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We present an experimental study of resonant generation of superharmonic internal
waves as a result of interaction between horizontally propagating vertical internal wave
modes m and n at frequency ω0 in a uniformly stratified finite-depth fluid. Thorpe [J. Fluid
Mech. 24, 737 (1966)] has shown theoretically that modes m and n at frequency ω0 and
mode p = |m − n| at frequency 2ω0 are in triadic resonance at specific values of ω0. We
demonstrate the occurrence of this triadic resonance by forcing a primary wave field of
modes m and n at various ω0 using a novel internal wave generator, and observing the
spontaneous growth (or lack thereof) of the superharmonic mode p = |m − n| at frequency
2ω0. A superharmonic wave field with a predominantly mode-p = |m − n| structure is
observed over a finite range of frequency (�ω0 � 0.03N) around the resonant value,
where N is the uniform buoyancy frequency. The spatial growth of the superharmonic
wave field is then quantitatively measured, to subsequently compare with the predictions
from amplitude evolution equations at resonance at various forcing amplitudes, thereby
validating this model. It is furthermore shown that a large-scale spatial evolution of the
wave field is more suited to describe our experiments than the slow temporal evolution
approach. The paper concludes with a brief discussion of viscous effects.

DOI: 10.1103/PhysRevFluids.5.074804

I. INTRODUCTION

Internal waves, which are propagating disturbances in stably stratified fluids, have been a
subject of active research in the last few decades. In oceanic and atmospheric applications, their
potential to transport energy and momentum to large horizontal and vertical distances has important
implications [1]. Furthermore, they transfer energy irreversibly from large spatial scales (tides,
winds) to significantly smaller scales in the ocean, ultimately contributing to small-scale turbulence
and mixing [2]. From a fundamental point of view, the internal wave dispersion relation [3] contains
several interesting characteristics: (i) anisotropic propagation, (ii) single frequency supporting an in-
finite number of wave numbers, and (iii) orthogonality between phase and group velocities for plane
internal waves. Hence, the manifestations of classical wave phenomena such as resonant generation
[4,5], scattering by topography [6,7] and nonuniform stratifications [8,9], wave-wave interactions
[10,11], and solitary wave generation [12,13] represent fascinating topics in internal waves.

In a uniformly stratified fluid of infinite depth, the dispersion relation for plane internal waves in
the two-dimensional xz plane is

sin2 θ = ω2

N2
, (1)
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where ω is the internal wave frequency and N the constant buoyancy frequency determined by
the background density gradient. The angle θ represents the angle between the wave vector k
and the vertical z axis (gravity acts along the negative z axis). Alternately, θ also represents the
angle between the group velocity and the horizontal x axis. Therefore, for given values of ω and
N , the horizontal and vertical wave numbers can take any value in the range of (−∞,+∞),
while being related by Eq. (1). In the presence of horizontal boundaries, however, the vertical
wave numbers can get discretized owing to boundary conditions. Specifically, with rigid horizontal
boundaries at z = 0 and z = H where no-normal-flow is enforced, the vertical structure of the
stream function is constrained to be of the form sin(nπz/H ), where the mode number n takes
integer values. As a consequence, the horizontal wave numbers are also discretized owing to the
dispersion relation, and are given by k = nπ/(H cot θ ), with propagation occurring only along the
horizontal. It is also instructive to interpret an individual mode n as a linear superposition of upward
and downward propagating plane waves (of the same amplitude) with wave vectors (k, nπ/H )
and (k,−nπ/H ). While plane-wave studies in infinite depth are often insightful, there can also be
significant deviations when finite-depth effects are included. For example, internal tide generation
in a finite-depth ocean can be substantially weaker than in an infinite-depth ocean if the topographic
and internal tide length scales are comparable [14]. In the current study, we investigate resonant and
near-resonant wave-wave interactions in internal wave modes.

For oceanic applications, internal wave research has focused broadly on two different questions.
The first relates to mechanisms via which internal waves are generated, the amount of energy input
into them, and their spatial/temporal scales. Reasonable estimates are now available on internal tide
generation by barotropic forcing on bottom topography [15] and wind-forced near-inertial waves
in the upper ocean [16]. The second question relates to the mechanisms via which the internal
wave energy gets dissipated. Several mechanisms have been proposed, summaries of which can
be found in [17–19]. Triadic resonance represents one such pathway towards dissipation, where
energy is transferred to other frequencies and wave numbers. Specifically, three plane internal
waves that satisfy ω1 + ω2 + ω3 = 0 (positive or negative frequencies ω1,2,3) and k1 + k2 + k3 = 0
spontaneously exchange energy between each other, and are termed together as a resonant triad. In
fact, triadic resonance is the underlying mechanism for almost all instabilities in finite-amplitude
plane internal waves [20,21]. Triadic resonance is possible in internal wave modes, too [22], and
this paper presents an experimental investigation of the same.

Most studies on triadic resonance consider a primary wave with a finite amount of initial energy
and two secondary daughter waves with an infinitesimally small initial energy. Those resonant triads
for which the frequencies of the secondary waves are smaller (in magnitude) than the primary
wave frequency are referred to as subharmonic resonant triads. For plane internal waves in a
uniform stratification, Hasselmann [10] has theoretically shown that subharmonic resonant triads are
unstable, i.e., the primary wave would lose its energy to the subharmonic daughter waves. Several
numerical studies have then performed detailed investigations of subharmonic triadic resonance in
plane waves [23] and realistic ocean settings [24]. In laboratory settings, finite-depth effects are
inevitable, and primary standing internal wave modes have been shown to generate other modes at
subharmonic frequencies [25–28]. In contrast to subharmonic triadic resonance, it is also possible
that the primary wave field contains two waves of a resonant triad, which in turn generates a
superharmonic wave whose frequency is the sum of the primary wave frequencies. We term such
resonant triads as superharmonic resonant triads, a classic example of which is the generation of
superharmonic internal waves by colliding wave beams [29–31]. Numerical studies have shown that
subharmonic and superharmonic frequencies are simultaneously generated as a result of wave-wave
interactions [32].

One of the challenges in laboratory experiments to study internal wave triadic resonance is to
force a desired primary wave field, i.e., input specific amounts of energy into desired frequencies
and wave numbers. The internal wave generator described in [33] enables the excitation of various
internal wave forms, as demonstrated in [34]. Indeed, experimental studies on subharmonic triadic
resonance in a plane internal wave [35] and a mode-1 internal wave [36] have been performed using
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the internal wave generator. In this paper, we use this generator to force a primary wave field that
contains two different modes at the same frequency, and study the superharmonic wave generation
due to triadic resonance. The theoretical prediction [22] of the resonant forcing frequency and the
superharmonic mode number are verified, the theoretical estimates [37] of energy transfer rates are
validated, and near-resonant behavior is investigated.

