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Internal Waves in Laboratory Experiments

Bruce Sutherland1, Thierry Dauxois2, and Thomas Peacock3

10.1. INTRODUCTION

Since the realization by physical oceanographers that
transport and mixing by internal waves are an impor-
tant component of the thermohaline circulation, there
has been a resurgence in interest in their dynamics [Polzin
et al., 1997; Munk and Wunsch, 1998; Ledwell et al., 2000].
Consequent studies have been designed to examine mech-
anisms for wave generation and interaction with topog-
raphy. Theoretical studies have examined the means by
which energy from the moon forcing the barotropic tide
might be converted into internal wave energy as a conse-
quence of oscillatory stratified flow over topography. This
began with the pioneering studies of Zeilon [1912] and
Baines [1974, 1982] and have since been extended, though
still in the realm of linear theory, to examine the influence
of more complex topography and stratification [Balm-
forth et al., 2002; Llewellyn-Smith and Young, 2002; Bühler
and Muller, 2007]. Related to these is the examination
of scattering of internal waves by topography in which
incident low-mode internal waves generate an oscillatory
flow over topography that launches higher-mode internal
waves [Larsen, 1969; Robinson, 1969; Sandstrom, 1969].

Just as an oscillatory flow over a rigid body gener-
ates internal waves, so does an oscillating body generate
internal waves in otherwise stationary fluid. The partic-
ular circumstance of internal waves generated by oscil-
lating cylinders and spheres has garnered much attention
[Görtler, 1943; Mowbray and Rarity, 1967; Thomas and
Stevenson, 1972; Voisin, 1991, 1994; Hurley, 1997; Hurley
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and Keady, 1997]. Even with such simple geometries and
despite neglecting Coriolis effects, this work has revealed
the importance of including viscosity to resolve singular-
ities that occur along tangents to the oscillating body in
the along-beam direction.

More recently, in the study of tidally generated internal
waves, attention has turned to faster time-scale processes
in which large-amplitude internal wave packets are gener-
ated during one cycle of the tide. This work extends earlier
studies of steady uniformly stratified flow over topog-
raphy (e.g., see Baines [1995]) to include consideration
of nonuniform stratification and large-amplitude topog-
raphy. Oceanographers have focused primarily upon the
generation, propagation, and dissipation of internal soli-
tary waves at the thermocline [Pinkel, 2000; Klymak and
Gregg, 2004; Klymak et al., 2006; Li and Farmer, 2011;
Alford et al., 2011].

By exploring large-amplitude and viscous effects, the
results of laboratory experiments have often challenged
existing theory. For example, they have revealed the
importance of nonlinear processes in the scattering of
internal waves from large-amplitude topography [Peacock
et al., 2009], they have demonstrated the importance of the
viscous boundary layer in the generation of internal waves
from oscillating bodies [Sutherland and Linden, 2002;
Flynn et al., 2003], and they have shown that boundary
layer separation in stratified flow over steep topography
reduces the effective topographic height while generat-
ing turbulence and internal waves in the lee of localized
topography [Baines and Hoinka, 1985; Sutherland, 2002;
Aguilar and Sutherland, 2006].

Laboratory experiments have entered a renaissance due
to digitization technology, advancement in lasers and
computer-controlled equipment, and increases in compu-
tational memory and speed, which have created valuable
new analysis tools such as particle image velocimetry
(PIV) and laser-induced fluorescence (LIF). As a result,
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194 MODELING ATMOSPHERIC AND OCEANIC FLOWS

it is now possible to make nonintrusive measurements
of velocity and concentration in two and even three
dimensions. These tools have provided new insights into
problems involving turbulence and mixing that remain a
challenge in computational fluid dynamics.

However, the study of stratified fluids remains an exper-
imental challenge because light typically refracts differ-
ently through fluids of varying density. This can distort
and smear the apparent positions of particles used in PIV
and so lead to spurious predictions of flow speeds. On
the other hand, the very fact that density and refractive
index are related has provided other means to examine
nonintrusively the structure of stratified fluid flow.

One visualization tool used in laboratory experiments
of salt-stratified fluids is the shadowgraph. In this, a light
source placed far behind the test section shines through
the stratified fluid landing upon a translucent surface such
as Mylar. At interfaces where the density rapidly changes,
the light focuses and defocuses as it bends relatively more
or less while passing through fluid of varying salinity and,
hence, varying refractive index. If density variations due
to internal waves are gradual, focusing may not be evi-
dent. The shadowgraph proves particularly useful in the
examination of approximately two-layer fluids, in which
case light focusing at the interface can be used to track
the motion of interfacial waves. For internal waves in uni-
formly stratified fluid, the shadowgraph is particularly
effective in the examination of waves that are close to
breaking, as shown in Figure 10.1. In this experiment
[Koop and McGee, 1986], sinusoidal topography is towed
leftward beneath a shear flow whose speed increases left-
ward with height. At middepth in the experiments the
waves encounter a critical level, where the background
flow speed is close to the towing speed of the hills.

Another method taking advantage of the relationship
between refractive index and density is called “schlieren”
[Schardin, 1942; Settles, 2001]. In the traditional
approach, light reflected from a parabolic mirror passes
through a test section before striking a second parabolic
mirror that refocuses the light. A knife edge at the focus
acts as a filter on spurious signals, thus revealing index-
of-refraction-dependent structures within the test section.

Mowbray and Rarity [1967] were the first to use tra-
ditional schlieren methods to visualize internal waves
generated by a cylinder oscillating at a fixed frequency,
ω. Provided ω was sufficiently small, they observed that
the waves emanated vertically and horizontally from the
cylinder in a cross pattern, as shown in Figure 10.2.

In this experiment, the fluid was a uniformly stratified
salt solution whose density decreased linearly with height.
The stratification can be represented by the buoyancy
frequency N, defined in the Boussinesq approximation by

N2 = − g
ρ0

dρ̄

dz
. (10.1)

Figure 10.1. Internal wave breaking near a critical layer as
visualized by shadowgraph. Reprinted from Figure 7 of Koop
and McGee [1986].

Figure 10.2. Pattern of internal waves generated by an oscillat-
ing cylinder as visualized by conventional schlieren methods.
Reproduced from Plate 1(6) of Mowbray and Rarity [1967].

Here ρ̄(z) is the ambient density, ρ0 is the characteristic
density (e.g., that for fresh water at room temperature),
and g is the acceleration of gravity. In agreement with the
predicted dispersion relation of internal waves, Mowbray
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and Rarity [1967] found that the arms of the cross-pattern
of waves formed a fixed angle � from the vertical that was
related to the ratio of ω to N by |�| = cos−1(ω/N).

