann numbers
Ha = 106, 107, 108, 109, 1010, 1011.

at x = 2, the velocity profile behaves asymptotically like y−1/2 when Ha increases. At
x = −2, it looks plausible that the velocity behaves like (y − yc)

−3/4 when Ha increases:
it is not as clear as the −1/2 exponent at x = 2, probably because, around y = yc, the
depth varies much more rapidly with y than around y = 0. However, there must be a
strong relationship between these exponents on each side of the change of magnetic
field if one believes that, on the short length scale of the change in magnetic field, the
streamlines must coincide with the characteristic surfaces

ψ[x = −2, yl(K)] = ψ[x = 2, yr (K)], (4.4)

where yl(K) is the y position on the left-hand side of the change of magnetic field,
for a given value K , of the characteristic function Bz/d and where yr (K) is the
corresponding y position on the right (x = 2). Differentiating expression (4.4) with
respect to K , one obtains:

dyl

dK

∂ψ

∂y
[x = −2, yl(K)] =

dyr

dK

∂ψ

∂y
[x = 2, yr (K)]. (4.5)
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The derivatives of yl and yr with respect to K , near the singular characteristic value
K0 = 2/1 = 2, are the inverse of the derivatives of K with respect to y, near y = yc

and y = 0 respectively. From K = Bz/d , with d = 0.5(0.25 − y2)1/2, the result

K =
1

0.5
(
0.25 − y2

l

)1/2
=

2

0.5
(
0.25 − y2

r

)1/2
(4.6)

is obtained, which when differentiated leads to

dK

dyl

= 0.5yl

(
0.25 − y2

l

)−3/2
,

dK

dyr

= yr

(
0.25 − y2

r

)−3/2
. (4.7)

This means that, in the neighbourhood of yl = yc and yr = 0 respectively,

dK

dyl

= 8
√

3,
dK

dyr

= 8yr, (4.8)

where for the case of dK/dyl the only interesting feature is that it has a finite value
which is to be considered as uniform near the singularity. In contrast, for the case
of dK/dyr a first-order expansion is considered since its value at yr =0 is zero and
cannot be inverted to feed into equation (4.5). Also, using (4.6), it can be shown that
near the singularity, the following relationship holds between yl and yr :

y2
r � 2

√
3(yl − yc). (4.9)

With (4.8) and (4.9), if it supposed that the velocity profile in the x-direction, ∂ψ/∂yr ,
on the right-hand side behaves near yr = 0 as ux = ayb

r , then equation (4.5) indicates
how the velocity should behave on the left-hand side:

∂ψ

∂yl

(x = −2, yl) =
√

3a[2
√

3(yl − yc)]
(b−1)/2. (4.10)

This relationship indicates which power law should be found on the left of the
singularity given that an exponent b is observed on the right. As the exponent
b = −1/2 is clearly visible on figure 11, one can infer from (4.10) that the singularity
in the velocity profile on the left is of the form (yl − yc)

−3/4.
Having established the nature of the singularity developing along this particular

characteristic surface which splits as a result of the change of magnetic field, one
can also examine how this singularity is smoothed out at high but finite Hartmann
number. As predicted in § 3.1 there is in fact a free shear layer of thickness Ha−1/4.
This is because the change in magnetic field occurs on a typical length scale unity, so
when the velocity profile is examined at a distance of order unity from the change in
magnetic field, a layer of thickness Ha−1/4 is expected. This can be seen on figures 10
and 11 as the singularity is smoothed on a shorter and shorter length scale, δ, as
the Hartmann number is increased. One can extract quantitatively the ‘smoothing’
thickness from these velocity profiles. If we assume that the velocity ux is at its
maximum umax on a length scale δ, then the following integrals of the velocity profile
can be approximated as:∫ 0.5