The rest of the paper is organized as follows. Section II presents the details of our experimental
setup and measurement techniques. Section III presents the theory that motivates our experiments
and the amplitude evolution equations that are validated by our experiments. Our experimental
results are presented in Sec. IV, followed by discussions in Sec. V. A summary of conclusions and
future directions are provided in Sec. VI.

II. EXPERIMENT AND DATA PROCESSING

As mentioned in Sec. I, we performed experiments to investigate superharmonic resonant triads,
where the primary wave field comprises modes m and n at frequency ω0. In a uniform stratification
N , internal wave modes m and n (m �= n) at frequency ω0 are in triadic resonance with mode p =
|m − n| at frequency 2ω0 if

ω2
0

N2
= (m + n)2 − 4(m − n)2

4[(m + n)2 − (m − n)2]
, (2)

along with m/3 < n < 3m, is satisfied [22]. As described below, the internal wave generator was
tuned to excite the aforementioned primary wave field. The growth of the superharmonic wave field
was then quantitatively measured, and compared with the predictions from the amplitude evolution
equations presented in Sec. III. Experiments were also performed at near-resonant frequencies to
measure the corresponding resonance width.

Experiments were performed in an acrylic tank of 4-m length and 17-cm width. The tank
was composed of five different components that were each of 0.8 m in length, joined together
using screws in the threaded holes on their frames, with a rubber gasket at the joints (black
vertical strips in Fig. 1) to prevent leaks. In every experiment, a uniform stratification with
N = √

(−g/ρref )dρ0/dz ≈ 1 rad/s over a depth of H = 32.5 cm was set up using the double-bucket
method [38], with the salinity of the water uniquely determining the density (ρ0) at different depths
in the tank. Here, (x, z) denote the horizontal and vertical coordinates, with gravity g = 9.8 m/s2

acting along negative z, and ρref = 1000 kg/m3 is a reference density. The entire experimental
facility was maintained at constant room temperature ensuing the background stratification to be
function of salinity alone. After each filling, the density profile in the tank was accurately measured
using a conductivity-temperature (CT) probe, which was a priori calibrated using known density
samples. In every experiment, a linear fit closely captured the density profile over the entire tank
depth except near the boundaries, and was used to estimate the uniform stratification N . A sample
density profile measured in one of our experiments, along with a linear fit, is shown at the right end
of Fig. 1, which also shows a schematic of the entire experimental setup.

Internal waves at a fixed frequency ω0 (time period T0 = 2π/ω0), and comprising specific
modes, were forced at the left end of the tank using an internal wave generator whose principle of
operation was similar to what is reported in [34]. The internal wave generator comprised 50 plates of
6.5-mm thickness each, and they were independently driven by 50 different motors. More details of
this wave generator, which was previously used in [39], can be found in [40]. Each plate executed
constant amplitude oscillations along the horizontal such that the vertical profile of the horizontal
displacement field at the wave generator location (x = 0) was given by (t denotes time)

�x(x = 0, z, t ) =
[
Am cos

(mπz

H

)
+ An cos

(nπz

H

)]
cos ω0t, (3)

thus comprising left-to-right propagating modes m and n at amplitudes Am and An, respectively.
Since the wave generator forces only the horizontal velocity, and its forcing is (i) discretized (finite
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FIG. 1. Schematic of the experimental setup used in the current study. The uniform stratification in the
tank was measured using a conductivity-temperature (CT) probe before the wave generator was started. A
sample measured density profile (black solid line) and a linear fit (red dashed-dotted line) are shown at the
right end of the tank. Typical values of ρ0(z) at the bottom and top of the tank were 1033.1 kg/m3 and 1000
kg/m3, respectively. A uniform density gradient estimated by the linear fit (red dashed line) corresponds to
N = 1 rad/s.

thickness of the plates) and (ii) not strictly at a fixed x location (moving plates), not all its forcing is
converted into internal waves. Hence, the measured modal amplitudes even in a close neighborhood
of the wave generator would be weaker than what are enforced according to Eq. (3). We also note
that the wave generator is started impulsively in every experiment, which would result in transient
features in the beginning of the experiment. The transient features, however, are unlikely to influence
the steady-state wave field.

Quantitative measurements of the instantaneous density gradient perturbation fields were per-
formed using the synthetic Schlieren technique [41]. A back-lit random pattern of dots, as shown
in Fig. 1, was placed at a distance of d = 12.5 cm behind the back wall of the tank. A 2452 ×
2054 pixels CCD camera (AVT Pike F-505), looking through the tank, captured images (at 5 Hz) of
the random pattern of dots from a distance of D = 280 cm from the front wall of the tank. Each of
the captured images, along with the reference image captured with no flow, was analyzed to estimate
the apparent displacement of the dots caused by the density gradient perturbations in the flow. The
apparent displacement field was estimated using correlation image velocimetry [42], implemented
in the open source software UVMAT [43]. The final output of the processing of the images was
a quantitative measurement (at 5 Hz) of the horizontal and vertical density gradient perturbation
fields specified on a 128 × 128 grid, spanning a physical domain of 1 m in the horizontal and the
water depth of 32.5 cm in the vertical.

The finite time Fourier transform of any measured quantity Q(x, z, t ) is denoted as Q̂(x, z, t, ω),
which is then used to reconstruct the quantity filtered at any desired frequency ω (denoted Q|ω).
For the Fourier transform operation, a time window of 5T0 centered around a given time t is used
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to obtain Q̂ corresponding to t . This relatively short time window had to be chosen so that it was
possible to identify a steady-state period before the reflected waves from the right end of the tank
reached the measurement domain. For the inverse Fourier transform operation used to obtain Q|ω,
a frequency window of 0.8ω to 1.2ω is used. This relatively large frequency window is required to
entirely capture the spectral peaks, whose widths are in turn determined by the time window (5T0)
we use for calculating the spectra. The measured density gradient perturbation fields, filtered at a
frequency ω, are then written as

∂ρ ′

∂x
(x, z, t )|ω =

∞∑
q=1

Rω
q (x, t ) sin

(qπz

H

)
cos

(
kω

q x − ωt + γ ω
q

)
, (4)

∂ρ ′

∂z
(x, z, t )|ω =

∞∑
q=1

Sω
q (x, t ) cos

(qπz

H

)
sin

(
kω

q x − ωt + γ ω
q

)
, (5)

where kω
q = qπ/(H cot θω ) with cot θω = √

N2 − ω2/ω, and γ ω
q the associated phase. The verti-

cally integrated horizontal energy flux in mode q at frequency ω, averaged over one time period, is
given by

Eω
q = g2H4

4π3ρref Nq3

N2

ω2

(
1 − ω2

N2

)5/2(
Rω

q

)2
. (6)

The spatial evolution of the modal amplitudes Rω
q (x, t ) and Sω

q (x, t ) [estimated by a modal
decomposition of the measured density gradient fields, as in Eqs. (4) and (5)] is then compared
with the predictions based on the amplitude evolution equations in Sec. III B. It is noteworthy
that comparisons with the theory presented in Sec. III B require steady-state amplitudes from the
experiments, which we estimate by waiting sufficiently long for steady state to be reached at a
given x, but not so long that the reflected waves from the right end of the tank affect our estimates.
Typically, experimental measurements during 20T0 to 25T0 were observed to be reliable estimates
of the steady-state wave field. As an estimate of sensitivity to the specific steady-state period used
in our analysis, we measured the change in the superharmonic modal amplitude at the center of
the measurement domain to be around 2.5% if the steady-state period is changed to 25T0–30T0.
While the initiation of the superharmonic growth occurs rather quickly at all spatial locations in our
measurement domain, the time required to reach steady state is different at different x. Owing to
the difficulty posed by the reflected wave field, we refrained from choosing different steady-state
periods for different spatial locations.