Color filters have allowed schlieren to be more quanti-
tative [Howes, 1984; Teoh et al., 1997; Chashechkin, 1999].
But the expense and physical constraints imposed by the
need for well-aligned pairs of parabolic mirrors has lim-
ited the use of schlieren until recently.

Schlieren technology has advanced enormously since
the mid-1990s. As a result of digitization technology
and computers, “synthetic schlieren” was developed as
an inexpensive, versatile and, most importantly, quanti-
tative tool for sensitively measuring density perturbations
in stratified fluids.

In what follows we examine how synthetic schlieren has
been used to test theory and to develop new insights into
the dynamics of internal waves. In the process we review an
analysis method for separating out waves propagating in
different directions and we describe a recently developed
mechanism for generating waves that does not suffer some
of the drawbacks of oscillating or towed rigid objects.

Section 10.2 briefly discusses how synthetic schlieren
visualizes disturbances in a fluid through contrasting
snapshots taken by a digital camera looking through the
fluid at a black-and-white image of lines or dots. If the
disturbances are small, the displacements of objects in
the image can be computed and, from these, the magni-
tude of the disturbance calculated. This is described in
Section 10.3 with the assumption that the disturbance in
the tank is uniform across the line of sight. The treatment
of axisymmetric and fully three-dimensional disturbances
is described in Section 10.4. Other advances in gener-
ating internal waves and analyzing them using PIV are
described in Section 10.5. Future directions are described
in Section 10.6.

10.2. QUALITATIVE USE OF SYNTHETIC
SCHLIEREN

Synthetic schlieren [Dalziel et al., 2000] makes away
with the need for parabolic mirrors to straighten and refo-
cus a localized light source. Instead, a camera is focused
upon an image behind a tank filled with salt-stratified
fluid.1 Disturbances in the fluid displace isopycnal sur-
faces and so locally change the refractive index of the
salt water through which light passes from a point on
the image through the tank to the camera. The image
apparently distorts as a result.

For example, Figure 10.3 shows how qualitative syn-
thetic schlieren observes distortions of an image of

1Synthetic schlieren has also been called “background oriented
schlieren” by Meier [2002], who used it to visualize and measure shock
waves in air.

horizontal black-and-white lines resulting when a set of
model sinusoidal “hills” are towed from left to right over
the surface of a tank filled with uniformly stratified fluid.

In the initial image, shown in Figure 10.3a, the hills
immersed in the ambient are apparent near the top of the
frame. The black-and-white lines are not in the tank, how-
ever. The image is situated approximately 10 cm behind
the tank. After the hills are set in motion, various dis-
turbances in the ambient can be seen as a result of the
distortion of the image (Figure 10.3b). In the lee of each
hill, boundary layer separation results in large perturba-
tions that warp and blur the lines. Furthermore, below the
hills the eye can barely make out smaller undulations of
lines in the image.

These alterations can be enhanced through digital image
processing. Each snapshot can be represented as an array
of pixels with each pixel given a number corresponding to
its intensity (e.g., 0 for black, 1 for white, and in between
for gray). The image in Figure 10.3c is produced by taking
the difference of the digitized snapshot in (b) from that
in (a), then taking the absolute value and multiplying the
result by an enhancement factor, typically 10. Thus even
small changes to the image become obvious.

One advantage of synthetic schlieren is that its sensitiv-
ity can be increased by widening the distance between the
test section and the image behind it. For example, it is easy
to observe heat rising off one’s hand if the image is several
meters away.

10.3. SPANWISE-UNIFORM DISTURBANCES

10.3.1. Quantitative Synthetic Schlieren

When light passes through a medium whose refractive
index changes in space, it is deflected in a manner well
predicted by Snell’s law. In the particular case of stably
stratified fluid, the density ρ and hence refractive index n
change with height z. The path of light passing in the y
direction through the fluid at a small angle to the vertical
from the y axis is given by [Sutherland et al., 1999]

d2z
dy2 � 1

n0

∂n
∂z

. (10.2)

Here n0 is the characteristic refractive index of the fluid
(e.g., n0 = 1.3330 for pure water).

In uniformly stratified fluid, the vertical gradient of
the refractive index can be related to the vertical density
gradient:

∂n
∂z

=
dn
dρ

∂ρT

∂z
. (10.3)

Here ρT denotes the sum of the ambient density ρ̄(z) and
the perturbation density ρ(�x, t).
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Figure 10.3. (a) Side view looking through tank filled with salt-stratified fluid with model inverted sinusoidal hills at the surface
and an image of horizontal black-and-white lines placed behind the tank. (b) Side view after hills have been towed slowly a
distance of one hill width. (c) Qualitative synthetic schlieren image produced by taking the absolute value of the difference of
the digitized images shown in (a) and (b). Also evident in (a) and (b) is a dark vertical streak above x � 20 cm. This is a vertical
dye line suspended in the fluid itself. Its displacement can be used to determine mean horizontal flow, which is retrograde to the
towing direction of the hill.

In computing image displacements, it is sometimes
more intuitive to compute them in terms of the squared
buoyancy frequency rather than density gradients. The
local stratification resulting from both the background
and perturbation density is expressed by the total squared
buoyancy frequency:

NT
2 = − g

ρ0

∂ρT

∂z
. (10.4)

Thus vertical variations of the refractive index can be
written in terms of NT by

∂n
∂z

= −n0γ NT
2, (10.5)

in which the coefficient γ is defined so that

γ ≡ 1
g

ρ0

n0

dn
dρ

� 1.878 × 10−4 s2/cm. (10.6)
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The rightmost empirical approximation assumes relatively
weak concentrations of sodium chloride solutions [Weast,
1981].

Combining equations (10.2) and (10.5), we find that
light follows a parabolic path when passing through a uni-
form stratification at a scant angle from the horizontal
such that

z(y) = zi + y tan φi − 1
2
γ NT

2y2, (10.7)

in which zi is the height and φi is the angle at which
the light ray enters the tank, In deriving (10.7), we have
assumed that NT is independent of y, which is the case for
spanwise uniform disturbances in a tank. This assumption
will be relaxed below in the consideration of axisymmetric
and fully three-dimensional disturbances.