0

u4
x dy ∼ δu4

max,

∫ 0.5

0

u8
x dy ∼ δu8

max, (4.11)

as the contribution around the maximum velocity dominates the integrals. It then
follows from (4.11) that the following value for δ is an objective measure of the
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Figure 12. Expression (4.12) is plotted for Hartmann number from 102 to 1012, based on the
velocity profile at (a) x = −2 and (b) x = 2. The dashed lines are straight lines of slope −1/4
and −1/6 for comparison.

thickness of the layer which can be computed from the profiles:

δ =




[∫ 0.5

0

u4
x dy

]1/4

[∫ 0.5

0

u8
x dy

]1/8




8

. (4.12)

This value of δ is plotted on figure 12(a). It can be seen that at large Hartmann
number, δ behaves as Ha−1/4. This is a practical application of the general analysis
in § 3.1. indicating that layers of thickness Ha−1/4 can develop along characteristic
surfaces when a change occurs on a length scale unity. Here the magnetic field
changes on a length scale unity and the layer between the stagnant and moving fluids
is indeed of thickness Ha−1/4. These findings provide an answer to the disagreement
in Holroyd & Walker (1978). In their conclusion, about the “nature of the velocity
profile near the moving fluid/stagnant fluid boundary in the non-uniform region”,
the two authors express different views: “J. S. W. believes the velocity gradients to be
large yet O(1) while R. J. H. believes that a shear layer of thickness O(Ha−1/2) might
separate the moving and stagnant fluid”. The answer proposed here is intermediate,
with a layer of thickness Ha−1/4. In addition, it is observed that the asymptotic velocity
profile itself diverges near yc, not only its gradient.

If one observes now the velocity profile on the right-hand side of the change in
magnetic field, one can also measure the size of the free-shear layer at y = 0, lying on
the dividing characteristic surface. Using the same expression (4.12), the thickness of
this layer is plotted on figure 12(b). It can be seen that, at high Hartmann number,
the thickness decreases as Ha−1/6. This new exponent arises because the characteristic
function K shows an extremum at y = 0. Indeed, the power law Ha−1/4 was derived
under the assumption that K has a finite gradient G. Here, G is not constant at
the scale of the layer, but is a linear function of y, G = cz, where c is a constant.
When substituting this expression for G in equation (3.20), it is possible to carry out
a similar scaling analysis as in § 3.1 to find that a shear layer of thickness Ha−1/6

should develop near y = 0 for the axial position x = 2.
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Figure 13. Eigenfunction expansions: velocity profile (x component) at the position (a) x = −2
and (b) x = 2, between y = 0 (centreline of the duct) and y =0.5 (edge of the duct), for
Ha = 102, 103, 104, 105, 106, 107, 108, 109, 1010.
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Figure 14. Eigenfunction expansions: velocity profile (x component) at the position
(a) x = −2, between y = yc and y = 0.5 and (b) x =2, between y =0 and y = 0.5, for Hartmann
numbers Ha = 106, 107, 108, 109, 1010, 1011, 1012. In (a) the abscissa is the y coordinate mea-
sured from the singularity y − yc .

4.2. The model of Holroyd & Walker revisited

The method of eigenfunction expansion used by Holroyd & Walker (1978) (directly
adapted from Walker & Ludford 1974) has been followed with two changes. First, the
problem is solved here using the streamfunctions ψ and h, rather the the pressure and
electric potential p and φ, and secondly, as many as 1000 eigenvectors have been used
while Holroyd & Walker could only compute 60 at the time of their publication. This
increase in computer power is necessary to observe the results found in the previous
section with FreeFem. In this method, the magnetic field is modelled as a pure step
function and the velocity profiles are calculated at a distance x = 2 upstream and
downstream of the discontinuity, and plotted in linear (figure 13) and logarithmic
(figure 14) coordinates.

The results of this modelling are very similar to those obtained by finite element
analysis (figures 10 and 11). This can be seen as a confirmation that the approach of
Holroyd & Walker was correct. The results are not identical though for two reasons.
First, at Ha = 1012 and to a lesser extend at Ha = 1011, one can see numerical
oscillations on the right of figure 14, showing that 1000 eigenmodes is not sufficient.
Secondly, the peak values in shear layers are not identical because x = −2 and x = 2
do not have the same significance in both models. They are the ends of the gradient
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region of magnetic field in the finite element modelling while they are exact positions
with respect to a sharp change in magnetic field intensity in the method of matched
expansions.

