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Abstract. We study the analytical solutions of the fractional Boussinesq 
equation (FBE) , which is an effective model for the Fermi–Pasta–Ulam one-
dimensional lattice with long-range couplings. The couplings decay as a power-
law with exponent s, with 1  <  s  <  3, so that the energy density is finite, but s 
is small enough to observe genuine long-range effects. The analytic solutions are 
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obtained by introducing an ansatz for the dependence of the field on space and 
time. This allows the FBE be reduced to an ordinary differential equation, which 
can be explicitly solved. The solutions are initially localized and they delocalize 
progressively as time evolves. Depending on the value of s, the solution is either 
a pulse (meaning a bump) or an anti-pulse ( i.e. a hole) on a constant field for 
1  <  s  <  2 and 2  <  s  <  3, respectively.

Keywords: Fermi-Pasta-Ulam (FPU) model, long-range interactions (LRI) , 
fractional Boussinesq equation (FBE) , non-Galilean invariance
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1. Introduction

The celebrated Fermi–Pasta–Ulam (FPU) model [1, 2] consists of a one-dimensional 
lattice of identical particles interacting through a nearest neighbour nonlinear poten-
tial. The displacements of the particles with respect to their equilibrium positions are 
described by the function of time ui(t), with i the label of the lattice site. The prob-
lem under investigation was a central one in the foundations of statistical mechanics: 
relaxation to microcanonical equilibrium. The lack of relaxation turned the problem 
into a ‘paradox’, which led to a long series of investigations that were summarized in 
50th anniversary volumes [3, 4]. The FPU paper also proved to be seminal in nonlinear 
dynamics, leading to the pioneering work on solitons in the Korterveg–de Vries equa-
tion by Kruskal and Zabusky [5] and to the study of integrability of nonlinear lattices 
[6, 7].

Long-range interactions are ubiquitous in nature, the most common examples 
being gravitational and Coulomb interactions. Recently, long-range interacting sys-
tems have been extensively studied for their, often intriguing, statistical behaviour 
[8–11]. In fact, these systems exhibit inequivalence of ensembles, breakdown of ergo-
dicity, long-lived quasi-stationary states and suppression of chaos, to name just a few 
anomalous phenomena. Due to the paradigmatic importance of the FPU model, it is 
interesting to explore the effect of long-range interactions in this context. Given the 
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presence in this Special Issue of several papers on non-equilibrium statistical mechan-
ics, we think that the FPU model provides an appropriate arena to explore the behav-
iour of systems that persist out-of-equilibrium for long time depending on the features 
of the interactions.

In this paper we focus on the specific role played by long-range interactions by 
analyzing the dynamical properties of the one-dimensional FPU model appropriately 
modified to include long-range couplings among particles [12, 13]. Particles interact 
through couplings that decay with a power-law of the distance among them. The expo-
nent of the power-law is denoted as s. This model has been also recently studied in 
connection with the problem of anomalous heat conduction in one-dimensional lattices 
[14–16].

We have shown in a previous paper [17] that, in the continuum limit, the model 
can be effectively described by a fractional Boussinesq equation (FBE) in terms of the 
space-time field u(x,t) for small variations of the amplitude. In fact, the presence of 
long-range couplings determines the appearance of nonlocal terms in space in the con-
tinuum equation, where the non-locality is mathematically represented by fractional 
derivatives. Fractional differential calculus, i.e. non-integer derivatives and integrals 
[18–20], is playing a very important role in various fields of science and technology, 
such as elasticity, water waves, quantum mechanics, signal analysis, control theory and 
finance.

We here deal with the problem of determining the solutions of the FBE introduced 
in our previous paper [17]. In order to achieve this target, we introduce an ansatz to 
express the solution in terms of a single variable η = |x|ρ − vt, where ρ is related to the 
power-law decay exponent s. This ansatz generalizes the usual change of frame of the 
Galilean transformation which takes the usual form η = x− vt.

We are able to derive an ordinary differential equation in η which can be explicitly 
solved, providing solutions of the FBE which depend on the parameters of the model, 
in particular on the exponent s. Two classes of solutions emerge depending on the value 
of s: (i) pulse solutions displaying a ‘bump’ over a constant field in the range 1  <  s  <  2; 
(ii) anti-pulse solutions showing a ‘hole’ in a constant field in the range 2  <  s  <  3.