Synthetic schlieren is usually employed to measure per-
turbations to the ambient. Directly, it measures how the
squared buoyancy frequency changes as a result of the
compression and stretching of isopycnal surfaces. Over a
distance y = LT , light is deflected vertically by

�z = −1
2
γ �N2 LT

2, (10.8)

in which

�N2 ≡ NT
2 − N2 = − g

ρ0

∂ρ

∂z
(10.9)

is the change in the squared buoyancy due to the density
perturbation ρ.

For example, if internal waves compress isopycnals so
that the ambient N2 locally increases by 10% from 1.0 to
1.1 s−2, then the light deflects by 0.04 mm crossing a 20 cm
wide tank. This is a small but discernible displacement
that can be captured by a digital camera with sufficiently
high resolution.

The apparent deflection is larger if the image is placed
some distance behind the tank. Not only is the light
deflected downward if the stratification increases, but also
the angle of the light ray at the tank wall changes. So
the apparent image displacement magnifies linearly as the
image is moved further away.

Assuming the tank walls are negligibly thin, one can
predict the total displacement of light from an object a
distance Lo from one side of the tank to a camera on the
other side of the tank to be

�z(�N2) � −1
2
γ �N2 LT

2 − n0

na
γ �N2 LoLT , (10.10)

in which na is the refractive index of air and φ0 is the angle
from the horizontal at which light enters the camera from
the object.

In the example above, if we now suppose the image is
20 cm behind the tank, then the displacement of the light

path is 0.14 mm, which is much more easily discernible.
If one pixel of the camera has a vertical resolution of
0.5 mm, then the disturbance in the tank will shift the
image by about a third of a pixel, which can easily be
observed by the change of intensity of light emanating
from the edge of a line.

Through (10.10), we have found the forward equation
in which known changes to the stratification enables us to
predict the vertical displacement of a point in an object
as seen by a camera looking through the stratified fluid.
In the derivation of (10.7), because we have assumed the
disturbance is spanwise uniform, it is a trivial matter to
invert (10.10) so that an observed vertical displacement in
an image can predict the change in the stratification:

�N2 � −�z
1
γ

[
1
2

LT
2 + LoLT

n0

na

]−1

. (10.11)

If part of an image appears to deflect downward, it means
that the stratification between it and the camera has locally
become stronger.

This result is straightforwardly applied to the circum-
stance in which a camera looks through a tank at an
image of horizontal black-and-white lines, as is the case in
Figure 10.3. Even if density perturbations result in image
distortions that shift the lines by a fraction of their width
(which, in fact, is ideal if you wish easily to compute the
line displacement), then (10.11) immediately predicts the
change to the squared buoyancy frequency.

More processing is required if the line is displaced
significantly. The calculation of displacements is even
more difficult if the lines become magnified or contracted
because second derivatives of the refractive index become
significant (in which case a shadowgraph becomes the
more useful, if qualitative, tool). The method breaks
down entirely, as within the valleys of the model hills in
Figure 10.3b, when the lines blur due to three-dimensional
mixing.

The examination of an image of lines provides a
relatively easy method to calculate small vertical dis-
placements in an image and hence �N2. But a far
more informative, though computationally more inten-
sive, application uses an image of dots [Dalziel et al.,
2000]. For example, Figure 10.4 shows a qualitative syn-
thetic schlieren image produced with a beam of internal
waves from an oscillating cylinder that passes in front of
an image of regularly spaced black circles on a white back-
ground. The difference image is shown, analogous to that
in Figure 10.3.

The cat-eye-like patterns have a black portion near the
center of the dot surrounded on two sides by white, indi-
cating how the dot shifted both horizontally and verti-
cally as a result of internal waves passing between the
camera and image. The angle and eccentricity of the
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Figure 10.4. Pattern of internal waves generated by an oscil-
lating cylinder in the upper left-hand corner as visualized by
qualitative synthetic schlieren applied to a pattern of equally
spaced dots behind the tank. Adapted from Figure 7c of Dalziel
et al. [2000].

resulting elliptical disturbance give both components of
the perturbation density gradient. Multiplying by −g/ρ0,
as in equation (10.9), the perturbation density gradient
may be recast in terms of the perturbation squared buoy-
ancy frequency: (�N2

x, �N2
z) ≡ −(g/ρ0)∇ρ.

Alternately, if the image of dots is randomly distributed,
then particle image velocimetry techniques can be used
to measure horizontal and vertical displacements of por-
tions of the image [Dalziel et al., 2000]. Assuming the dis-
turbance in the ambient is uniform along the line of sight,
each displacement field can be used to find the perturba-
tion density gradient. This can be integrated to compute
the perturbation density field, as shown in Figure 10.5.

10.3.2. Separating Up from Down and Left from Right

A powerful analysis tool related to Hilbert transforms
can be used to distinguish upward from downward propa-
gating internal waves and simultaneously distinguish left-
ward from rightward propagating waves [Mercier et al.,
2008]. This can be applied to vertical or horizontal time
series constructed from simulations, in situ observations,
and laboratory experiments. Whether spanwise uniform,
axisymmetric, or fully three dimensional, the method can
distinguish propagation direction in the spatial compo-
nent of the time series. Its application will be discussed
here in the context of internal waves generated by an
oscillating cylinder.

Consider Figure 10.6, which shows the �N2 field com-
puted using synthetic schlieren for an oscillating cylinder
experiment. Imagining a Cartesian grid superimposed on
the wave field with the origin at the center of the dis-
turbance, the four arms of the cross consist of upward
propagating waves emanating rightward and leftward in
the first and second quadrants, respectively, and of down-
ward propagating waves emanating leftward and rightward
in the third and fourth quadrants, respectively. Hilbert
transforms can extract each arm of the cross, as shown in
Figure 10.7.

In application, the method does not formally com-
pute the Cauchy principle value integral associated with a
Hilbert transform. Instead, it employs filtering of Fourier
transform images, specifically those of time series of the
disturbances. For example, consider a synthetic schlieren
employing an image of horizontal black-and-white lines
behind a tank. During the evolution of a spanwise-
uniform disturbance, one can compute �N2(x, z, t), in
which z is vertical, x is the along-tank coordinate, and t is
time. Fixing an arbitrary horizontal location X , one can
construct the vertical time series �N2(z, t; x = X). Taking
the double fast Fourier transform first in t and then in z
gives the complex series coefficients ̂�N2(kz, ω), in which
kz is the vertical wave number and ω is the frequency.