Experiments were performed to study two different modal interactions.
Case 1. (m, n, p) = (3, 4, 1): mode 3 and mode 4 at ω0, which are in triadic resonance with

mode 1 at 2ω0 if ω0/N = √
45/192 ≈ 0.4841, based on theory [Eq. (2)]. At resonance, assuming

H = 32.5 cm, the theoretical estimates of horizontal wavelengths (λi = 2π/ki, i = 3, 4, 1) of the
three waves are λ3 = 0.392 m, λ4 = 0.294 m, and λ1 = 0.168 m. Based on the group velocity of
the respective modes, it would take 25T0, 33T0, and 352T0 for primary mode 3, primary mode 4, and
superharmonic mode 1 to reach x = 0.6 m after being reflected from the right end of the tank.

Case 2. (m, n, p) = (3, 5, 2): mode 3 and mode 5 at ω0, which are in triadic resonance with mode
2 at 2ω0 if ω0/N = √

1/5 ≈ 0.4472, based on theory [Eq. (2)]. At resonance, assuming H = 32.5
cm, the theoretical estimates of horizontal wavelengths (λi = 2π/ki, i = 3, 5, 2) of the three waves
are λ3 = 0.433 m, λ5 = 0.26 m, and λ2 = 0.163 m. Based on the group velocity of the respective
modes, it would take 21T0, 36T0, and 113T0 for primary mode 3, primary mode 5, and superharmonic
mode 2 to reach x = 0.6 m after being reflected from the right end of the tank.

For both cases, experiments were performed for forcing frequencies at and around the resonant
frequency so as to demonstrate the occurrence of resonance, investigate the wave field at off-
resonant frequencies, and validate the theoretical predictions at resonance. Further experiments were
performed at resonance for case 1 to study the effect of forcing amplitudes.
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III. THEORY

In this section, we present the theoretical ideas that motivate our experiments, which concern
the nonlinear effects that result from the interaction between two internal wave modes at the same
frequency. The equations governing an inviscid, incompressible, nonrotating, two-dimensional flow
within the Boussinesq approximation are

∂2

∂t2
∇2ψ + N2 ∂2ψ

∂x2
= ∂

∂x
[J (ψ, b)] − ∂

∂t
[J (ψ,∇2ψ )], (7)

∂b

∂t
= −J (ψ, b) + N2 ∂ψ

∂x
, (8)

where ψ (x, z, t ) and b(x, z, t ) represent the stream function and buoyancy perturbation, respectively.
The background stratification is specified by the buoyancy frequency N , which is assumed
constant in the rest of this paper. The Jacobian and Laplacian operators are defined as J (A, B) =
(∂A/∂x)(∂B/∂z) − (∂B/∂x)(∂A/∂z) and ∇2 = ∂2/∂x2 + ∂2/∂z2, respectively. The velocity field is
given by (u,w) = (−∂ψ/∂z, ∂ψ/∂x).

We consider a flow field given by a regular perturbation series in a small nonlinearity
parameter ε,

ψ (x, z, t ) = εψ1(x, z, t ) + ε2ψ2(x, z, t ) + O(ε3) + ...., (9)

b(x, z, t ) = εb1(x, z, t ) + ε2b2(x, z, t ) + O(ε3) + ...., (10)

representing perturbations to the background flow state described by a quiescent fluid with a
constant stable stratification N .

A. Constant-amplitude solutions

Assuming the wave field at O(ε) to be described by a superposition of linear internal wave modes
m and n at frequency ω0 in a uniformly stratified fluid of depth H , we write

ψ1(x, z, t ) = m

2
sin

(mπz

H

)
ei(kmx−ω0t ) + n

2
sin

(nπz

H

)
ei(knx−ω0t ) + c.c., (11)

b1(x, z, t ) = −N2

[
mkm

2ω0
sin

(mπz

H

)
ei(kmx−ω0t ) + nkn

2ω0
sin

(nπz

H

)
ei(knx−ω0t ) + c.c.

]
, (12)

where c.c. denotes complex conjugate. The complex amplitudes m and n are assumed to be
constant in this subsection. The constant-amplitude assumption leads to the divergence of ψ2 if
the modes in ψ1 are part of a resonant triad, and is hence valid only away from triadic resonance.
The horizontal wave numbers km and kn are given by km = mπ/(H cot θ0) and kn = nπ/(H cot θ0),

where cot θ0 =
√

N2 − ω2
0/ω0 results from the linear internal wave dispersion relation (1). Note that

the no-normal-flow boundary condition is satisfied at the horizontal boundaries at z = 0 and z = H .
Substituting Eqs. (9) and (10) in the governing Eqs. (7) and (8), with ψ1 and b1 being given by

Eqs. (11) and (12), the flow field at O(ε2) can be shown to be governed by a linear PDE forced by
terms involving the O(ε) flow field. The particular solution of the resulting PDE is

ψ2(x, z, t ) = Imn sin

(
(m − n)πz

H

)
mn

4
ei[(km+kn )x−2ω0t],

+ Jmn sin

(
(m + n)πz

H

)
m∗

n

4
ei[(km−kn )x] + c.c., (13)

where

Imn = 3mn(m2 − n2)

cot θ0

N2

ω0

( π

H

)2
(

1

(m + n)2
(
N2 − 4ω2

0

) − (m − n)24ω2
0 cot2 θ0

)
, (14)
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and

Jmn =
{

mn
ω0 cot θ0

(
π
H

)2
, m �= n

0, m = n.
(15)

The weakly nonlinear solution (13) thus comprises one term at frequency 2ω0 and another at zero
frequency, with the latter corresponding to a Eulerian mean flow. The corresponding buoyancy
b2(x, z, t ) at O(ε2) is given by

b2(x, z, t ) = amn sin

(
(m − n)πz

H

)
mn

4
ei[(km+kn )x−2ω0t] + c.c., (16)

where

amn = mn(n − m)N2

ω2
0 cot2 θ0

( π

H

)3
(

(m + n)2
(
N2 + 2ω2

0

) + (m − n)22ω2
0 cot2 θ0

(m + n)2
(
N2 − 4ω2

0

) − (m − n)24ω2
0 cot2 θ0

)
, (17)

thus comprising only a term at frequency 2ω0. The amplitude of the term at frequency 2ω0 in
Eqs. (13) and (16) diverges if the denominator in Eq. (14) goes to zero, which occurs exactly when
Eq. (2) is satisfied. This divergence was previously shown in [22], and extended further to the case
of nonzero background rotation and nonuniform stratification in [44]. In other words, for the values
of ω0 given by Eq. (2), modes m and n at frequency ω0 are in triadic resonance with mode |m − n|
at frequency 2ω0. The divergence of ψ2 implies that the constant-amplitude solution forms for ψ1

[Eq. (11)] are not valid at triadic resonance.
For the triadic resonance that results from the frequency ω0 satisfying Eq. (2), allowing temporal

or spatial evolution of the modal amplitudes could rectify the unphysical divergence of the flow field
at O(ε2). Such amplitude evolution equations are derived using the classical method of multiple
scales [45], where it is assumed that the temporal or spatial scales over which the modal amplitudes
evolve are much larger than those corresponding to the frequencies or spatial wave numbers of the
waves.