The paper is organized as follows. In section 2 we introduce the α-FPU model with 
long-range interactions and its continuum limit. In section 3 we provide details on the 
study of the fractional derivatives involved in the FBE. The ansatz used to determine 
the solutions is presented in section 4. We determine the exact solutions of the FBE in 
section 5. Concluding remarks are given in section 6.

2. The FPU model with long-range interactions and its continuum limit

The FPU model we consider is a one-dimensional lattice of anharmonic oscillators, each 
with mass m, displacement ui and momentum p i (i denoting the lattice site) and cou-
pled by long-range interactions. The Hamiltonian for the long-range FPU model reads

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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H (ui,pi) =
∑

i

p2i
2m

+
χ

2

∑

j<i

(ui − uj)
2

|a (i− j)|s +
γ

3

∑

j<i

(ui − uj)
3

|a (i− j)|s, (1)

where a is the lattice spacing. We can observe that the two-body coupling is assumed 
to be translationally invariant since it acts between pairs of sites at distance a|i− j|. 
More importantly for our purposes, the coupling decays for large distances as a power-
law with an exponent s. In order for the energy to be extensive, we consider s larger 
than the dimension d where the system is embedded, in this case d  =  1. The lattice sites 
i and j  take all possible negative and positive integer values: i, j = 0,±1,±2, · · ·. We 
consider 1  <  s  <  3 since at s  =  3 the system is supposed to have a typical short-range 
long-time behaviour [17]. The fact that a value of s exists, denoted by s∗, such that for 
s  >  s∗ one retrieves the critical properties of the short-range case (s → ∞) is well stud-
ied in Ising and O(n) models [21, 22]. Notice that the range d  <  s  <  s∗ is often referred 
to as the weak long-range region [23]. In equation (1) we assume also that both the 
harmonic and anharmonic couplings decay with the same exponent. One could study as 
well the case in which the two power-law decay exponents are different [17]. Finally, we 
observe that, since the anharmonic term is characterized by the power 3, the resulting 
FPU model is called α-FPU [24], so that equation (1) corresponds to the Hamiltonian 
of the long-range α-FPU model.

The interaction potential energy has two parts: the second term of the rhs in 
equation (1) is the long-range harmonic interaction, whereas the third term corre-
sponds to the long-range anharmonic interaction. The parameters χ and γ measure the  
strength of the linearity and nonlinearity, respectively, and they can be viewed as 
the linear and nonlinear spring coefficients, respectively. In the following we consider  
the case of positive parameters χ, γ > 0. The parameter s sets then the range of the 
interaction. For s → ∞, the second and the third terms reduce to nearest neighbour, 
short-range, harmonic and anharmonic interactions, respectively, and we return to the 
standard short-range FPU model.

In order to study the dynamical properties, we move to the effective model describing 
the continuum limit of the FPU Hamiltonian (1), where ui(t) → u(x,t). This effective 
model was derived in [17] and the corresponding equation for the field u(x,t) is a frac-
tional differential equation, the FBE, which generalizes to the weak long-range region 
the Bousinessq equation found for the short-range FPU model [25]. We refer to [17] 
for a discussion of the details needed to perform the continuum limit and its range of 
validity, which essentially requires to consider a field u, which is slowly varying. We 
also point out that the long-range FPU model has the merit to allow for a microscopic 
derivation of the fractional differential equation, which is not—as done in other cases—
assumed on the basis of physical considerations.

The FBE for the long-range α-FPU model reads [17]
∂2u (x,t)

∂t2
− gs−1

∂s−1u (x,t)

∂ |x|s−1 − hs−1u (x,t)
[
Ds−1

x− −Ds−1
x+

]
u (x,t) = 0, (2)

where the constants gs− 1 and hs− 1 are given by

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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gs−1 =
χπ

Γ (s) sin
(
s−1
2 π

), hs−1 = − γπ

Γ (s) sin (sπ) (3)

where Γ stands for the Euler-gamma function, and we have set a  =  m  =  1). In the fol-
lowing we are going to take s ̸= 2.