To extract upward propagating disturbances, we use the
fact that the group velocity of internal waves is positive
if the vertical wave number is negative. So we set ̂�N2

to zero if kz is positive and leave the field untouched
otherwise. An inverse Fourier transform then produces
a filtered field �N2↑(z, t; x = X) with only upward prop-
agating disturbances. This process can be repeated at
different horizontal locations until the entire evolution
field of upward propagating disturbances is reproduced:
�N2↑(x, z, t).

We can similarly extract rightward propagating waves
by Fourier transforming horizontal time series at succes-
sive z = Z, setting the coefficients of negative horizontal
wave numbers to zero and then inverse transforming. The
result of applying this to �N2↑, for example, gives the up
and rightward wave beam shown in the top-left panel of
Figure 10.7.

10.3.3. Partial Transmission and Reflection

The use of the Hilbert transform method described
above has proven to be particularly useful in the study of
internal wave propagation in nonuniformly stratified fluid.
The intuitive understanding of their propagation is based
upon ray theory, which assumes the small-amplitude
wavepackets are quasi-monochromatic and that the back-
ground varies slowly compared to the wavelength [e.g.,
see Lighthill, 1978; Sutherland, 2010]. In particular, in a
stationary fluid this predicts that waves reflect from a level
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(a) (b)

(c)

Figure 10.5. Quantitative synthetic schlieren applied to the circumstance shown in Figure 10.4, in which (a) the horizontal
displacement of dots behind the tank is used to compute the (assumed spanwise-uniform) horizontal perturbation density gradient
of fluid in the tank, as indicated by intensity of the gray scale. (b) Vertical dot displacements are used to compute the vertical
density gradient. (c) The two components of the density gradient are integrated to find the perturbation density field. Reproduced
from Figure 13 of Dalziel et al. [2000].

where the background buoyancy frequency is less than the
wave frequency.

Following a theoretical approach analogous to that
used in thin-film optics for light or in quantum mechan-
ics for electrons, Sutherland and Yewchuk [2004] showed
that internal waves can partially transmit (i.e., “tunnel”)
through a weakly stratified layer provided it is thin com-
pared to the horizontal wavelength of the incident waves.
For piecewise constant profiles of the background buoy-
ancy frequency, they predicted the transmission coeffi-
cient T as a function of the relative frequency of the waves,
ω/N0, and their relative horizontal wave number kxL in
which N0 is the far-field buoyancy frequency and L is the
depth of the thin stratified layer with buoyancy frequency

N1. The predictions are shown in Figure 10.8 for the cases
of an unstratified layer, a weakly stratified layer, and a
strongly stratified layer.

Counter to intuition based upon ray theory, one sees in
particular that waves can partially reflect from a strongly
stratified layer even though their frequency is always
smaller than the background buoyancy frequency.

Of course, the phenomenon is well known in optics.
Indeed, Mathur and Peacock [2010] made the analogy
between internal waves and light showing that they behave
like a Fabry-Perot multiple-beam interferometer. The
resulting resonance of internal waves in a localized region
of enhanced stratification was demonstrated in laboratory
experiments, shown in Figure 10.9.
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Figure 10.6. Change in the background squared buoyancy fre-
quency (�N2) due to internal waves generated by an oscillating
cylinder, as measured by quantitative synthetic schlieren. The
left image shows a snapshot of the �N2 field; the right image
shows the amplitude envelope of the wave beams. Reproduced
from Figure 2 of Mercier et al. [2008].

The transmission of a small-amplitude wavepacket
through arbitrary stratification and background flow
can be computed through the solution of the Taylor-
Goldstein equation [Nault and Sutherland, 2007, 2008].
These results were compared with laboratory experiments
of internal waves incident upon a pycnocline [Mathur
and Peacock, 2009] and of internal wave beams incident
upon a weakly stratified layer [Gregory and Sutherland,
2010]. Using the Hilbert transform method, the incident,
reflected, and transmitted waves could be distinguished
and so transmission and reflection coefficients could be

computed. Theory was found to be consistent with the
experiments, but there was great sensitivity of the pre-
dicted transmission coefficient to the details of the strati-
fication. For example, referring to Figure 10.8b with ω �
0.8N, one sees that the transmission coefficient increases
rapidly from 0.4 to 1 as kxL increases from 0.7 to 1. And
so, uncertainty in the measurement of kx greatly increases
the uncertainty in the predicted transmission. Likewise,
with smooth N2 profiles, the predicted transmission coef-
ficient sensitively depends upon the smoothness of N,
particularly if the incident wave frequency is close to the
minimum value of N [Gregory and Sutherland, 2010]. For
those intending to use theory to predict internal wave
transmission, these experiments emphasize the impor-
tance of performing an error analysis for both incident
internal wave properties and the structure of the ambient.

10.4. NON-SPANWISE-UNIFORM
DISTURBANCES

The quantitative uses of synthetic schlieren described
above assumed that any disturbances in the stratified fluid
were uniform across the width of the tank. With this
assumption, it was straightforward to relate displacements
of images to changes in stratification through equation
(10.10). It was likewise trivial to invert this equation and so
infer changes in the stratification knowing the measured
displacements, as in equation (10.11).

If disturbances are not spanwise uniform, one can
still use Snell’s law to write down expressions for the
apparent displacement of an image due to light passing
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Figure 10.7. The four arms of the cross shown in Figure 10.6 determined by Fourier implementation of the Hilbert transform.
Reproduced from Figure 3 of Mercier et al. [2008].
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Figure 10.8. Predicted transmission coefficient for monochro-
matic internal waves of frequency ω and horizontal wave num-
ber kx incident upon a region of depth L where the ambient
buoyancy frequency is N1 instead of N0. Adapted from Figure
1 of Sutherland and Yewchuk [2004].

through fluid with known varying density (hence with
known varying refractive index). The challenge is to invert
this formula to find the change in stratification for given
observed displacements.

For axisymmetric disturbances about a vertical axis,
the procedure amounts to inverting a square matrix to
determine ∇ρ from observed displacements of an image.
For fully three-dimensional disturbances, tomographic
inversion techniques are needed to reconstruct ∇ρ from
displacements observed from multiple perspectives.

10.4.1. Axisymmetric Synthetic Schlieren

We consider the simplest case of reconstructing �N2

from observed vertical displacements of an image,
�z [Onu et al., 2003]. First we consider the vertical

displacements at a fixed time and at a fixed height, so
that �z(x) is taken to be a function only of the along-
tank distance x. We seek the corresponding value of
�N2(r), which is assumed to be axisymmetric, varying
with radius r.