5. The entry problem in rectangular ducts
The so-called entry problem is another typically relevant issue regarding the two-

dimensional MHD flow structure. This phenomenon concerns the changes in a duct
flow when the intensity of an imposed transverse magnetic field varies along the
direction of the flow, for instance when a duct flow enters (or leaves) a magnet,
and hence the term ‘entry problem’. In electrically insulating rectangular ducts, it
is observed that the flow remains quasi-two-dimensional but concentrates near the
two parallel walls to the magnetic field while becoming very weak in the middle of
the duct: because of the no-slip condition at the wall, this has been described as an
M-shaped velocity profile when plotted from one parallel wall to the other. An entirely
equivalent problem is that of a flow in a uniform magnetic field but with a variable
cross-section area along the duct; only changes in the value of the characteristic
function Bz/d are relevant. Here, we choose to consider the case of a uniform depth
d = 1 and a variable magnetic field intensity Bz as a function of x, the longitudinal
coordinate along the duct axis. As before z is the coordinate in the direction of the
magnetic field and y is the coordinate in the plane of the cross-section.

This problem will be treated using equations (3.14) and (3.15), and our choice leads
to simplified governing equations:

Ha[∇ · (Bz∇ψ)]ez = Ha2∇Bz × ∇h + [(∇2)2ψ]ez, (5.1)

[∇2h]ez = ∇Bz × ∇ψ. (5.2)

Then, following our analysis in § 3.1, the last term of equation (5.1) – of viscous origin –
will be neglected as it leads to thin parallel layers, too thin for the condition of two-
dimensional flow to apply. Assuming that its role will be simply to ensure the no-slip
condition, this term is removed when the no-slip condition is dropped. The set of
equations becomes

[∇ · (Bz∇ψ)]ez = Ha ∇Bz × ∇h, (5.3)

[∇2h]ez = ∇Bz × ∇ψ. (5.4)

These equations are solved in § 5.2, for the case of a duct flow with a ramp of
transverse magnetic field. Before, in § 5.1, a local analytical solution for equations
(5.3) and (5.4) is derived corresponding to boundary layers analogous to Stommel
layers for rotating flows. Finally, in § 5.3, an attempt is made to calculate the flow in
the duct cross-section in a region of axially varying Bz: it is compared to and gives
support to the two-dimensional results.

5.1. Analytical local solution

We consider here a region near a sidewall, where the gradient of magnetic field Bz is
denoted G. In the Laplacian terms, the normal derivative along y is assumed to be
dominant compared to the axial x-derivative. Equations (5.3) and (5.4) can be written

Bz

∂2ψ

∂y2
= HaG

∂h

∂y
, (5.5)

∂2h

∂y2
= G

∂ψ

∂y
. (5.6)
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Figure 15. (a) Velocity streamlines and (b) electric current streamlines resulting from the
two-dimensional numerical analysis for Ha = 105 and three values of G, G = 0.05, 0.1 and
0.2. The vertical coordinate is the y coordinate from y = 0 (centreline of the duct) to y = 1,
the horizontal coordinate is x from x = −4 to x = 4. The symmetrical part of the cavity
(−1 <y < 0) is not represented here.

Since Bz and G are functions of x only, these equations are ordinary linear differential
equations in y. They admit elementary solutions of the form:

exp

(
y

√
HaG2

2Bz

)
, exp

(
−y

√
HaG2

2Bz

)
, (5.7)

showing that the flow is confined near the lateral walls in a boundary layer of typical
thickness Ha−1/2G−1, when the scale for magnetic field strength is chosen locally
(Bz = 1). As long as the gradient of magnetic field G is very small compared to unity,
the two-dimensional structure of the layer is guaranteed and its velocity and electric
current density must be exponential.