Equation (2) is the equation for which analytical solutions are needed to be found, 
which is the task we deal with in the next sections. The analytical solution then provides 
a guide to the numerical solution of the FPU lattice model, studied in the regime in 
which the continuum limit is a reasonable approximation. Of course, such a compariso n 
is a benchmark for the assessment of the validity of the effective model. Moreover, as 
we point out in the following, the solutions of the effective model may reveal new class 
of solutions, possibly not previously known, and motivate further numerical studies of 
the lattice equations.

3. The fractional chain rule

In order to construct exact solutions, we need to give some details on the action of the 
fractional derivatives appearing in equation (2).

We first observe that the chain rule can be written as

∂α w

∂xα
= σα

∂αζ

∂xα

∂ w

∂ζ
, (4)

in general valid for analytic functions of the form w (x) =
∑∞

m=0 am xm, where am are 
constants. σα is sometimes called fractal index [26] and it has to be further determined. 
It is usually determined in terms of Euler-gamma functions. The reason for studying 
relation (4) is that it can be used to transform the FBE into an ordinary differential 
equation.

To show the validity of (4), we may use the function w(ζ) = ζβ with ζ(x) = xγ 
where β, γ > 0, and the definition of the fractional derivative of non-integer order 
which reads

∂α

∂xα
+

xβ ≡ ∂α

∂xα
xβ =

Γ (1 + β)

Γ (1 + β − α)
xβ−α x > 0, and α > 0. (5)

One gets

Dα
x w(ζ(x)) = Dα

xx
βγ =

Γ (1 + βγ)

Γ (1 + βγ − α)
xβγ−α, (6)

Dα
xζ(x) ≡

∂αζ

∂xα
=

∂αxγ

∂xα
=

Γ (1 + γ)

Γ (1 + γ − α)
xγ−α, (7)

and

∂ w

∂ζ
=

(
β ζβ−1

)
|ζ=xγ = β x(β−1)γ . (8)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Substitution of equations (6)–(8) into equation (4) gives
(

Γ (1 + βγ)

Γ (1 + βγ − α)
− σα

β Γ (1 + γ)

Γ (1 + γ − α)

)
xβγ−α = 0, x > 0. (9)

As a result, we have the condition

Γ (1 + βγ)

Γ (1 + βγ − α)
− σα

β Γ (1 + γ)

Γ (1 + γ − α)
= 0, α,β,γ > 0. (10)

Assuming

σα =
Γ (1 + βγ)Γ (1 + γ − α)

β Γ (1 + βγ − α)Γ (1 + γ)
, (11)

one immediately sees that equation (4) holds. We then conclude that the modified 
chain rule given by equation (4) holds for the correct choice of the fractal index σα. 
We emphasize that the fractal index has to be determined separately in each problem.

Since

∂α

∂ |x|α ≡ − 1

2 cos
(
απ
2

) [Dα
x− + Dα

x+ ] , i.e. Dα
x− ≡ −2 cos

(απ
2

) ∂α

∂ |x|α − Dα
x+.

 (12)
Equation (2) can be rewritten as follows:

∂2u (x,t)

∂t2
− gs−1

∂s−1u (x,t)

∂ |x|s−1 − qs−1u (x,t)
∂s−1u (x,t)

∂ |x|s−1 + hs−1u (x,t)
∂s−1u (x,t)

∂xs−1
= 0,

 (13)
where

qs−1 =
γπ

Γ (s) cos
(
s
2π

). (14)

4. Ansatz for the dynamics

A possible way to construct solutions of equation (13), the one we explore in this paper, 
is to assume that the field u(x,t) depends not on x and t separately, but via a combi-
nation of them defining a new variable η. That is typical when looking for solutions 
having solitonic form, and in that case one puts η = x− vt, as routinely done in study-
ing soliton solutions of nonlinear differential equations [27]. However, despite one can 
certainly investigate such dependence, putting η = x− vt does not reduce the FBE to 
an ordinary differential equation. By inspection one sees that this a direct consequence 
of the fractional derivative, and that in turn it is ultimately caused by the presence of 
the long-range couplings. Moreover, one has a derivative with respect to the modulus 
of the variable x, also in the linear case (γ = 0). Therefore, one is lead to consider the 
following ansatz:

G (η) ≡ u (x,t) , where η = |x|ρ − v t, (15)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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with v a parameter having the dimension [v] = Lρ T−1 and ρ to be fixed. Ansatz (15) 
is often referred to as the fractional complex transform in the context of fractional 
differential equations [29, 30]. Notice that with the ansatz (15) the cone-like structure 
in the (x− t) space defined by η = 0 is no longer a straight line, and this corresponds to 
accelerating or decelerating fields u according the value of ρ. One readily observes that 
to reduce the FBE to an ordinary differential equation one needs to put

ρ ≡ s− 1. (16)
We pause here to comment that the ansatz (15) is less innocent that it may at first 

sight appears. First, it breaks the Galilean invariance, which is broken evidently by the 
initial condition. Second, it involves the space variable x in the form |x|, so that this 
implies that care has to be put on choosing the matching conditions in x  =  0. Moreover, 
to compare with numerical simulations on the lattice one has to choose even in x initial 
conditions for the u. Third, and more important, by considering the ansatz (15) one is 
also assuming that if the u(x,t = 0) at the initial time is not vanishing, also its velocity 
u̇(x,t = 0) is not vanishing. In other words, the ansatz (15) corresponds to a class of 
solutions with certain conditions to be satisfied at the initial time t  =  0.

To further proceed, we observe that it exists a duality between left and right frac-
tional derivatives [28]:

Dα
x+f (x) = Dα

x−f ∗ (−x) with f ∗ (x) = f (−x) .

Then it follows

∂α

∂xα
−
(−x)β ≡ ∂α

∂(−x)α
(−x)β =

Γ (1 + β)

Γ (1 + β − α)
(−x)β−α x < 0,

 (17)
and

∂α

∂ |x|α |x|β = − Γ (β + 1)

Γ (β + 1− α) cos (α2π)
|x|β−α , α ̸= 2 k + 1, k ∈ R.

 (18)
In the case ρ → 2, corresponding to s → 3, we retrieve the well known integer classi-

cal derivative. Using equations (4), (5), (11), (15) and (18) into equation (13) we obtain 
the following ODE:

v2
d2G(η)

dη2
+ g̃s

dG(η)

dη
+ h̃s G(η)

dG(η)

dη
= 0, (19)

where

g̃s ≡ − 2χπ

Γ2 (s) sin (sπ)

and

h̃s ≡
γ π

Γ2 (s) sin (sπ)
.

Integrating equation (19) with respect to η yields

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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v2
dG(η)

dη
+ g̃s G(η) +

h̃s

2
G2(η) + δ0 = 0, (20)

where δ0 is a constant to be later determined using appropriate boundary conditions. 
From equation (20) we can write

∫
dG

δ0 + g̃s G + h̃s
2 G2

= − 1

v2

∫
d η. (21)

The integral on the lhs can be explicitly done

∫
dX

a+bX+cX2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− 2√
−∆

arc tanh
(

b+2 cX√
−∆

)
for ∆ < 0,

− 2
b+cX for ∆ = 0,

2√
∆
arc tan

(
b+2 cX√

∆

)
for ∆ > 0,

 (22)

with ∆ ≡ 4 a c− b2 (see equation (2.172) in section 2.17 of [31]).

5. Solutions of the fractional Bousinessq equation

Using the results of the previous section, via the identification a = δ0, b = g̃s and 
c = h̃s/2, one finds that the considered solution of equation (19) reads

G (η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2 χ
γ +

√
−∆
h̃s

tanh
[√

−∆
2 v2 (η − η0 )

]
∆ < 0,

− 4 χ
γ + 4 v2

h̃s (η−η0)
∆ = 0,

2 χ
γ −

√
∆

h̃s
tan

[√
∆

2 v2 (η − η0 )
]

∆ > 0,

 (23)

where

∆ = 2δ0h̃s − g̃2s =
2 π γ

Γ2 (s) sin (sπ)

[
δ0 −

2 (χ2/γ)π

Γ2 (s) sin (sπ)

]
. (24)