The inversion problem begins with representing the
along-tank direction by n + 1 discrete points xi = i dx
for i = 0, . . . , n and by discretizing the radial disturbances
by concentric rings of outer radius rj = (j + 1/2) dr. So
that the inversion problem is well posed, we take dr ≡ dx
and we set j = 0, . . . , n, in which j = 0 signifies the inner-
most circle. The correspondence of the x and r coordinate
systems is shown in Figure 10.10.

We assume that �N2 is constant within each annulus in
the central circle. And so we denote (�N2)0 = �N2 for
0 ≤ r < dr/2, (�N2)1 = �N2 for dr/2 ≤ r < 3 dr/2,
(�N2)2 = �N2 for 3 dr/2 ≤ r < 5 dr/2, etc. Outside the
outermost ring we assume the ambient is undisturbed so
that �N2 = 0.

We now consider the path of light passing in the y direc-
tion from the far side of the tank through the disturbance
field to the side of the tank nearest the camera (i.e., from
top to bottom of the schematic in Figure 10.10).

Given values of �N2 in each ring, we integrate equa-
tions (10.2) and (10.5), summing the discretized equa-
tions to determine the vertical position of light, z(y),
as it crosses each annulus. Doing so requires computing
in advance the distance dyij that light from location xi
crosses the jth annulus (with the zeroth “annulus” being
the central circle). Although they could be computed ana-
lytically, these geometric distances are straightforwardly
determined by a numerical algorithm.

The result of the forward problem is a matrix set of
equations,

−→
�z = G

−−→
�N2, (10.12)

in which
−→
�z is the transpose of (�z(0), �z(x1), . . . ,

�z(xn)),
−−→
�N2 is the transpose of ((�N2)0, (�N2)1, . . . ,

(�N2)n), and G is a square matrix composed of the
distances dyij and coefficient γ defined by (10.6).

Inverting G, we can then determine the disturbance field
knowing vertical displacements along a horizontal line:

−−→
�N2 = G−1 −→

�z. (10.13)

If the image is placed well behind the tank, the compo-
nents of G are somewhat more complicated because one
must consider the angle at which light enters the tank from
the image as well as the vertical displacement of light. The
extra terms may be added to components of G, akin to
the inclusion of the second term in equation (10.10) for
the spanwise-uniform problem [Onu et al., 2003].

Note that computing �N2(r) need only be done using
image displacements rightward of the center of the dis-
turbance. Independently, one can compute �N2(r) using
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Figure 10.9. Schlieren image (color) showing the vertical velocity field associated with incident internal waves in nonuniformly
stratified media partially transmitting (indicated by T) and reflecting (indicated by R) with partial trapping in a region of locally
enhanced stratification for 0.27 m � z � 0.33 m. The profile of the background stratification is shown on the left and transmission
spectra are shown on the right for waves with frequencies indicated as the vertical lines through the buoyancy frequency profile
shown (a). Adapted from Figure 3 of Mathur and Peacock [2010].
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Figure 10.10. Discretization used to represent apparent dis-
placements in an image behind a tank to axisymmetric dis-
turbances within the tank. The disturbances are represented
in terms of changes to the squared buoyancy frequency �N2,
which is assumed constant on annuli of width dr = dx, in which
dx is the horizontal (e.g., pixel) resolution of the observed
vertical displacements �z of the object image.

image displacements leftward of center. Thus, comparing
right and left gives a check on the accuracy of the assump-
tion that the disturbance field was indeed axisymmetric.

Of course, the process of computing �N2 at a particular
height can be repeated at different heights so as to recon-
struct a “snapshot” of �N2(r, z). If the image is of dots
instead of lines, one can compute horizontal as well as
vertical components of the density gradient through this
methodology.

An early application of axisymmetric schlieren exam-
ined the internal wave field surrounding a vertically oscil-
lating sphere in uniformly stratified fluid [Onu et al., 2003;
Flynn et al., 2003]. For example, Figure 10.11a shows the
observed apparent vertical displacement of an image once
the sphere had oscillated three times. No data were com-
puted in the lower left-hand corner where the image was
obscured by the sphere. The corresponding �N2 field is
shown in Figure 10.11b. As anticipated by theory, the
along-beam amplitude decayed rapidly with distance from
the center of the sphere as the conical wave beam expanded
radially about the z axis. The theory predicted well the
amplitude of the wave cones provided the sphere was suf-
ficiently small (of radius 1.9 cm). But in experiments with
a sphere of radius 3.2 cm, theory overpredicted the ampli-
tude of the �N2 field by as much as double, presumably
because it neglected dynamics occurring within the viscous
boundary layer surrounding the sphere [Flynn et al., 2003].

This observation reveals a particularly useful aspect of
the use of schlieren. Although the amplitude decays, the
horizontal extent of the disturbance widens with distance
from the origin. As a result, the vertical displacement
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Figure 10.11. (a) Apparent vertical displacement �z(x, z) of horizontal lines in an image behind a tank in which a sphere (situated
to the bottom left) oscillates in uniformly stratified fluid. (b) Corresponding change in squared buoyancy frequency �N2(r, z) due
to internal waves computed through axisymmetric synthetic schlieren. Adapted from Figures 2b and 4a of Onu et al. [2003].

signal does not weaken with distance away from the
source. Indeed, the value of �z in Figure 10.11a is largest
near the top right-hand corner of the image. Hence,
schlieren can extract signals over noise where in situ
probe measurements or attempts to observe the motion
of embedded particles might fail.

Since the development of the technique, it has been used
to measure the laminar wake behind a falling sphere [Yick
et al., 2007] and internal waves above a plume in a strati-
fied fluid [Ansong and Sutherland, 2010]. The latter case
provided a model for internal wave generation by con-
vective storms through the mechanical oscillator effect, in
which the repeated rise and descent of cloud tops provide
a forcing similar to that of an oscillating body.

10.4.2. Inverse Tomography

If the disturbance is fully three dimensional, then the
problem of using synthetic schlieren to reconstruct the
density gradient field from observed displacements of a
single image is ill posed: Without invoking symmetry, it is
impossible to reconstruct a three-dimensional object from
its shadow. With multiple perspectives, however, it is pos-
sible to reconstruct and approximate the structure of the
disturbance. In the medical use of magnetic resonance
imaging (MRI), the method of tomographic reconstruc-
tion is well established. Making use of refractive index
variations with air temperature, tomographic inversion
has been used to measure the density of a supersonically
expanding jet [Faris and Byer, 1988] and of two interacting
jets [Goldhahn and Seume, 1988]. The latter was the first to
employ the methodology of synthetic schlieren, recording
the apparent displacement of an image of random dots,
to determine the displacement of light rays.

