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Abstract – We investigate the effects of Hamiltonian and Langevin microscopic dynamics on the
growth laws of domains in coarsening. Using a one-dimensional class of generalized φ4 models
with power-law decaying interactions, we show that the two dynamics exhibit scaling regimes
characterized by different scaling laws for the coarsening dynamics. For Langevin dynamics, they
concur with the exponents of defect dynamics, while Hamiltonian dynamics reveals new scaling
laws with distinct early-time and late-time regimes. This new behaviour can be understood as
an effect of energy conservation, which induces a coupling between the dynamics of the local
temperature field and of the order parameter.
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Introduction. – If an Ising model is quenched from a
high-temperature disordered equilibrium state to temper-
atures below the critical one, coarsening takes place [1].
Coarsening manifests itself by the emergence of ordered
ferromagnetic domains, and the subsequent scale-free
growth of the larger domains at the expense of the smaller
ones [2]. This phenomenon has been mostly studied for
models with nearest-neighbour interactions [1] in the ab-
sence or presence of disorder [3]. The theory is based
on the hypothesis that two-point spatial correlations are
time invariant, provided that the distances are renormal-
ized with a time-dependent length L(t) which usually, at
leading order, scales as t1/z . This scaling hypothesis has
been rigorously demonstrated for one-dimensional mod-
els [4,5] and for the Ginzburg-Landau model in the limit
of infinite components of the order parameter [6]. How-
ever, simulations and experiments indicate its wider ap-
plicability [1,2,7]. Most of the studies were carried out
for systems coupled to a thermal bath. Nonetheless,
some authors [8–11] have performed simulations of the
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two-dimensional isolated φ4model with nearest-neighbour
couplings, verifying the scaling hypothesis but without
finding agreement on whether the scaling exponents are
the same as when coupled to a bath.

Regarding systems with long-range couplings, coars-
ening has been also analysed theoretically and numeri-
cally for two simple one-dimensional lattice models (Ising
and φ4) with long-range couplings [12,13]. In these
models, the coupling decays with the lattice distance as
(ri,j)−(1+σ) at large distances ri,j between pairs of lattice
sites (i, j). Coarsening has been found at finite tempera-
ture if 0 < σ ≤ 1 and at zero temperature for σ > 1. Using
an effective model for the time evolution of sharp domains
boundaries, these authors find that L(t) ∼ t1/(1+σ).

To our knowledge the question as to whether the dy-
namical exponent z is the same for systems coupled to
a thermal bath, whose equilibrium corresponds to the
canonical ensemble, and isolated systems, whose equilib-
rium corresponds to the microcanonical ensemble, has not
been addressed before in systems with long-range inter-
actions. From the point of view of equilibrium thermo-
dynamics, the range of parameter values 0 < σ ≤ 1
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of the models is characterized by the equivalence of mi-
crocanonical and canonical ensembles [14,15] (although a
subtle dependence on the ensemble may exist also at equi-
librium [16]), but this equivalence is not guaranteed for
dynamical phenomena, for which reason we extend the
notion of canonical and microcanonical ensemble to the
out-of-equilibrium regime.

In this letter, we want to verify the scaling hypothesis
for both the Langevin (canonical) and the Hamiltonian
(microcanonical) microscopic dynamics. More impor-
tantly, we aim at checking whether the dynamical scaling
exponent z is the same in both dynamics and agrees or not
with that found in [12,13], i.e., z = 1+σ. To this purpose
we consider a φ4 model [17,18] with long-range couplings,
which displays coarsening in the relevant range of values,
0 ≤ σ ≤ 1.

We will show that, by a careful numerical analysis of
the spatial correlation function for different values of σ, it
is possible to validate the scaling hypothesis in both the
canonical and the microcanonical ensemble. However, the
dynamical scaling exponent is found to be sharply differ-
ent in the two ensembles: we obtain the law zc = 1 + σ
in the canonical ensemble, in agreement with refs. [12,13],
while, in the microcanonical we get zearly

µ = 2σ (at early
times) and zlate

µ = 2 (at late times). Moreover, the two
types of dynamics differ by additional dynamical features
such as, for instance, the scaling regimes showing on dif-
ferent time scales in the two ensembles and the Hamil-
tonian dynamics shows transient oscillations of L(t) just
before the scaling regime sets in, which is the signature of a
collective phenomenon. Additionally, the structure factor
shows a power-law tail in the Langevin case, in agreement
with Porod’s law, which does not appear in the Hamilto-
nian case.