B. Amplitude evolution equations

The constant-amplitude theory presented in Sec. III A, while being useful to identify parameters
for which triadic resonance occurs, breaks down at triadic resonance due to the divergence of the
flow field at O(ε2). In this subsection, we present results from a complementary theoretical approach
that strictly assumes triadic resonance. In our laboratory experiments, a wave generator continuously
forces the primary waves from a spatially local region, i.e., around x = 0. The wave field then
evolves nonlinearly as it propagates away from the wave generator. Thus, we assume the existence
of a slowly varying spatial coordinate X = εx over which the internal wave modal amplitudes vary.
At the leading order O(ε), the wave field comprises all three waves forming the resonant triad, i.e.,
modes m and n at frequency ω0 and mode p = |m − n| at frequency 2ω0, given as

ψ1(x, z, t ) = m(X )

2
sin

(mπz

H

)
ei(kmx−ω0t ) + n(X )

2
sin

(nπz

H

)
ei(knx−ω0t )

+ p(X )

2
sin

(
(n − m)πz

H

)
ei(kpx−2ω0t ) + c.c., (18)

b1(x, z, t ) = − N2

[
m(X )km

2ω0
sin

(mπz

H

)
ei(kmx−ω0t ) + n(X )kn

2ω0
sin

(nπz

H

)
ei(knx−ω0t )

+ p(X )kp

4ω0
sin

(
(n − m)πz

H

)
ei(kpx−2ω0t ) + c.c.

]
. (19)

Here, the horizontal wave number kp = pπ/(H cot θp), with cot θp =
√

N2 − 4ω2
0/(2ω0), satisfies

kp = km + kn, thus causing triadic resonance. In terms of the stream-function amplitudes, the modal
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FIG. 2. Theoretical spatial evolution of the modal amplitudes Rj of ∂ρ ′/∂x for the (a) case-1 resonant
triad, i.e., (m, n, p) = (3, 4, 1) at ω0/N = 0.4841 and (b) case-2 resonant triad, i.e., (m, n, p) = (3, 5, 2) at
ω0/N = 0.4472. In each of the plots, the amplitudes of mode m at ω0, mode n at ω0, and mode p at 2ω0

are shown in red, blue, and black, respectively. The plots in this figure have been obtained by numerically
solving Eqs. (20) and (21) for the corresponding resonant triad, with H = 0.325 m and N = 1 rad/s. The initial
conditions m(X = 0) and n(X = 0) correspond to (Am, An) = (5, 5) mm in Eq. (3), with p(X = 0) = 0.

amplitudes of the horizontal displacement forced by the wave generator Am and An in Eq. (3) can be
written as |Am| = ε|m(X = 0)|mπ/(Hω0) and |An| = ε|n(X = 0)|nπ/(Hω0), where ε appears
since εψ1 is what represents the primary wave field.

The amplitude evolution equations can be shown to be [37]

d j

dX
= iα j

∗
q p, where ( j, q) = (m, n) or (n, m), (20)

dp

dX
= iαpmn, (21)

where the constants αm, αn, and αp are given by

α j = −1

4k j

∫ H
0 φ j (z)[Bqp(z) + Bpq(z)]dz∫ H

0 φ2
j (z)

[
N2 − ω2

0

]
dz

, where ( j, q) = (m, n) or (n, m), (22)

αp = −1

4kp

∫ H
0 φp(z)[Cmn(z) + Cnm(z)]dz∫ H

0 φ2
p(z)

[
N2 − 4ω2

0

]
dz

. (23)

The expressions for Cjq(z) and Bjq(z) are ( j = m, n, or p and q = m, n, or p)

Cjq(z) = kq

ωq
(k j + kq)(k jN

2φ jφ
′
q − kqN2φ′

jφq)

− (ω j + ωq)
(
k jφ j

(
φ

′′′
q − k2

qφ
′
q

) − kqφ
′
j

(
φ

′′
q − k2

qφq
))

, (24)

Bjq(z) = kq

ωq
(k j − kq)(k jN

2φ jφ
′
q + kqN2φ′

jφq)

− (ω j − ωq)
(
k jφ j

(
φ

′′′
q − k2

qφ
′
q

) + kqφ
′
j

(
φ

′′
q − k2

qφq
))

, (25)

where φm = sin(mπz/H ), φn = sin(nπz/H ), and φp = sin((n − m)πz/H ).
Figure 2(a) shows the horizontal spatial evolution of the primary and superharmonic modal

amplitudes of the horizontal density gradient perturbation, defined in Eq. (4) based on the numerical
solution of Eqs. (20) and (21) for the case-1 resonant triad. The superharmonic wave, extracting
energy from the primary waves, grows in amplitude from x = 0. For small values of x, the
primary wave amplitudes decrease relatively slowly, resulting in an almost linear growth of
the superharmonic wave amplitude. The superharmonic wave amplitude reaches values that are
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significantly larger than the primary wave amplitudes by around x = 0.5 m, beyond which the
spatial evolution of all three amplitudes becomes evidently nonlinear. In terms of energy content, by
x = 1.66 m, the mode-4 primary wave has lost all its initial energy, while the mode-1 superharmonic
wave contains 85% of the total energy. Energy then flows from the superharmonic to the primary
waves from x = 1.66 m to x = 3.32 m, and the relative energy distribution between the three waves
at x = 3.32 m is identical to that at x = 0. The amplitude evolution between x = 0 and x = 3.32 m
repeats for larger x, assuming that the flow remains in the weakly nonlinear inviscid regime of the
isolated resonant triad under consideration. The amplitude evolution for the case-2 resonant triad
[Fig. 2(b)] is qualitatively similar to that for case 1, with the superharmonic mode 2 containing 75%
of the total energy by x = 1.63 m.