Two approaches have since been taken to apply
tomographic methods for the measurement of internal
waves using synthetic schlieren. The Fourier-convolution
approach of Faris and Byer [1988] and Goldhahn and
Seume [1988] was used by Hazewinkel et al. [2011] in
their study of internal wave attractors in a parabolic
basin. The experiment itself was an extension of ear-
lier studies into the formation of internal wave beams in
spanwise-uniform, nonrectangular domains [Maas et al.,
1997; Hazewinkel et al., 2008]. Because internal waves at
a given frequency propagate at a fixed angle to the ver-
tical, sloping sidewalls in the domain tend to focus the
disturbances into a beam whose path effectively acts as an
“attractor” for internal waves [Maas and Lam, 1995].

When a sphere was oscillated in stratified fluid within a
paraboloidal basin, looking through the tank at different
angles around the horizontal revealed attractor-like pat-
terns in the observed displacement of images behind the
tank. Four such images are shown in Figure 10.12. The
information in these and several more images taken at dif-
ferent perspectives were combined through a convolution
of their Fourier decompositions. The inverse transform of
the result revealed the three-dimensional structure of the
attractor, as shown in Figure 10.13.

A different approach follows that of the matrix inver-
sion method used to measure axisymmetric disturbances
[Decamp et al., 2008]. At a fixed vertical level the observed
image displacements could be represented by a vector with
2n entries, in which n is the number of pixels and the
value is doubled to account for horizontal as well as ver-
tical displacements. The perturbation density field (from
which the density gradient is computed) could be dis-
cretized either in Cartesian or polar coordinates involving
N ≡ nx × ny or N ≡ nr × nθ points, respectively. For
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Figure 10.12. Image displacements recorded by different perspectives looking horizontally through a paraboloid filled with uni-
formly stratified fluid. The internal waves are generated by an oscillating sphere situated eccentrically near the surface. Reproduced
from Figure 2 of Hazewinkel et al. [2011].
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Figure 10.13. Tomographic reconstruction of internal wave-
field inside a parabolic domain computed from many views
of image displacements such as those in Figure 10.12. Repro-
duced from Figure 4a of Hazewinkel et al. [2011].

localized disturbances, the latter approach was found to
be more effective.

The forward problem can thus be written as a coupled
set of 2n equations in N unknowns. This is cast in matrix
form analogous to equation (10.12):

−→
� ≡

(−→
�xT ,

−→
�zT

)T
= G �ρ, (10.14)

in which the differentiation operators acting on elements
of ρ to give ∇ρ are buried inside the components of G,

which is a 2n — N rectangular matrix. The resolution of
the disturbance is chosen so that there are more unknowns
than equations. The typical method to solve this system
of equations is to multiply through by the transpose, GT ,
thus recasting the problem as N equations in N unknowns.
Because the N—N sparse matrix GT G is singular, it is typ-
ical to shift its eigenvalues by a so-called regularization
parameter μ [Zhdanov, 2002]. Hence, the forward problem
is written

GT−→
� =

(
GT G + μI

)
�ρ, (10.15)

in which I is the identity matrix.
Rather than compute the inverse of the matrix multi-

plying �ρ on the right-hand side of (10.15), it is efficient
to solve iteratively using the biconjugate gradient method
[Golub and van Loan, 1996].

This approach was tested against idealized disturbances
by Decamp et al. [2008], who showed that a polar grid is
best used provided the number of sectors is not a multiple
of the number of perspectives. Even with just six per-
spectives, a cosine-times-Gaussian disturbance was well
reproduced on a polar grid with 33 sectors and 40 rings.

Applying this method to internal wave fields generated
in the laboratory has proved challenging in part because
of the requirement to have multiple perspectives. In the
work of Hazewinkel et al. [2011], the tank had curved
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sidewalls whose influence upon the path of light rays could
be accounted for. In attempts to study non-axisymmetric
waves generated (e.g., by a horizontally towed object) in
a square tank, at most two perspectives at 90◦ might
be recorded simultaneously, each with a camera on one
side and the image on the other. To gain more perspec-
tives, the experiment must be repeated but the generation
mechanism reoriented within the tank to give the cam-
eras a different perspective. This method requires perfect
repeatability. Small changes can lead to large errors in the
computation of ∇ρ.

10.5. OTHER ADVANCES

Thus far we have focused upon the use of schlieren to
examine internal waves in the laboratory. Here we mention
other techniques used to generate and analyze internal
waves.

10.5.1. Particle Image Velocimetry

Particle image velocimetry is now a well-established
method used in the laboratory to measure flow fields
nonintrusively. In this method, small particles are illu-
minated by a laser light sheet. Their displacements (or,
more precisely, displacements of patches of particles in
a window) are tracked between pulses of the laser. The
technique has revolutionized laboratory experiments by
providing a nonintrusive method that measures velocity
at all points in the plane of the light sheet [Fincham and
Spedding, 1997]. Using an oscillating mirror, one can also
make multiple parallel light sheets that sequentially illumi-
nate on a fast (typically microsecond) time scale [Fincham,
2006]. Thus the flow field can be reconstructed in three
dimensions to within the resolution set by the separation
between successive light sheets and the digital camera.

Using PIV in the study of internal waves poses addi-
tional challenges. Because light bends as it passes through
stratified fluid, the position of particles in the flow can be
misrepresented [Dalziel et al., 2007]. One can try to elim-
inate particle distortions by adding another fluid to the
ambient (e.g., alcohol) that cancels the refractive index
change due to salinity, but this can also lead to problems
with double diffusive behavior.

Without resorting to adding refractive index matching
fluids, schlieren can be used to predict the distortion and
so provide a correction to the digitized image of particles
before they are processed to compute displacements.

For example, in the study of solitary waves by Dalziel
et al. [2007], the direct application of PIV was hindered
by distortions resulting from the sharp density gradient at
the interface between the fresh and underlying salty water.
Figure 10.14 shows the smearing and significant apparent
particle displacement at a sharp density gradient. This is

Figure 10.14. Image of random dots distorted by strong stratifi-
cation at a density interface in an approximately two-layer fluid.
Reproduced from Figure 6c of Dalziel et al. [2007].

not due to the vertical motion of the wave. It results from
photons between the laser light sheet and observer being
deflected as they pass through the interface.