Without any loss of generality we can make the choice η0 = 0.
We have now to fix the boundary conditions. We look for the solutions that satisfy 

the following boundary conditions:
⎧
⎨

⎩

G (η = 0) = A,

G (η → +∞) = C,
 (25)

where A and C are two constants to be later specified. Combining equations (23) and 
(25), it turns out that the solution reads

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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G (η) = 2
χ

γ
+

√
−∆

h̃s

tanh

(√
−∆

2 v2
η

)
. (26)

Equation (26) can be written also as

u (x,t) = 2
χ

γ
+

√
−∆

h̃s

tanh

[√
−∆

2 v2
(
|x|s−1 − v t

)]
, (27)

where we have to specify the parameter δ0 in terms of A and C. One sees that

A ≡ 2
χ

γ
,

with the constant A to be taken positive, in agreement with our choice of considering 
χ and γ positive parameters. Moreover it has to be

C ̸= A.

The point essential for the subsequent discussion is that

C = A+

√
−∆

h̃s

.

Since for 1  <  s  <  2 one has h̃s < 0 and for 2  <  s  <  3 one has h̃s > 0, it follows that 
C  <  A for 1  <  s  <  2 and C  >  A for 2  <  s  <  3

In terms of C, ∆ is given by

∆ = −h̃2
s (C − A)2 < 0,

so that the choice in the top equation of (23) is justified. From this expression for ∆ 
one gets the following value for δ0:

δ0 = − h̃2
s (C − A)2 − g̃2s

2h̃s

. (28)

The behaviour of the function G and therefore of u(x,t) is summarized in figure 1. 
Figure 1(a) and (b) refer to a value of s between 2 and 3. The G(η) is increasing for η 
passing from negative to positive values. In this case A and C have to be both positive, 
with C  >  A. The initial condition u(x,t = 0) has a ‘hole’, to which we may refer as 
an anti-pulse (notice that G has a typical kink-like form). As soon as that t increases 
the field u(x,t) tends to reach the value G(η → −∞), i.e. A− |C − A|, showing the 
delocalization of the initial condition. It is interesting to observe that the values of x 
and t, denoted by x̄ and t̄  such that u(x̄, t̄) = A are defined by the relation η̄ = 0, i.e. 
|x̄|s−1 = vt̄ . Since dx̄/dt̄ = [v1/(s−1)/(s− 1)]̄t(1/(s−1)−1), for 2  <  s  <  3 one sees that the 
velocity decreases and goes to zero for large time, so that the propagation of the hole 
decelerates. At variance figure 1(c)  and (d) refer to a value of s between 1 and 2. The 
G(η) is now decreasing for η passing from negative to positive values. In this case A  >  0 
and C  <  A. The initial condition u(x,t = 0) has a ‘bump’, to which we may refer as a 
pulse (or an anti-kink for the G). When t increases, the field u(x,t) tends to reach the 
value G(η → +∞), i.e. A+ |C − A|, showing also now the delocalization of the initial 
condition. Since dx̄/dt̄ ∝ t̄(1/(s−1)−1), for 1  <  s  <  2 one sees that the velocity increases so 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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that the propagation of the bump accelerates (reaching infinite velocity for s  =  1, which 
represents the mean-field limit).

To conclude, we have to show that the results above do not qualitatively depend on 
the choice of the boundary condition (25). Suppose indeed that one fixes the function 
G in two points η1, η2, with the boundary conditions (25) corresponding to η2 = 0 and 
η1 → ∞. Using (26) one has

G (η1)−G (η2) =

√
−∆

h̃s

[
tanh

(√
−∆

2 v2
η1

)
− tanh

(√
−∆

2 v2
η2

)]
. (29)

Since tanh (a− b) = tanh (a)−tanh (b)
1−tanh (a) tanh (b), one can rewrite equation (29) as follows:

G (η1)−G (η2) =

√
−∆

h̃s

tanh

(√
−∆

2 v2
(η1 − η2)

)[
1− tanh

(√
−∆

2 v2
η1

)
tanh

(√
−∆

2 v2
η2

)]
.

 (30)
Assuming η1 > η2 > 0 one has 0 < tanh

(√
−∆
2 v2 η1

)
tanh

(√
−∆
2 v2 η2

)
! 1, i.e.