5.2. Numerical two-dimensional results

A duct of uniform dimensionless depth unity, width equal to 2, and length 8 is
considered. The upstream and downstream regions each occupy one fourth of the
length of the duct and have a uniform transverse magnetic field, of intensity 1 − 2G

and 1 + 2G respectively, while the middle part is subjected to a uniform gradient G,
Bz = 1 + Gx. On the lateral walls, y = ±1, the electrically insulating condition can
be written h = 0 and the condition of impermeable walls is written ψ = 0 on the
lower wall at y = −1 and ψ = 1 at y = 1. (The condition ψ =1 can be changed for
an arbitrary constant without affecting the nature of the solution as we are treating a
linear problem). At the ends of our duct, we apply the condition that h and ψ have
no normal gradient. This is consistent with the fact the flow is nearly fully established
at the ends.

The streamlines of the computed solution are shown on figure 15 for Ha= 105

and three values of the gradient of magnetic field applied, G =0.05, G =0.1 and
G =0.2. It can be seen that the side layers become thicker as G decreases. In the real
three-dimensional case, it is expected that a parallel layer will exist, as a sublayer
within this thicker side layer. The exponential velocity distribution (5.7) has been
compared with the calculated distribution with FreeFem: the agreement is excellent.
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5.3. Local solution in a cross-section

As we have seen in § 5.1, the solution of the duct flow with a gradient of magnetic
field is local: it is sufficient to know the local value of the magnetic field Bz and the
local value of the gradient G to determine completely the boundary layer solution,
providing Bz and G do not vary significantly on an axial length scale comparable to
the layer thickness. As a consequence, it is expected that the three-dimensional flow
can be computed locally in a cross-section, within some simplifying assumptions.

Let us assume that the flow will be mainly streamwise, and that its streamwise
gradient is small compared to its gradient in the cross-section. The Navier–Stokes
equation can be written in the streamwise direction:

−∂p

∂x
+ Ha2jyBz + ∇2

Sux = 0, (5.8)

where ∇2
S is the Laplacian operator in the cross-section. This equation (5.8) will be

one of our three equations within the cross-section, the ux equation, and we shall
now derive equations for φ and ∂p/∂x. The unknown jy in (5.8) can be expressed as
a function of φ and ux according to Ohm’s law: jy = −∂φ/∂y − uxBz.

The equation for φ is obtained as usual by taking the divergence of Ohm’s law:

∇2φ = B · ∇ × u. (5.9)

With a dominant velocity x-component, and with gradients predominantly in the
cross-section, this equation can be written

∇2
Sφ = −Bz

∂ux

∂y
. (5.10)

An equation for ∂p/∂x is less standard. It is obtained through a few steps. First,
we consider the curl of the Navier–Stokes equation:

Ha2Bz

∂ j
∂z

− Ha2Gjxez + ∇2(∇ × u) = 0. (5.11)

As a next step, we write the x-component of the curl of equation (5.11):

Ha2Bz

∂(∇ × j )x
∂z

− Ha2G
∂jx

∂y
− (∇2)2ux = 0, (5.12)

To make progress, we need to derive the curl of Ohm’s law:

∇ × j = Bz

∂u
∂z

− uxGez, (5.13)

where ez is the unit vector in the z-direction. Substituting into (5.12), and assuming
again that gradients are essentially due to variations with the cross-section, we obtain

Ha2B2
z

∂2ux

∂z2
− Ha2G2ux −

(
∇2

S

)2
ux = 0, (5.14)

On the other hand, one can derive a similar equation by taking directly the cross-
section Laplacian of equation (5.8):

−∇2
S

∂p

∂x
+ Ha2B2

z ∇2
Sjy −

(
∇2

S

)2
ux = 0. (5.15)

Taking the curl of equation (5.13) and considering its y component leads to

−∇2
Sjy = Bz

∂2ux

∂z2
, (5.16)
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as variations along x are neglected compared to variations within the cross-section.
Substituting into (5.15) leads to