Dalziel et al. [2007] addressed the issue by using
schlieren to measure the density gradient and then using
this information to correct for the apparent in situ parti-
cle displacement. The experimental configuration strobed
between the camera recording the positions of particles in
a laser light sheet in the fluid and it recording images of
random dots on a screen behind the tank. This effectively
rendered the schlieren and PIV measurements simultane-
ous. The result is shown in Figure 10.15. The corrected
PIV image gives values of velocity and the schlieren mea-
surements predicted the density. Importantly, the com-
bined results measured the gradient Richardson number
and so assessed the stability of internal solitary waves.

If the stratification is not too strong and disturbances
in the fluid are not too large, then the distortion due
to refractive index changes can be ignored and PIV can
be applied directly. This method was used successfully in
the measurement of internal waves generated by oscil-
latory flow over cylinders [Zhang et al., 2007] spheres
[King et al., 2009] and a Gaussian-shaped hill [Echeverri
et al., 2009]. In these cases the distortions due to isopycnal
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Figure 10.15. Combined PIV-schlieren examination of the passage of an internal solitary wave of depression in an approximately
two-layer fluid. (a) Original velocity field computed using PIV superimposed on vorticity. (b) Apparent velocity resulting from
distortions at density interface superimposed on background image of random dots. (c) Corrected displacements that account for
strong density gradient at the interface superimposed on false color image of particles in the tank. (d) Corrected velocity field
superimposed on contours of density. Reproduced from Figure 12 of Dalziel et al. [2007]. For color detail, please see color plate
section.

displacements were not so large as to require corrections
based upon schlieren.

An example of the use of PIV to measure internal
wave amplitudes is shown in Figure 10.16. Here the
color contours and arrows show the relative velocity field
associated with internal waves generated when a Gaussian
hill oscillated horizontally back and forth with maximum
speed U . These are represented in a frame of reference
moving with the hill, being equivalent to maximum flow
rightward over the hill. In experiments (top images),
the velocity could only be measured to the right of the
hill. The structure of the beam is well reproduced by
simulations (middle images) and theory, which predicts
the far-field behavior (bottom images). This is true in
subcritical cases (right), for which the slope of the wave
beam is larger than the maximum slope of the hill, and

in supercritical cases (left), for which the wave beam is
tangent to the hill near its crest. The simulated amplitudes
are smaller than what is observed, however. This can
be attributed, in part, to the difficulty in capturing the
viscous-dominated processes that occur in the generation
region where the flow due to the waves moves along the
hill slope. Coupling the nearly inviscid far-field dynamics
with the viscous boundary layer dynamics remains an
outstanding theoretical challenge.

10.5.2. “Fluo-Line” Technique

Laser-induced fluorescence is now frequently used in
laboratory experiments to measure concentrations of
fluorescent dye in the plane of a laser light sheet.
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Figure 10.16. Experimental measurements (top), numerical results (middle), and theoretical predictions (bottom) of internal waves
generated by oscillatory flow over a Gaussian hill in cases where the frequency of oscillation is subcritical (left) and supercritical
(right). Reproduced from Figure 2 of Echeverri et al. [2009].

Consequently, this can be used to assess mixing and trans-
port in fluids.

The technique has been used somewhat differently in
the study of internal waves generated by a moving sphere
in uniformly stratified fluid. Following the technique
originally devised by of Hopfinger et al. [1991], Voisin
et al. [2011] (see also Ermanyuk et al. [2011]) made thin,
evenly spaced horizontal dye lines by soaking threads with
fluorescein dye and slowly dragging them horizontally
through a tank filled with uniformly stratified fluid. This
created very thin markers of isopycnal surfaces that were
clearly revealed as a sequence of lines in a vertical plane
illuminated by a laser light sheet. The position of each line
could be determined to subpixel accuracy by assuming a
Gaussian vertical distribution of intensity.

An example of the displacement computed from suc-
cessive dye lines in a plane passing through the center of
a horizontally oscillating sphere is shown in Figure 10.17.
Even where the displacement of lines is not obvious to the
naked eye, they are clearly discerned by the digital analysis
technique.

10.5.3. Novel Wave Generator

Typical methods for generating internal waves in the
laboratory include oscillating a rigid body at constant
frequency or towing a body horizontally at a constant
speed. The former has the disadvantage that it creates four
wave beams, as in Figure 10.2, or at least two if oscillated
against a side boundary. Towed objects along a top or bot-
tom boundary produce unidirectional waves, but towing
piles up the stratified fluid ahead of the object forming
what is called a “columnar mode.” As a result, the endwall
of the tank can influence the dynamics of flow over the
obstacle [Baines, 1995].

A new mechanism for the generation of internal waves
avoids these deficiencies [Gostiaux et al., 2007; Mercier
et al., 2010]. In it vertically stacked flat plates periodically
move back and forth providing forcing on the stratified
fluid from the side. If the forcing is driven by a rotat-
ing spiral camshaft, as in Figure 10.18, the plates effec-
tively move collectively as a vertically propagating wave
whose vertical wavelength and amplitude are set by the
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Figure 10.17. (a) Dye lines displaced to the right of a sphere oscillating horizontally about the origin in uniformly stratified fluid.
(b) Computed displacement of the lines relative to the oscillating amplitude A. Reproduced from Figure 20 of Voisin et al. [2011].

Figure 10.18. Camshaft and schematic cross section showing
how the rotation of the shaft results in the back-and-forth oscil-
lation of flat plates. Reproduced from Figure 2 of Gostiaux et al.
[2007].

geometry of the camshaft and whose frequency is set by
the rotation rate.

The mechanism thus acts like towed topography except
that the translation of the periodic boundary is vertical.
It does not generate columnar modes upstream. Nor
is their boundary layer separation behind their crests.
Because the boundary displacements are horizontal,

large-amplitude forcing is less inclined to result in mixing
of the stratified fluid.

This technique has been used in a variety of circum-
stances that have revealed important processes in the
evolution of internal waves.

Satellite altimetry [Egbert and Ray, 2000] has recently
been employed to observe the generation of oceanic
internal waves by tidal flow over the continental margin
and submarine sills. These have revealed the generation of
low vertical-mode internal waves, associated with undula-
tions of the thermocline. As well as theory and numerical
simulations [Balmforth et al., 2002; Llewellyn-Smith and
Young, 2002; Legg, 2004], laboratory experiments have
been performed to examine the generation of internal
waves by Gaussian hill that oscillated horizontally back
and forth with fixed frequency and amplitude [Peacock
et al., 2008; Echeverri et al., 2009].