1− tanh

(√
−∆

2 v2
η1

)
tanh

(√
−∆

2 v2
η2

)
! 0. (31)

Equation (31) simply implies that the sign of G (η1)−G (η2) depends of the sign of 
√
−∆
h̃s

tanh
(√

−∆
2 v2 (η1 − η2)

)
. With η1 > η2 > 0 as we are assuming, one has

-5 0 5η
1

2

3
G

-5 0 5x
1

2

3

u(
x,

t)

(a) (b)

(d)(c)

-5 0 5η
1

2

3

G

-5 0 5x
1

2

3

u(
x,

t)

Figure 1. Panels (a)–(b): s  =  2.75, with G(η) versus η in (a) and u(x,t) for different 
times t = 0, 2, 4, 6, 8, 10 in (b). The values of A and |C − A| are 2 and 1, respectively. 
Panels (c)–(d): s  =  1.75, with G(η) versus η in (c) and u(x,t) for different times 
t = 0, 0.6, 1.2, 1.8, 2.4, 3 (again with A  =  2 and |C − A| = 1) in (d). v, χ and γ are 
constants of order unity.
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tanh

(√
−∆

2 v2
(η1 − η2)

)
> 0. (32)

One then sees that the sign of G (η1)−G (η2) depends only on the sign of h̃s: since it is 
h̃s < 0 for 1  <  s  <  2 and h̃s > 0 for 2  <  s  <  3 we conclude that indeed

⎧
⎨

⎩

G (η1)−G (η2) < 0, for 1 < s < 2, ⇒ pulse solutions,

G (η1)−G (η2) > 0, for 2 < s < 3, ⇒ anti− pulse solutions.
 (33)

The corresponding behaviour of the solutions of the FBE is represented in figure 2, 
where we confine ourself to the case C  >  0 with A  >  0 (for C  <  0, since A  >  0 one has 
anti-pulse solutions for 1  <  s  <  2). The results are summarized by concluding that for 
any value of s in the range 1  <  s  <  2 one obtains pulse solutions, while in the range 
2  <  s  <  3, one obtains anti-pulse solutions.

6. Conclusions

We have introduced a method which, relying on an appropriate ansatz, allows us to 
obtain exact solutions of the fractional differential equation derived in the continuum 
limit from the FPU lattice with long-range interactions. We are able to provide solu-
tions of the effective fractional Bousinessq equation (FBE) which depend on the param-
eters of the model, in particular on the exponent s. Two classes of solutions emerge 
depending on the value of s: (i) pulse solutions displaying a ‘bump’ over a constant 
field in the range 1  <  s  <  2; (ii) anti-pulse solutions showing a ‘hole’ in a constant field 
in the range 2  <  s  <  3. As time progresses, the analytical solution reveals that both 
the ‘bump’ and the ‘hole’ damp down and, asymptotically at infinite time, the field 

C

A

pulse solutions for 1<s<2

anti-pulse solutions for 2<s<3

Figure 2. Representation of the phase diagram in the (A,C) plane with: (i) for 
1  <  s  <  2 anti-kink solutions for the G, the corresponding counterpart for the field 
u being pulse solutions; (ii) for 2  <  s  <  3 kink solutions for the G, corresponding to 
anti-pulse solutions for the field u.
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becomes constant in space x, showing the delocalization of the initially localized condi-
tion. We have focused our analysis on the α-FPU model, but the method we present 
could be extended to the β-FPU model as well.

On one hand this is a specific property of a certain class of solutions, but on the 
other this could be an indication of the fact that the solutions of the FBE tend in gen-
eral to delocalize in presence of long-range interactions. This is at variance with the 
short-range case where it is well known that a wide class of initial conditions leads to 
the creation of trains of solitons [5, 32].

Our results crucially depend on the ansatz presented in section 4. Numerical solu-
tions of the lattice FPU model with long-range interactions would be needed in order 
to confirm the analytical predictions. In particular, we can already expect that local-
ized solutions become progressively more unstable as soon as s decreases. Preliminary 
numerical investigation indeed do confirm that choosing a solution that is initially local-
ized without initial velocity, one obtains stable solutions as soon as s  >  3 [33]. However, 
the ansatz (15) requires that a suitable initial velocity is considered and to perform a 
proper comparison with analytical results one should appropriately choose the initial 
velocities u̇i at time t  =  0. Work in progress on this point is currently on-going in the 
region 1  <  s  <  3, where large enough sizes of the lattice have to be considered.