−∇2
S

∂p

∂x
− Ha2B2

z

∂2ux

∂z2
−

(
∇2

S

)2
ux = 0. (5.17)

The difference between equations (5.14) and (5.17) gives an equation for ∂p/∂x:

−∇2
S

∂p

∂x
= Ha2G2ux. (5.18)

In summary, we have a system of three equations for three unknowns:

∇2
Sux =

∂p

∂x
+ Ha2Bz

∂φ

∂y
+ Ha2uxB

2
z , (5.19)

∇2
Sφ = −Bz

∂ux

∂y
, (5.20)

∇2
S

∂p

∂x
= −Ha2G2ux. (5.21)

This set of equations is solved for the same geometry as considered in § 5.2. The
cross-section has dimension 1 along the magnetic field direction and 2 in the transverse
direction. Because of the symmetries of the configuration, we solve this problem in a
quarter of the cross-section.

Finally, we need to specify boundary conditions for ux , φ and ∂p/∂x. The conditions
on ux and φ are obvious, with ux vanishing on the walls, and ∂φ/∂n = 0 as electrically
insulating boundaries are considered. Only approximate boundary conditions can be
found for ∂p/∂x; the assumption that this variable is nearly independent of z is made.
This assumption is true within the core, it is also quite true within Hartmann layers
as they are so thin that pressure cannot change significantly across them, and we also
assume that three-dimensional parallel layers (Ha−1/2) are thin enough so that they
cannot cause large z-dependence of ∂p/∂x. Then, integrating equation (5.21) across
the whole cross-section tells us that, along parallel walls, the normal derivative of
∂p/∂x is proportional to the total volume flow rate though the duct, Q:

∂

∂y

(
∂p

∂x

)
= ±Ha2G2 Q

2
, (5.22)

while this derivative vanishes on Hartmann layer walls. An arbitrary value Q = 2
will be used in the calculations so that the mean velocity is unity.

The distribution of axial velocity, electric potential and axial pressure gradient were
calculated with FreeFem++, an improved version of FreeFem+ in which it is possible
to used triangular second-order finite elements. This proved necessary as Hartmann
layers were resolved for Hartmann number up to 105. In this cross-section modelling,
Hartmann layers have to be very well-resolved as the electric current flowing through
them is a key ingredient in the establishment of Ha−1/2G−1 layers.

Some results are shown in figure 16, for a fixed gradient G = 0.2, and increasing
Hartmann numbers, from 10 to 105. As expected, shear layers of thickness Ha−1/2G−1

develop and parallel layers of thickness Ha−1/2 are sublayers: their role is indeed to
bring the velocity to zero at the wall. The velocity profile at z = 0 is compared with
the analytical exponential solution. By symmetry, using expressions (5.7) and for a
total volume flow rate equal to 2 (Q = 2), the analytical expression (dashed line in
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Figure 16. Numerical calculation of the flow in the cross-section of a rectangular duct. Using
symmetries, only a quarter of the cross-section is analysed. Isovalues of the streamwise velocity
(a) for Ha =10, 102, 103, 104 and 105, with G =0.2. Velocity profile at z = 0 (b) for the same
parameters, compared to the analytical solution (5.23).



152 T. Alboussière

figure 16) is

ux =

√
HaG2

2B

cosh (
√

HaG2/2By)

sinh (
√

HaG2/2B)
. (5.23)

The agreement is very good, the small departure being due to the flow deficit in
parallel layers at large Hartmann number and to the deficit in Hartmann layers at
smaller Hartmann numbers. This shows that our local problem in a cross-section
(equations (5.19), (5.20) and (5.21)) is a good representation of MHD flows for entry
problems. It is also a direct confirmation that the results of two-dimensional modelling
can be confirmed from a model where Hartmann layers are effectively calculated.