The φ4 model. – We consider a one-dimensional peri-
odic lattice of N sites. To each lattice site i, we attach a
scalar variable qi, with i = 1, . . . , N . The potential energy
is defined as

U =
N

∑

i=1

(

q4
i − q2

i

4

)

−
1

4Ñ

∑

i≠j=1,...,N

qi qj

r1+σ
ij

, (1)

where rij = min(|i − j|, N − |i − j|) is the closest dis-
tance on the periodic lattice between sites i and j and

Ñ =
∑

j r−(1+σ)
ij is a normalization factor which makes

the energy extensive in N even when σ ≤ 0. The scalar
variable qi can be viewed as representing a local magneti-
zation. This magnetization feels the action of the on-site
potential (q4−q2)/4, which favours the two magnetization
values q = ± 1/

√
2, and the effect of the long-range ferro-

magnetic coupling. The order parameter of the model is
the total magnetization

m =
1

N

N
∑

i=1

qi. (2)

Fig. 1: Top: temperature T vs. energy per particle e. Bottom:
magnetization m vs. energy per particle e. The range of pa-
rameters simulated has been chosen to be around the transition
point for each value of σ. In all cases N = 8192.

A model with the same symmetries and the same inter-
actions as (1), the Ising model with long-range couplings,
has been originally studied by Ruelle [19] and Dyson [20]
in the canonical ensemble. In the range 0 ≤ σ < 1, this
model undergoes a second order phase transition [20] sepa-
rating a ferromagnetic phase (m ̸= 0) at low temperatures
from a paramagnetic phase (m = 0) at high temperatures.
For σ > 1, the system is disordered at all finite temper-
atures [19,21]. The case σ = 1 is peculiar, since it shows
a Kosterlitz-Thouless phase transition with a discontinu-
ous jump in the magnetization [22–26]. At equilibrium,
the φ4 model (1) exhibits the same qualitative features of
the Ruelle-Dyson model in both the microcanonical and
canonical ensembles.

One can study the dynamics of model (1) in the canon-
ical ensemble by coupling each site to a heat reservoir at
constant temperature Tcan. This can be done by consid-
ering the over-damped Langevin equations,

γq̇i +
∂U

∂qi
= η(t), i = 1, . . . , N, (3)

where U is given by (1) and η(t) is a zero average
δ-correlated Gaussian noise:

η(t)η(t′) = 2γTcanδ(t − t′), (4)

where the bar denotes averaging over noise.
Alternatively, by adding the kinetic energy K to the

potential energy U defined in (1), one obtains the Hamil-
tonian

H = K + U =
N

∑

i=1

p2
i

2
+ U, (5)
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Fig. 2: Quenched below a phase transition, Langevin (first row) and Hamiltonian (second row) evolutions undergo a coarsening
process (left and middle columns) before eventually reaching a broken phase equilibrium (right column). The dots represent
the value of qi for each particle, with i being the position on the lattice. Here N = 65536, σ = 0.4 in both cases, T = 0.16 and
γ = 1 for the Langevin case and e = −0.06 for the Hamiltonian case.

where pi is the momentum conjugate to qi. The Hamil-
tonian (5) defines the dynamics in the microcanonical
ensemble.

From the numerical point of view, the time-consuming
part of the algorithm lies in the calculation of the force
−∂U/∂qi acting on site i, because of the all-to-all coupling.
For periodic boundary conditions this can be efficiently
done by using the Fourier representation of the coupling
matrix 1/r1+σ

ij , as discussed in the appendix of ref. [27].
In this way, one obtains an algorithm that scales with the
number of sites as N lnN . The Langevin dynamics is in-
tegrated using a second-order algorithm [28] while, for the
Hamiltonian dynamics we have implemented a symplec-
tic fourth-order algorithm [29]. We have also tested the
results against those obtained using other algorithms.