Acknowledgments

It is our pleasure to acknowledge helpful conversations with Matteo Gallone, Jonathan 
Pham and Nathan Nkouessi Tchepemen. One of authors, G N B Chendjou, acknowl-
edges the hospitality of the Faculty of Exact and Natural Sciences of Ivane Javakhishvili 
Tbilisi State University of Tbilisi, Georgia, during November 13–26, 2017, where part 
of the work reported here was carried out. The support from the OFID Postgraduate 
Fellowship Programme at ICTP and from the ICTP/IAEA Sandwich Training 
Educational Programme is gratefully acknowledged. The work is supported in part 
by travel grants from PICS CNRS (France), CNR (Italy) and SRNSF (Georgia) Grant 
Nos. 04/01 and 04/24.

References

 [1] Fermi E, Pasta J and Ulam S 1993 Los Alamos Scientific Laboratory Report No. LA-1940 (1955), reprinted in 
The Many-Body Problem: an Encyclopedia of Exactly Solved Models in One Dimension ed D C Mattis 
(Singapore: World Scientific)

 [2] Dauxois T 2008 It is well known that there is a fourth author of the paper, Mary Tsingou Menzel Phys. 
Today 61 55

 [3] 2005 Special issue on the Fermi–Pasta–Ulam problem Chaos 15
 [4] Gallavotti G (ed) 2008 The Fermi–Pasta–Ulam Problem: a Status Report (Lecture Notes in Physics vol 728) 

(Berlin: Springer)
 [5] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
 [6] Hénon M 1974 Phys. Rev. B 9 1921
 [7] Flaschka H 1974 Phys. Rev. B 9 1924
 [8] Campa A, Dauxois T and Ruffo S 2009 Phys. Rep. 480 57
 [9] Campa A, Dauxois T, Fanelli D and Ruffo S 2014 Physics of Long-Range Interacting Systems (Oxford: 

Oxford University Press)
 [10] Levin Y, Pakter R, Rizzato F B, Teles T N and Benetti F P C 2014 Phys. Rep. 535 160
 [11] Bouchet F, Gupta S and Mukamel D 2010 Physica A 389 4389

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
https://doi.org/10.1063/1.2835154
https://doi.org/10.1063/1.2835154
https://doi.org/10.1063/1.1889345
https://doi.org/10.1103/PhysRevLett.15.240
https://doi.org/10.1103/PhysRevLett.15.240
https://doi.org/10.1103/PhysRevB.9.1921
https://doi.org/10.1103/PhysRevB.9.1921
https://doi.org/10.1103/PhysRevB.9.1924
https://doi.org/10.1103/PhysRevB.9.1924
https://doi.org/10.1016/j.physrep.2009.07.001
https://doi.org/10.1016/j.physrep.2009.07.001
https://doi.org/10.1016/j.physrep.2013.10.001
https://doi.org/10.1016/j.physrep.2013.10.001
https://doi.org/10.1016/j.physa.2010.02.024
https://doi.org/10.1016/j.physa.2010.02.024


Pulse solutions of the fractional effective models of the Fermi–Pasta–Ulam lattice with long-range interactions

13https://doi.org/10.1088/1742-5468/ab47fd

J. S
tat. M

ech. (2019) 104015

 [12] Miloshevich G, Nguenang J P, Dauxois T, Khomeriki R and Ruffo S 2015 Phys. Rev. E 91 032927
 [13] Miloshevich G, Nguenang J P, Dauxois T, Khomeriki R and Ruffo S 2017 J. Phys. A: Math. Theor. 

50 12LT02
 [14] Olivares C and Anteneodo C 2016 Phys. Rev. E 94 042117
 [15] Iubini S, Di Cintio P, Lepri S, Livi R and Casetti L 2018 Phys. Rev. E 97 032102
 [16] Di Cintio P, Iubini S, Lepri S and Livi R 2019 J. Phys. A: Math. Theor. 52 274001
 [17] Chendjou G N B, Nguenang J P, Trombettoni A, Dauxois T, Khomeriki R and Ruffo S 2018 Commun.  