In summary, Fig. 2 shows that the superharmonic wave grows linearly with x for small x as the
primary wave modes contain finite and slowly varying energies. For typical experimental conditions
considered in this paper (primary waves forced at resonance with a horizontal displacement
amplitude of 5 mm each), the superharmonic wave is predicted to contain the bulk of the total
energy by around x = 1.6 m. In our experiments, we aim to validate the theoretical predictions
presented in Fig. 2. As discussed in Sec. IV, the spatial growth at small x is rigorously validated by
experiments. The longer term spatial evolution, however, is not so easily validated due to viscous
effects and the end walls of the tank generating a reflected wave field in our measurement region.
The viscous effects, including a methodology on how to incorporate them in theory, are discussed
in Sec. V B.

IV. RESULTS

In this section, we present our experimental results obtained for the case-1 and case-2 resonant
triads. Sections IV A–IV D concern the case-1 resonant triad, sequentially showing the generation
of a superharmonic wave field, validation of the theoretically predicted spatial structure and the
amplitude evolution equations at resonance, investigation of the superharmonic wave field at
off-resonant frequencies, and finally a presentation of results on the effect of the primary wave
forcing amplitudes. Section IV E concerns the case-2 resonant triad, demonstrating the occurrence
of resonance, validating the theoretical amplitude evolution equations, and studying the off-resonant
behavior.

A. Superharmonic wave generation (case-1 resonant triad)

Figure 3 shows the time frequency plots based on the measured horizontal density gradient field
from four different experiments with the forcing corresponding to (m, n) = (3, 4). Spectral peaks
whose widths �ω are around 0.3ω are observed, thus requiring a frequency window of a larger width
(specifically chosen as 0.4ω in the current study) for calculating filtered wave fields as mentioned
in Sec. II. Figure 3(a), corresponding to the experiment with (A3, A4) = (5, 5) mm and the resonant
forcing frequency of ω0/N = 0.4841, shows the emergence of a strong signal at the superharmonic
frequency 2ω0. By around 10T0, the wave field at 2ω0 seems to be as strong as the wave field at the
forcing frequency ω0. In contrast, at the off-resonant forcing frequency of ω0/N = 0.3 [Fig. 3(b)],
the superharmonic generation is significantly weaker, with a strength that is at least a couple of
orders of magnitude smaller than the primary wave field. It is noteworthy that the forcing amplitudes
are (A3, A4) = (5, 5) mm in Fig. 3(b), too, and hence the difference between Figs. 3(a) and 3(b) is
attributed entirely to the difference in the forcing frequencies. The weak superharmonic wave field
in Fig. 3(b) could still be a result of off-resonant wave-wave interaction between the primary modes,
as suggested by the constant-amplitude theory in Sec. III A.

To highlight the role of simultaneous presence of modes m and n in the primary wave field for
resonant superharmonic generation, the bottom row of Fig. 3 shows results from experiments where
only mode 3 [Fig. 3(c)] or mode 4 [Fig. 3(d)] was forced, both at the resonant forcing frequency of
ω0/N = 0.4841. Both experiments show negligible generation of a superharmonic wave field, thus
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FIG. 3. Time frequency spectrum | ̂∂ρ ′/∂x(ω, t )|, spatially averaged over 6 � x � 25 cm, 0 � z �
32.5 cm, in four different experiments for the case-1 resonant triad, i.e., (m, n, p) = (3, 4, 1). The four
panels correspond to (a) the resonant forcing frequency ω0/N = 0.4841 with (A3, A4) = (5, 5) mm, (b) the
off-resonant forcing frequency ω0/N = 0.3 with (A3, A4) = (5, 5) mm, (c) the resonant forcing frequency
ω0/N = 0.4841 with (A3, A4) = (5, 0) mm, and (d) the resonant forcing frequency ω0/N = 0.4841 with
(A3, A4) = (0, 5) mm. The white dashed-dotted lines in all the plots correspond to ω/N = ω0/N and 2ω0/N .
Every plot has been normalized such that the maximum value at the forcing frequency ω = ω0 is unity.

confirming that the interaction between modes 3 and 4 is essential for the superharmonic generation
observed in Fig. 3(a). Furthermore, Figs. 3(c) and 3(d) show that excitation of a superharmonic wave
field, if any, by the wave generator itself is negligible. Additionally, noticeable mean flow seems to
occur in all the cases where resonant superharmonic generation is absent, i.e., Figs. 3(b)–3(d), an
aspect we will pursue in future studies. In summary, Fig. 3 presents experimental confirmation
of strong superharmonic generation due to resonant interaction between modes 3 and 4 at the
primary wave frequency of ω0/N = 0.4841. We proceed to investigate the spatial structure of the
superharmonic wave field observed in Fig. 3(a), and verify if it indeed contains predominantly mode
p with p = |m − n| = 1.

B. Forcing at resonant frequency (case-1 resonant triad)

Figure 4(a) shows the spatial structure of the steady-state wave field filtered at the forcing
frequency ω0 in the experiment corresponding to Fig. 3(a), i.e., (m, n) = (3, 4), (A3, A4) = (5, 5)
mm, and ω0/N = 0.4841. For reference, we recall from Sec. II that the horizontal wavelengths of the
primary modes are λ3 = 0.392 m, λ4 = 0.294 m, and that of the superharmonic mode is λ1 = 0.168
m. The observed wave field can be understood as a superposition of spatially evolving modes 3 and
4 that are forced at x = 0. Indeed, modal decomposition at different x locations reveals that the
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FIG. 4. Experimental measurements for the case-1 resonant triad, i.e., (m, n, p) = (3, 4, 1), at the resonant
forcing frequency of ω0/N = 0.4841, and forcing amplitudes of (A3, A4) = (5, 5) mm. (a) Horizontal density
gradient field filtered at the forcing frequency ω0. (b) Modal decomposition at four different x locations (see
legend) of the wave field shown in (a). (c) Horizontal density gradient field filtered at twice the forcing
frequency, i.e., 2ω0. (d) Modal decomposition at four different x locations (see legend) of the wave field shown
in (c). All the plots correspond to t = 20T0, thus representing the steady-state wave field. The gray regions in
(a) and (c) correspond to the joint region indicated by the first black strip in Fig. 1, where measurements were
not possible.

steady-state wave field predominantly contains modes 3 and 4 [Fig. 4(b)]. Furthermore, we also
observe that the primary wave amplitudes decay with x, with modes 3 and 4 reducing in amplitude
by 13.8% and 11.5%, respectively, over 0.182 m. The occurrence of weak but nonzero amplitudes
at modes 5 and 6 is attributed to both the discrete nature of forcing by the wave generator, and finite
resolution (in space and time) of the experimental measurements.

Figure 4(c) shows the spatial structure of the steady-state wave field filtered at the superharmonic
frequency 2ω0 in the same experiment as in Fig. 4(a). A mode-1 structure is clearly evident, and is
consistent with the theoretical prediction that the generated superharmonic wave will have a mode-p
structure with p = |m − n| = 1. Furthermore, the observed horizontal wavelength of 15.5 cm is
close to the theoretical estimate of 16.8 cm for the mode-1 internal wave horizontal wavelength
at 2ω0/N (see end of Sec. II). The results from modal decomposition [Fig. 4(d)] confirm that the
superharmonic wave field is dominated by mode 1, with its amplitude increasing with x.