An outstanding question is how such low modes trans-
fer their energy to smaller scales (high modes) so that they
ultimately dissipate and mix the ocean.

The laboratory experiments by Peacock et al. [2009]
examined one mechanism through which this may occur.
When a low-mode internal wave is incident upon topog-
raphy, the sloping sides of the hill refocus the energy into
beams. This is shown in Figure 10.19.

The waves are created using the mechanism of oscil-
lating stacked horizontal plates using the wave generator
mechanism described above. Here, however, the rotating
shaft is not spiral but is constructed with a vertically



�

�

“vonLarcher-Driver” — 2014/10/11 — 11:01 — page 209 — #17
�

�

�

�

�

�

INTERNAL WAVES IN LABORATORY EXPERIMENTS 209

345
0

10

20

30

z 
(c

m
)

z 
(c

m
)

40

50

0
400 420 440 460 480 500 520 540 560

0

0.25

0.5

0.75

1

1.25

10

20

30

40

50

(a)

(b)

365 385 405 425

x (cm)

x (cm)

445 465 485 505
0

0.25

0.5

0.75

1

Figure 10.19. (a) Left-to-right propagating vertical mode 1 internal waves generated using horizontally oscillating flat plates, as
in Gostiaux et al. [2007]. (b) Internal wave beam downstream of hill placed in front of the oncoming mode 1 waves. Adapted from
Figures 2a and 3a of Peacock et al. [2009].

sinusoidal variation in a fixed plane so that rotating the
shaft produces a mode 1 wave in a uniformly stratified
medium [Mercier et al., 2010]. In the absence of topog-
raphy, PIV is used to reveal the mode 1 wave structure,
which at one point in the phase exhibits forward motion
at the surface and bottom and retrograde motion at mid
depth. The flow directions reverse a half period later.

When this incident wavefield encounters a Gaussian hill,
the structure of the wavefield changes significantly down-
stream. Just as an oscillating body creates internal wave
beams in a stratified fluid, oscillations resulting from the
incident low-mode internal waves create beamlike struc-
tures downstream. Thus energy from low modes is effi-
ciently converted into higher modes. These ideas have
recently been extended to the examination of internal
waves incident upon the continental shelf [Klymak et al.,
2011].

10.6. DISCUSSION AND CONCLUSIONS

Several technological innovations have provided new
tools for the study of internal waves in the laboratory.
Here we have focused mostly upon the use of synthetic
schlieren as a nonintrusive way to measure perturbation
density gradients due to internal waves in continuously

stratified media. When used to examine spanwise-uniform
and axisymmetric disturbances, it has provided a useful
check on the limitations of linear, inviscid theory, particu-
larly with respect to the generation of internal waves from
oscillating and steadily translating bodies.

Just as MRI revolutionized medicine, inverse tomog-
raphy for schlieren has the potential to measure fully
three-dimensional disturbances nonintrusively and con-
tinuously in time, provided the disturbances do not involve
turbulent mixing and, hence, random scattering of light.
However, several logistical obstacles remain to be over-
come. In order to reconstruct relatively fine scale fea-
tures, multiple perspectives from many angles must be
recorded simultaneously or in rapid succession. But syn-
thetic schlieren requires looking through a fluid at an
object image on the opposite side. To have a large num-
ber of perspectives one must devise a method in which
multiple cameras are not obstructed by multiple object
images. Alternately, like MRI, one could construct a sys-
tem in which the camera and object image rotate about
a cylindrical tank on a fast time scale compared with
that of internal waves. After image correction for the
curvature of the tank there would remain the theoreti-
cal challenge to reconstruct the three-dimensional distur-
bance field from the images recorded continuously from
changing perspectives.
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PIV has provided another powerful tool for the nonin-
trusive examination of internal waves. It has the advantage
of measuring in situ particle displacement, and hence
velocities, in the plane of a laser light sheet. With multiple
light sheets, the fully three-dimensional velocity field can
be reconstructed within the spatial and temporal resolu-
tions of the camera and laser.

Because light is significantly distorted where the refrac-
tive index changes due to rapid salinity changes, PIV is
less effective at examining processes at density interfaces.
However, synthetic schlieren and PIV can work in tandem,
the former measuring density perturbations and using this
information to predict how to correct the light distor-
tion so that actual particle displacements can be measured
more accurately through PIV.

To demonstrate the applications of schlieren and PIV,
we have focused upon the phenomena of wave generation
and propagation in nonuniform media. The dynamics of
internal wave breaking with consequent mixing remains
an outstanding challenge for experimentalists as well as
theoretical and numerical modelers.

For example, in a process known as parametric subhar-
monic instability (PSI), internal waves resonantly transfer
energy to subharmonic internal waves which may overturn
and break or transfer energy to smaller-scale waves. PSI
has been studied in laboratory experiments in which the
displacement of horizontal dye lines were used to observe
the evolution of resonantly excited mode 1 waves in a tank
with square vertical cross section [Benielli and Sommeria,
1998]. The idealized numerical simulations of MacKin-
non and Winters [2005] predicted that such resonance of
internal tides might occur at 28.9◦N latitude, which is
the northern limit where subharmonic waves exist with
frequencies lower than the inertial frequency f . Whether
PSI actually occurs as catastrophically as they predicted
in the ocean is presently under investigation. Laboratory
experiments using the new technologies of schlieren and
PIV may also provide new insights into the onset and
energetics of PSI.

With increasing observations of internal solitary waves
in the ocean, there is renewed interest in examining this
phenomenon in the laboratory [Grueetal., 2000;Carretal.,
2008]. Although synthetic schlieren can work together with
PIV to help correct apparent particle displacements within
the flow [Dalziel et al., 2007], it is not ideally suited to the
study of interfacial waves. This is because the large curva-
ture of the density field at the interface bends light to such a
degree that an image behind the tank is distorted too much
to compute apparent displacements.

Of course, one can track the motion of the interface by
injecting dye there while the ambient is being established.
The shadowgraph is also a useful tool. Other more inno-
vative methods include the use of ultrasonic probes, which
measure the interface displacement by recording the travel

time of sound vertically through the ambient between a
transmitter and receiver at a fixed depth straddling the
interface [Michallet and Barthélemy, 1997, 1998].

Oceanographic observations continue to reveal the
diversity and complexity of internal wave dynamics, some-
times inspiring and sometimes inspired by laboratory
experiments. As digital cameras and image analyses con-
tinue to improve, the new techniques of schlieren and PIV
are expected to continue stimulating new insights.
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