First of all, we have checked whether these algorithms
reproduce the equilibrium features of the model in both
the canonical and the microcanonical ensemble. In fig. 1,
we show the caloric curve and the magnetization vs. the
energy per particle e for σ = 0.2, σ = 0.6 and σ = 1.0. The
value of energy in the canonical ensemble is obtained from
the temperature, using the caloric curve. The superposi-
tion of caloric curves can be considered as a convincing nu-
merical evidence of ensemble equivalence for this model at
equilibrium. The transition energy/temperature decreases
as σ is increased above zero until σ = 1. For σ = 0.2 and
σ = 0.6, the system shows continuous phase transitions
respectively at the energy per particle ec ≃ 0.120 and
ec ≃ 0.061, corresponding to the temperatures Tc ≃ 0.253
and Tc ≃ 0.21 in the canonical ensemble. These val-
ues have to be compared with the theoretically known
values, ec = 0.132, Tc = 0.264, of the mean-field case

σ ≤ 0 [18]. At σ = 1, it is possible to see the jump in
the magnetization at e ≃ −0.045 and T ≃ 0.16. Above
σ = 1, there is no numerical signature of phase transition
at finite temperature, in analogy with what is known for
the Ruelle-Dyson Ising model. One can conclude that the
φ4 model with long-range interactions (1) displays a very
similar behaviour to the Ruelle-Dyson model, for what
concerns equilibrium properties.

Scaling of the two-point correlation function. –
We have performed coarsening numerical experiments

using both canonical dynamics (3) for model (1) and mi-
crocanonical dynamics, derived from the Hamiltonian (5).
We have considered quenches from the disordered phase
to a finite temperature/energy below the critical one and
energy above the ground state, using the curves in fig. 1
and others computed for various values of σ to determine
the parameters of the initial distribution which assured a
quenched initial condition.

The initial distribution of the positions has been taken,
in both ensembles, as uniform in a region symmetric
around the q = 0 axis, and zero elsewhere. The region
is either connected and centred around the maximum of
the potential at q = 0, or disconnected and formed by
two equal parts centred around the two minima of the po-
tential. Their area is chosen in order to have the energy
desired. For the Hamiltonian case, we chose a distribu-
tion of momenta uniform in a connected region symmetric
around the p = 0 axis and zero elsewhere. The reason for
this choice is that in the microcanonical ensemble it is not
possible, because of the energy conservation, to set initial
conditions corresponding to the equilibrium configuration
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Fig. 3: Langevin (top) and Hamiltonian (bottom) correlation
functions g(r, t) at different times during the scaling regime.
The results shown are averaged over 400 runs for systems with
N = 65536 and σ = 0.6. Here T = 0.05 and γ = 1 for the
Langevin case and e = −0.06 for the Hamiltonian case.

above the critical point, if we want the system to be below
it, as is usually done for quenches in the canonical ensem-
ble. As an example, fig. 2 presents the typical evolution of
the system for the Hamiltonian and Langevin cases, where
the appearance of domains with different local magnetiza-
tion can be observed. Their average size grows in time
until one of them reaches the system’s size. The last con-
figuration corresponds to the equilibrium state.

As expected, in the low-temperature/-energy region
there is thus formation of domains as the system relaxes
from a disordered to an ordered configuration, a regime
during which we can extract the scaling law for their
growth.

To do so, we use the two-point correlation function
c(r, t), which is defined by

c(r, t) = ⟨qi(t)qj(t)⟩ri,j=r, (6)

where ⟨·⟩f defines an average over the lattice subject to the
constraint f . Several snapshots of the rescaled correlation
function g(r, t) = c(r, t)/c(0, t), for various t are shown
in fig. 3.

We are investigating the scaling hypothesis, which
addresses the universality of the two-point correlation
function:

g(r, t) ≈ g̃(r̃(t)), for ttrans < t < tcutoff , (7)

Fig. 4: Thick lines are the scaling factor L(t) for the simulations
with Langevin dynamics, averaged over 400 runs, at different
temperatures. Fixed parameters of the simulations are σ = 0.6,
N = 65536 and γ = 1. Straight thin lines are the function ct1/z

with fitted 1/z and c.

where the scaled distance r̃ is defined as

r̃(t) = r/L(t). (8)

Let us define the scaling factor L(t) as the distance at
which the correlation function reaches some given fraction
1/n of its peak value:

L(t) > 0: g(L(t), t) = g(0, t)/n. (9)

We chose the values of n which give the best fit in the two
ensembles, but we checked that different choices lead to
the same conclusions.