We proceed to compare the observed spatial growth of the steady-state superharmonic modal
amplitude in the resonant forcing frequency experiment with the theoretical predictions based on the
amplitude evolution Eqs. (20) and (21). Figure 5(a) shows the spatial evolution of the steady-state
primary wave modal amplitudes in the case-1 resonant triad experiment with (A3, A4) = (5, 5)
mm and the resonant forcing frequency of ω0/N = 0.4841. In other words, we perform modal
decomposition at all x in the wave field shown in Fig. 4(a) to plot Rω0

3 and Rω0
4 as a function

of x. The observed mode-3 and mode-4 primary wave amplitudes show a decay of 25% and
24.7%, respectively, over 50 cm; corresponding values based on the inviscid amplitude evolution
equations (solutions plotted using solid lines) are 6.8% and 12.9%. We attribute the relatively
stronger observed decay to viscous effects, an aspect that is discussed further in Sec. V B. The
superharmonic mode-1 amplitude, normalized by Rω0

3 Rω0
4 measured at x = 5.5 cm, shows an almost

linear growth until around x � 40 cm, beyond which it shows an evidently nonlinear evolution
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FIG. 5. Spatial evolution of the steady-state modal amplitudes at resonance for the case-1 resonant triad
experiment shown in Fig. 4. (a) Observed spatial evolution of the primary wave modal amplitudes, Rω0

3 and
Rω0

4 . Predictions from the inviscid amplitude evolution Eqs. (20) and (21), with initial conditions taken from
measured primary wave amplitudes at x = 5.5 cm, are shown using solid lines. (b) Spatial evolution of the
superharmonic mode-p = |m − n| = 1 amplitude R2ω0

1 , normalized by Rω0
3 Rω0

4 measured at x = 5.5 cm. The
black dashed-dotted line indicates theoretical linear growth for small x, based on Eq. (27). The dotted line
indicates the numerical solution of Eqs. (20) and (21). All the experimental data shown in this figure are based
on the measurements between 20T0 and 25T0.

[Fig. 5(b)]. To understand the linear growth, one can integrate Eq. (21) to write

p(X ) = p(X = 0) + iαpm(X = 0)n(X = 0)X, (26)

where we assume that m(X ) and n(X ) remain invariant with X . Indeed, in the inviscid limit,
this assumption is valid for small X , as seen in the numerical solution of the amplitude evolution
equations in Fig. 2. Writing in terms of the actual wave field (recall that εψ1 is what represents the
primary wave field) and the physical coordinate x (recall that X = εx), Eq. (26) becomes

̃p(x) = ̃p(x = 0) + iαp̃m(x = 0)̃n(x = 0)x, (27)

where ̃ j = ε j for j = m, n, or p. Therefore, with ̃p(x = 0) = 0, ̃p(x)/(̃m(x = 0)̃n(x = 0))
goes as iαpx, with the normalization by ̃m(x = 0)̃n(x = 0) allowing us to isolate the effects
of forcing frequency from the forcing amplitudes. The resulting theoretical slope for the linear
growth of R2ω0

1 /(Rω0
3 Rω0

4 ) accurately captures the experimental observation for x values at least
until around 40 cm, as shown by the dashed dotted line in Fig. 5(b). Here, the normalizing factor
Rω0

3 Rω0
4 is taken as what is measured at x = 5.5 cm, which is the closest location to the wave

generator where the measured primary wave field is without any noticeable noise. Due to unknown
complex processes occurring close to the wave generator (x < 5 cm), the exact physical location
of the origin of the x axis is unknown, thus yielding an apparent nonzero intercept in Fig. 5(b). An
example of such a process is the possibility of the forced primary waves generating a superharmonic
wave field in the near vicinity of the wave generator akin to the constant-amplitude theory in
Sec. III A. In summary, Fig. 5 quantitatively validates the theoretical prediction of linear growth of
the steady-state superharmonic mode-1 amplitude for sufficiently small x. However, the relatively
stronger decay in the observed primary wave amplitudes [Fig. 5(a)], and the nonlinear features in the
superharmonic wave field for x > 40 cm [Fig. 5(b)] are in contrast to the fully numerical solution of
the inviscid amplitude evolution equations [Fig. 2(a)]. While the viscous wave field evolution over
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FIG. 6. Spatial evolution of the normalized steady-state superharmonic mode-1 amplitude at off-resonant
forcing frequencies for the case-1 resonant triad, i.e., (m, n, p) = (3, 4, 1). All three experiments in this plot
were performed with (A3, A4) = (5, 5) mm at forcing frequencies indicated in the legend. The blue dashed line
indicates the superharmonic mode-1 amplitude for ω0/N = 0.4 based on the constant-amplitude solution in
Sec. III A. The gray solid line indicates theoretical linear growth for small x at resonance based on Eq. (27).
The black dashed-dotted line indicates the numerical solution of Eqs. (20) and (21). The normalizing factor is
Rω0

3 Rω0
4 as measured at x = 5.5 cm in the corresponding experiment.

larger x is discussed in Sec. V B, we recall that reflected waves from the right end of the tank make
it difficult to observe the steady-state wave field at large x.

C. Forcing at off-resonant frequencies (case-1 resonant triad)

Modal decomposition and spatial evolution analyses such as in Figs. 4 and 5(b) are performed
for all off-resonant forcing frequency experiments to investigate the frequency extent (around
the resonant frequency) over which superharmonic wave generation occurs. It is, however, worth
highlighting that the superharmonic wave need not be an internal wave if the forcing is away from
the resonant frequency. In other words, at off-resonance, what we obtain as mode 1 at 2ω0 may not
satisfy the dispersion relation for internal wave modes.

As a result of the modal analysis, Fig. 6 shows the spatial evolution of steady-state normalized
superharmonic mode-p = 1 amplitude from experiments at three different off-resonant frequencies
(indicated in the legend). Far from resonance, i.e., ω0/N = 0.4, superharmonic wave generation
is observed to be small. The normalized superharmonic mode-1 amplitude for ω0/N = 0.4 based
on the constant-amplitude solution in Sec. III A (blue dashed line) provides a mechanism for
superharmonic wave generation far from resonance. At a forcing frequency closer to resonance,
i.e., ω0/N = 0.47, a somewhat linear growth is observed up to around 20 cm, albeit with a slope
smaller than what is observed at resonance (gray solid line/black dashed-dotted line). Furthermore,
the superharmonic wave amplitude decays beyond x = 30 cm for ω0/N = 0.47, which is in contrast
to what we observe at resonance in Fig. 5(b). For ω0/N = 0.495, which is larger than the resonant
frequency, we observe relatively weak superharmonic waves for x > 20 cm when compared
to ω0/N = 0.47. For x < 20 cm, however, relatively strong superharmonic waves are observed
for ω0/N = 0.495. We attribute this occurrence to the possibility of other resonant interactions
generating superharmonic mode 1. The presence of weak modes 5 and 6 in the primary wave field
[see Fig. 4(b)] may result in the resonant generation of superharmonic mode 1 due to the interaction
between mode 4 and mode 5, or mode 5 and mode 6; the resonant forcing frequencies for (m, n, p) =
(4, 5, 1) and (5,6,1) are ω0/N = 0.4905 and 0.4937, respectively, therefore relatively close to
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FIG. 7. (a) Normalized steady-state superharmonic mode-1 amplitude at x = 25 cm as a function of the
forcing frequency ω0 for the case-1 resonant triad, i.e., (m, n, p) = (3, 4, 1). (b) Normalized steady-state
superharmonic mode-1 amplitude at various x (see legend) as a function of the forcing frequency ω0