6. Concluding remarks
The structure of MHD flows for large Hartmann numbers has been investigated for

an arbitrary geometry of the container and magnetic field distribution. A set of two
equations governing the two-dimensional mass flux streamfunction ψ and electric
charge flux streamfunction h has been used; however it would be equivalent to
consider other variables such as pressure p and electric potential φ as in Holroyd &
Walker (1978). The reason why mass and electric fluxes are preferred is that this
approach shows clearly which properties of Hartmann and Ekman layers play a key
role in the two-dimensional equations (see § 3). In the case of rotating flows, the key
property of Ekman layers is to carry a mass flux in the direction perpendicular to the
core velocity. In the case of MHD flows, the key property of Hartmann layers is to
carry an electric current in the direction perpendicular to the core velocity.

The originality of the present work consists largely in the scaling analysis of these
MHD two-dimensional equations. It has been shown that shear layers of thickness
Ha−1/4 can develop. In addition, the analogy between rotating flows and MHD flows
has been further developed, so that for instance it is now clear that the analogues of
Stommel layers are those analysed by Walker & Ludford (1972) of thickness of order
Ha−1/2G−1.

It may be that some of the results presented in this paper, especially those
concerning layers of thickness Ha−1/4, will never realistically apply. In industrial
MHD situations, one may envisage Hartmann numbers up to 105, at 10 Tesla and
10 cm length scale for a liquid metal. However, even in this case, it may be interesting
to know what the flow structure would be at higher Hartmann numbers, as a
tendency towards this structure will already exist at lower Hartmann numbers. In the
astrophysical and geophysical context, it is easy to find higher estimates of Hartmann
numbers. For instance, in the liquid Earth’s core, one can reach Ha ∼ 107 or Ha ∼ 108

depending on whether this is based on a poloidal (B � 5 × 10−4 T) or a toroidal
(B � 5 × 10−3 T) estimate for the magnetic field intensity (see Cardin et al. 2002).
Nevertheless, rotating effects, inertial effects and transport of magnetic field are so
important that the Hartmann number is not the key dimensionless parameter.

A number of possible extensions of this work can be envisaged. First, in this paper,
the use of the straight magnetic lines approximation has been made and a more
accurate two-dimensional model could be obtained by taking into account the true
magnetic field distribution. Although the results would be changed quantitatively, it
is not expected that the flow structure would be altered significantly. Secondly, the
present analysis can be extended to analyse free-surface flows. The position of the
free surface then becomes an additional unknown and the nature of the Hartmann
layers changes: they become much less active in the sense that the electric current
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flowing along them is drastically reduced compared to a wall-bounded Hartmann
layer. Shear layers of a new type are expected as the balance in our equation (3.18)
will be changed. A third possible extension would be to consider the combined effect
of rotation and magnetic field. This is typical of astrophysical or planetary dynamics.
When the rotation and magnetic field have an identical direction, there is certainly
a predominantly two-dimensional flow. In the general case of different orientations,
it is far from obvious that such a two-dimensional dynamics will develop, unless one
effect (rotation or magnetic field) is dominant compared to the other one.

The analogy with rotating flows has been used as an example to follow in the MHD
case. However, if one takes the opposite view and asks what should be the analogues
of Ha−1/4 layers, one can go back to equation (3.26) for the homogeneous model. If
one considers a change on a length scale unity along a geostrophic contour, what
should the thickness δ of the shear layer along that contour should be? In oceans,
as β is small, the answer is that it should be of order E1/4β−1/2 and that it is the
result of the competition between topographic effects and Ekman pumping effects.
This layer is thicker than the E1/4 Stewartson layer, which corresponds to the balance
between bulk viscous effects and Ekman pumping. Are there shear layers, lying along
geostrophic contours, of thickness of order E1/4β−1/2?

This work was started at the Department of Engineering in Cambridge and the
author is grateful to his colleague Martin Cowley for numerous discussions on this
and related topics and for helpful comments on the paper. Thanks are due also to
Andrew Soward, University of Exeter, for bringing Munk and Stommel boundary
layers to the author’s attention.
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