Langevin dynamics. – For the Langevin dynamics,
we chose n = 2. After a transient time, the scaling factor
L grows as a power of time, and fig. 4 shows L(t) for
different values of temperature. One observes in these
curves that there exists a transient regime t < ttrans, where
ttrans depends on temperature, followed by a regime where
the slope does not depend on temperature. The curves
after the transient time can be empirically fitted by the
function

L(t0) + c(t − t0)
1/z , t > t0, (10)

using 1/z, c and t0as fitting parameters, and where the nu-
merical curve L(t0) has been interpolated to have a smooth
form for it. Determined by this procedure, z(σ) is in good
agreement with

zc(σ) = 1 + σ, (11)

which corresponds to the law predicted for the defect dy-
namics [12,13] (see fig. 6).

If instead of (10), we use for the fit the simple power law
ct1/z, one can find a systematic shift of the exponent z fit-
ted of roughly +0.2. This fit is valid for a smaller temporal
window, but works also at larger values of the temperature
(e.g., T ∼ 0.15) where (10) presents some convergence is-
sues. For the temperatures where the fit (10) works, vary-
ing γ or T affects the transient regime, i.e., parameters t0
and c, but no significant effect on z was found, and the
same holds at every temperature using: ct1/z. This can
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Fig. 5: Scaling factor L(t) for the Hamiltonian dynamics for
different σ, averaged over 400 runs. Fixed parameters: N =
65536 and e = −0.06.

Fig. 6: z(σ) as obtained from Langevin and Hamiltonian dy-
namics for simulations realized with N = 65536 particles, av-
eraged over 400 realizations and with T = 0.05 and γ = 1.0 for
Langevin dynamics, and e = −0.06 for Hamiltonian dynamics.

be clearly seen also in fig. 4 where the slopes of the curves
after the transient are all very close.

Using the parameters of (10) obtained from the fits, we
are able to confirm the validity of the scaling hypothesis for
the Langevin dynamics. Indeed as can be seen in fig. 7,
where g̃(r̃) is plotted, the correlation functions collapse
very well.

Finally we analyse the domain structure: Porod’s
law [30–32] relates the structure of defects in the order
parameter, which are the sharp domain boundaries, to
the tail of the structure factor S. Since the shape of de-
fects affects the small distance behaviour of the correla-
tion function, it can be analysed by looking at the large
wave vectors k behaviour of the structure factor, which
corresponds to its spatial Fourier transform. In a one-
dimensional case, the law predicts, for kL ≫ 1,

S(k, t) ∼
1

L k2
. (12)

We confirm this law by plotting the structure factor in
fig. 8. This provides a further justification to the approach
of [12,13], which is based on the sharp domain boundaries
approximation.

Fig. 7: Correlation functions plotted in units of scaled distance
r̃ = r/L(t), for five different times in the scaling regime, for
each of the different values of σ and the same other parameters
as in fig. 3. The top plot corresponds to the Langevin case, the
middle plot to the Hamiltonian case at early times, and the
bottom plot to the Hamiltonian case at late times. L(t) has

been defined in (10) for the top plot and as L(t) = ct
1

z in the
others, and the values of z are the same as in fig. 6 for each
value of σ.

Hamiltonian dynamics. – Also in this case simula-
tions exhibit scaling properties, though the behaviour is
richer. We can notice in fig. 5 the existence of an early
regime of power law growth of L(t) which starts sooner
than in the Langevin case, regardless of the energy of the
system, where one does not need to exclude a transient
time window to perform the fit. We can use ct1/z with
only 1/z and c as fitting parameters. Here the best fit
is given choosing n = 5, and we used it to define L(t) in
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Fig. 8: Structure factor for Langevin (top), and Hamiltonian
(bottom) simulations for different σ and the same other param-
eters as in fig. 3. At large k the Langevin case follows Porod’s
law (12), while the Hamiltonian shows a deviation.

the microcanonical ensemble. The values of the dynamic
exponent, plotted in fig. 6, stay very close to the line:

zearly
µ (σ) = 2σ. (13)

At larger times simulations show that the factor L(t) starts
deviating from a straight line and the system displays
a crossover towards another scaling regime (t > 100 in
fig. 5). The dynamic exponent, shown in fig. 6, now stays
close to the law

zlate
µ (σ) = 2. (14)

The collapse of the correlation functions has been checked,
for both regimes, in fig. 7. These relations constitute an
original result pertaining to Hamiltonian coarsening dy-
namics and differentiate it from the Langevin dynamics.
For the peculiar case σ = 1.0, there are several time win-
dows which provide an equally good collapse but different
exponents (± 0.3), whereas for other values of σ there ex-
ists a time window that gives an optimal fit and an optimal
collapse of the correlation function. This can be inter-
preted by the fact that for σ = 1.0, as in [33], a logarith-
mic correction to the power law may be needed. Using the
ansatz L(t) ∼ (t log t)1/z we can identify an optimal time
window for the fit and collapse, which results in z = 2.42,
although other forms of L(t) give equally good fits, which
makes hard to give conclusive statements about this case.