for the case-1 resonant triad, i.e., (m, n, p) = (3, 4, 1), over a wider range of ω0 than in (a). The black
dashed line represents the normalized superharmonic amplitude based on the constant-amplitude solution in
Sec. III A. In both (a) and (b), the normalizing factor is Rω0

3 Rω0
4 as measured at x = 5.5 cm in the corresponding

experiment. The vertical dashed dotted line in both plots is drawn at the theoretical resonant forcing frequency
of ω0/N = 0.4841.

0.495. The theoretical slope of linear growth of R2ω0
p /(Rω0

m (x = 0)Rω0
n (x = 0)) at small x [Eq. (27)]

for (m, n, p) = (3, 4, 1), (4, 5, 1), and (5,6,1) are 1.28, 2.15, and 3.24 m3/kg, respectively. This
suggests that other resonant interactions at larger (m, n), and hence larger ω0/N for resonance based
on Eq. (2), could result in relatively faster growth of the superharmonic mode-1 amplitude at small
x even if the primary wave amplitudes are relatively weak. Furthermore, for ω0/N = 0.495, the
superharmonic frequency is very close to evanescent behavior, and the corresponding enhanced
viscous decay (see Sec. V B) could explain why the superharmonic mode 1 rapidly decays.

We proceed to explore several other off-resonant frequencies, and compute the steady-state
normalized superharmonic mode-1 amplitude at a fixed x location for several ω0/N around
the resonant frequency. It is noteworthy that constant horizontal displacement amplitudes (A3 =
A4 = 5 mm is forced at all frequencies) do not correspondingly lead to the same amplitudes at
different frequencies for the horizontal density gradient, thus motivating the normalization of the
superharmonic wave amplitude. Figure 7(a) shows R2ω0

1 /(Rω0
3 Rω0

4 ) at x = 25 cm as a function of
ω0/N . A clear peak is observed very close to ω0/N = 0.4841, thus confirming the occurrence of
resonance at the theoretically predicted forcing frequency. Normalization of the superharmonic
amplitude eliminates any role for the forcing primary amplitudes in the occurrence of the resonant
peak. In Fig. 7(b), we present a similar plot as in Fig. 7(a), but for a wider range of ω0/N and several
x locations (see legend). A resonant peak at the theoretical prediction of ω0/N = 0.4841 is present
for all x > 24 cm, with the peak being slightly shifted to the right for x < 24 cm. As discussed
earlier for Fig. 6, relatively strong superharmonic mode-1 generation at small x for ω0/N > 0.4841
could be due to other resonant interactions involving mode 5 or 6 that are present in the forced
primary wave field. At forcing frequencies much smaller than the resonant frequency, small but
finite superharmonic mode-1 amplitude is observed, which is explained by the constant-amplitude
superharmonic solution (black dashed line) obtained based on off-resonant interaction between
primary mode 3 and mode 4. In summary, Fig. 7 presents experimental demonstration of resonant
generation of superharmonic mode 1 at ω0/N = 0.4841 for (m, n, p) = (3, 4, 1), with the resonance
peak being around �(ω0/N ) = 0.03 in width (approximately estimated by visual inspection).
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FIG. 8. Effects of forcing amplitude for the case-1 resonant triad at resonance, i.e., (m, n, p) = (3, 4, 1)
and ω0/N = 0.4841. (a) Spatial evolution of the normalized steady-state superharmonic mode-1 amplitude
for different mode-4 forcing amplitudes (A4 = 5, 4, 3, 2, 1 mm, with the corresponding measured Rω0

4 at x =
6 cm indicated in the legend), while the mode-3 forcing amplitude was held fixed at A3 = 5 mm. The solid
lines indicate the best fit straight line for the corresponding experiment. (b) Variation of the slope of the best
fit straight lines from (a), i.e., the spatial growth rate of the normalized steady-state superharmonic mode-1
amplitude, with the mode-4 forcing amplitude. The dashed line indicates the theoretical prediction based on
the amplitude evolution equations. In both (a) and (b), the normalizing factor is Rω0

3 Rω0
4 as measured at x = 6

cm in the corresponding experiment.

D. Effect of forcing amplitude at resonance (case-1 resonant triad)

In this subsection, we present results from experiments at resonance (ω0/N = 0.4841) for the
case-1 resonant triad, i.e., (m, n, p) = (3, 4, 1), with varying A4 while A3 was held fixed at 5 mm. As
shown in Fig. 8(a), linear growth of the normalized steady-state superharmonic mode-1 amplitude is
observed for small x in every experiment, with the legend indicating the measured Rω0

4 at x = 5.5 cm.
As expected based on Eq. (27), the slope of the linear growth hardly changes as Rω0

4 is varied.
The experiment with the weakest forcing amplitude (Rω0

4 = 0.45 kg/m4) falls above the rest of the
experiments, probably owing to errors in the measurement of small Rω0

4 at x = 6 cm that is used
in the normalization of the superharmonic wave amplitude. A plot of the measured slope [from
Fig. 8(a)] as a function of Rω0

4 is in fair agreement with the theoretical prediction shown using the
dashed horizontal line in Fig. 8(b). The observed spatial growth of the normalized superharmonic
mode-1 amplitude is weaker (by around 10%) than the inviscid theoretical estimate across all values
of primary mode-4 amplitude. This could be due to viscous effects, including those at the side walls
of the tank, which we discuss further in Sec. V B. In summary, Fig. 8 provides further quantitative
validation of the amplitude evolution in Eq. (21) at small x.

E. Case-2 resonant triad

To demonstrate the robustness of our experimental results, and subsequent quantitative validation
of the amplitude evolution equations, we performed experiments for another resonant triad.
The case-2 resonant triad is specified by (m, n, p) = (3, 5, 2), whose resonant forcing frequency
according to Eq. (2) is ω0/N = 0.4472. Based on plots similar to Figs. 7(a) and 7(b) (not shown)
with (A3, A5) = (5, 5) mm, we observe a resonance peak at around ω0/N = 0.46. The small shift in
the resonant frequency from the theoretical prediction could be due to the weak presence of other
resonantly interacting modes in the forced primary wave field. For example, the resonant forcing
frequency for (m, n, p) = (4, 6, 2) is ω0/N = 0.4677.