Nonlinear Sci. Numer. Simul. 60 115
  Chendjou G N B, Nguenang J P, Trombettoni A, Dauxois T, Khomeriki R and Ruffo S 2019 Commun.  

Nonlinear Sci. Numer. Simul. 74 282
 [18] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential  

Equations (New York: Wiley)
 [19] Podlubny I and Thimann K V (ed) 1999 Fractional Differential Equations (San Diego, CA: Academic)
 [20] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential  

Equations (Amsterdam: Elsevier)
 [21] Defenu N, Trombettoni A and Codello A 2015 Phys. Rev. E 92 052113
 [22] Defenu N, Trombettoni A and Ruffo S 2016 Phys. Rev. B 94 224411
 [23] Defenu N, Codello A, Ruffo S and Trombettoni A 2019 (arXiv:1908.05158)
 [24] Livi R, Pettini M, Ruffo S and Vulpiani A 1985 Phys. Rev. A 31 2740
 [25] Davydov A S 1980 Theory of Solids (Moscow: Nauka)
 [26] Tarasov V E 2016 Commun. Nonlinear Sci. Numer. Simul. 30 1
 [27] Novikov S P, Pitaevskiĭ L P, Zakharov V E and Manakov S V 1984 Theory of Solitons: the Inverse Scatter-

ing Method (New York: Consultants Bureau)
 [28] Caputo M C and Torres D F M 2015 Signal Process. 107 265
 [29] Li Z B and He J H 2010 Math. Comput. Appl. 15 973
 [30] Tarasov V E 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2945
 [31] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products (New York: Academic) p 79 
 [32] Pace S D and Campbell D K 2019 Chaos 29 023132
 [33] Pham J 2019  Master 1 Thesis Report, ENS of Lyon and University of Geneva

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
https://doi.org/10.1103/PhysRevE.91.032927
https://doi.org/10.1103/PhysRevE.91.032927
https://doi.org/10.1088/1751-8121/aa5fcf
https://doi.org/10.1088/1751-8121/aa5fcf
https://doi.org/10.1103/PhysRevE.94.042117
https://doi.org/10.1103/PhysRevE.94.042117
https://doi.org/10.1103/PhysRevE.97.032102
https://doi.org/10.1103/PhysRevE.97.032102
https://doi.org/10.1088/1751-8121/ab22f7
https://doi.org/10.1088/1751-8121/ab22f7
https://doi.org/10.1016/j.cnsns.2018.01.006
https://doi.org/10.1016/j.cnsns.2018.01.006
https://doi.org/10.1016/j.cnsns.2018.07.007
https://doi.org/10.1016/j.cnsns.2018.07.007
https://doi.org/10.1103/PhysRevE.92.052113
https://doi.org/10.1103/PhysRevE.92.052113
https://doi.org/10.1103/PhysRevB.94.224411
https://doi.org/10.1103/PhysRevB.94.224411
http://arxiv.org/abs/1908.05158
https://doi.org/10.1103/PhysRevA.31.2740
https://doi.org/10.1103/PhysRevA.31.2740
https://doi.org/10.1016/j.cnsns.2015.06.007
https://doi.org/10.1016/j.cnsns.2015.06.007
https://doi.org/10.1016/j.sigpro.2014.09.026
https://doi.org/10.1016/j.sigpro.2014.09.026
https://doi.org/10.3390/mca15050970
https://doi.org/10.3390/mca15050970
https://doi.org/10.1016/j.cnsns.2013.04.001
https://doi.org/10.1016/j.cnsns.2013.04.001
https://doi.org/10.1063/1.5079659
https://doi.org/10.1063/1.5079659

	Pulse solutions of the fractional eective models of the Fermi–Pasta–Ulam lattice with long-range interactions
	Abstract
	1. Introduction
	2. The FPU model with long-range interactions and its continuum limit
	3. The fractional chain rule
	4. Ansatz for the dynamics
	5. Solutions of the fractional Bousinessq equation
	6. Conclusions
	Acknowledgments
	References