In the limit σ → 0, we are not able to extract any
dynamical exponent for Hamiltonian dynamics since the
system relaxes quickly to a macroscopically magnetized

phase. In the context of gravitation, this short transient
was termed “violent relaxation” [34] and does not depend
significantly on the system size. This property was later
shown to be common to many Hamiltonian systems with
long-range interactions and it appears, starting from a
thermal state, also after a quench [35]. We have indeed
observed that the early regime of the Hamiltonian simula-
tions displays additional oscillations (fig. 5). They persist
in the thermodynamic limit, which shows that they are a
result of collective oscillations. Such oscillations are typi-
cal of the dynamics of inertial systems with the mean-field
potential (−1 < σ < 0) [36] and, therefore, we can safely
conclude that some of these effects persist into the regime
of the coarsening dynamics. The fact that we do not see
them for Langevin dynamics, where inertia is not present,
suggests that they may be a feature of the Hamiltonian dy-
namics. Finally the analysis of the structure factor shows
another difference with respect to the Langevin case: as
can be seen in fig. 8 Porod’s law is not satisfied for the
Hamiltonian dynamics since there is no power-law decay
at large k.

Discussion. – Effective models of energy-conserving
systems, obtained through a coarse-graining of the micro-
scopic model, are characterized by a temperature (or en-
ergy) field coupled to the order parameter field [37–41].
These models can be considered good approximations
of our Hamiltonian case, and the temperature field can
be considered, assuming that the system is in a quasi-
equilibrium state, as equivalent to the mean kinetic energy
in a small spatial region. For the Langevin case, which
does not have a kinetic term, coarse-grained models are
instead characterized by a single field which represents
the order parameter. In these models the law zc = 1 + σ
can be understood considering sharp domain boundaries
in the order parameter field, which evolve driven by an ef-
fective interaction, as in [12,13]. To understand our results
for the microcanonical φ4 model we have to look qualita-
tively at the evolution of the magnetization and of the
temperature. When a magnetization domain disappears,
the potential energy of the system decreases because of the
disappearance of its two boundaries. Since the total en-
ergy is conserved, the lost potential energy is transformed,
locally, into kinetic energy which will diffuse by thermal
conduction. This creates inhomogeneity in the tempera-
ture field which makes the relaxation of systems easier in
the areas of larger temperature. This means that the tem-
perature dynamics can thus drive the domain walls, and
the fact that the temperature evolves diffusively justifies
the diffusive relaxation of the order parameter z = 2. This
mechanism has been illustrated in the case of an energy-
conserving coarse-grained model with nearest-neighbour
interactions for a single-domain interface in [42].

In this letter, we provide evidence that, for a
one-dimensional φ4 model with algebraically decaying
interactions, the Hamiltonian and Langevin dynam-
ics generate coarsening regimes in which the scaling
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hypothesis (7) is valid, but the laws for the dynamical
exponents z(σ) appear to be different. For the Langevin
dynamics our results show, when using a formula that al-
lows to exclude the transient regime, that the dynamic
exponent depends on the exponent of the interaction po-
tential σ according to the law: zc = 1 + σ, in full agree-
ment with the law obtained from the dynamics of sharp
interfaces. For the Hamiltonian dynamics, we show that
this approximation is not valid since the temperature dif-
fusion, which does not appear in the Langevin case, is
coupled to the order parameter profile. In this case, we
find at early times the new empirical law zearly

µ = 2σ, and
in the asymptotic regime, in which the relaxation of the
order parameter is dominated by the diffusive dynamics
of the temperature field, the law zlate

µ = 2. These results
show that the effect of the contact with the environment
is crucial for coarsening dynamics.
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[9] Kockelkoren J. and Chaté H., Phys. Rev. E, 65 (2002)

058101.
[10] Zheng B., Phys. Rev. E, 65 (2002) 058102.
[11] Kockelkoren J. and Chaté H., Phys. D: Nonlinear
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