Figure 9 shows the spatial structure of the steady-state wave field filtered at ω0 (top row)
and 2ω0 (bottom row) in the case-2 resonant triad experiment at the measured resonant forcing
frequency of ω0/N = 0.46. For reference, we recall from Sec. II that the horizontal wavelengths
of the primary modes are λ3 = 0.433 m, λ5 = 0.26 m, and that of the superharmonic mode is
λ2 = 0.163 m. Indeed, a modal decomposition of the wave field in Fig. 9(a) reveals amplitudes
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FIG. 9. Experimental measurements for the case-2 resonant triad, i.e., (m, n, p) = (3, 5, 2), at the measured
resonant forcing frequency of ω0/N = 0.46, and forcing amplitudes of (A3, A5) = (5, 5) mm. (a) Horizontal
density gradient field filtered at the forcing frequency ω0. (b) Modal decomposition at four different x locations
(see legend) of the wave field shown in (a). (c) Horizontal density gradient field filtered at twice the forcing
frequency, i.e., 2ω0. (d) Modal decomposition at four different x locations (see legend) of the wave field shown
in (c). All the plots correspond to t = 20T0, thus representing the steady-state wave field.

predominantly at mode 3 and mode 5, though relatively weak amplitudes are present at other modes
as well [Fig. 9(b)]. Weak spatial decay is observed in the amplitudes of both mode 3 and mode
5, which we attribute to viscous effects. The steady-state superharmonic wave field shows a clearly
predominant mode-2 spatial structure [Fig. 9(c)], which is consistent with the resonant generation of
mode p = |m − n| = 2. The modal decomposition in Fig. 9(d) shows a spatial growth of the mode-2
amplitude in the steady-state superharmonic wave field, which we compare with the prediction from
the amplitude evolution equations in Fig. 10.

Figure 10 shows that the spatial growth of the normalized, steady-state mode-2 amplitude at
the measured resonant forcing frequency of ω0/N = 0.46 is predicted accurately until around
x = 35 cm by the theoretical linear growth at small x in Eq. (27). For smaller forcing frequencies,
spatial linear growth of the normalized steady-state mode 2 is observed at small x, with progressively
smaller slopes as we move away from resonance. For ω0/N > 0.46, relatively large mode-2
amplitude is observed for very small x, before rapid decay of the same for larger x. Similar to
the proposed mechanism for other resonant interactions generating mode 1 for large ω0/N in
the case-1 resonant triad (Fig. 6), it is possible that resonant interaction between relatively weak
mode 4 and mode 6, or mode 5 and relatively weak mode 7 in the forced primary wave field
may generate superharmonic mode 2. For resonant triads specified by (m, n, p) = (4, 6, 2) and
(m, n, p) = (5, 7, 2), the resonant forcing frequencies are ω0/N = 0.4677 and 0.4781, respectively.
The theoretical slope of linear growth of R2ω0

2 /(Rω0
m (x = 0)Rω0

n (x = 0)) at small x [Eq. (27)]
for (m, n, p) = (3, 5, 2), (4, 6, 2), and (5,7,2) are 0.75, 1.25, and 1.84 m3/kg, respectively. This
suggests that other resonant interactions at larger (m, n), and hence larger ω0/N for resonance
based on Eq. (2), could result in relatively rapid growth of the superharmonic mode-2 amplitude
at small x even if the primary wave amplitudes are relatively weak. Furthermore, the enhanced
viscous effects at these large 2ω0/N may also result in rapid decay of the superharmonic mode-2
amplitude (Sec. V B).
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FIG. 10. Spatial evolution of the normalized steady-state superharmonic mode-2 amplitude at resonant
(ω0/N = 0.46) and off-resonant forcing frequencies for the case-2 resonant triad, i.e., (m, n, p) = (3, 5, 2). All
five experiments in this plot were performed with (A3, A5) = (5, 5) mm at forcing frequencies indicated in the
legend. The normalizing factor is Rω0

3 Rω0
5 as measured at x = 5.5 cm in the corresponding experiment. The

black dashed-dotted line indicates theoretical linear growth for small x at resonance based on Eq. (27). The
dotted line indicates the numerical solution of Eqs. (20) and (21).

In this subsection, we have presented an experimental demonstration of resonant generation of
superharmonic mode 2 for the case-2 resonant triad, i.e., (m, n, p) = (3, 5, 2). The observed spatial
growth at small x of the superharmonic mode 2 in the steady-state wave field is well captured by the
theoretical amplitude evolution equations. Finally, experiments at off-resonant forcing frequencies
revealed that the superharmonic mode-2 generation becomes weaker as we move away from
resonance, whose frequency width is observed to be a similar value as that for the case-1 resonant
triad, i.e., �ω0 ≈ 0.03N .

V. DISCUSSION

In Sec. IV, we reported experimental observations of superharmonic generation due to triadic
resonance, and validated the amplitude evolution equations in describing the spatial growth of the
steady-state superharmonic wave. In this section, we investigate two important questions that were
not addressed in the previous section. In Sec. V A, the initial temporal growth of the superharmonic
wave at a fixed horizontal location (before it reaches steady state) is investigated. The role of viscous
effects in our experimental observations is then discussed in Sec. V B.

A. Slow temporal evolution

The spatial growth of the steady-state superharmonic wave at small distances from the wave
generator is captured accurately by the amplitude evolution equations, (20) and (21), wherein it was
assumed that the steady-state modal amplitudes evolve over relatively large spatial scales. During
the transient period in the experiment, however, the wave amplitudes at a fixed spatial location
are temporally evolving, thus rendering the amplitude evolution equations, (20) and (21), not well
suited. We proceed to explore how well amplitude evolution equations based on a slow temporal
evolution could describe the observed wave fields before steady state is reached.

In contrast to the large scale spatial evolution assumed in Sec. III B, previous studies [22,35] on
triadic resonance have used a framework which assumes a slow temporal evolution of the amplitudes
of each of the waves forming the resonant triad. Defining the slow time τ = εt , the wave field at
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FIG. 11. Temporal evolution of the modal amplitudes at a fixed x location for the case-1 resonant triad
at resonance, i.e., (m, n, p) = (3, 4, 1) at ω0/N = 0.4841, with (Am, An) = (5, 5) mm. (a) x = 7.5 cm, and
(b) x = 21 cm. The dashed-dotted lines in (a) and (b) indicate predictions of initial growth from the slow
temporal evolution theory presented in Sec. V A, using the measured steady-state primary wave amplitudes at
the corresponding x as initial conditions for the growth of the superharmonic wave.

O(ε) is written as

m(x, z, t ) = m(τ )

2
sin

(mπz

H

)
ei(kmx−ω0t ) + n(τ )

2
sin

(nπz

H

)
ei(knx−ω0t )

+ p(τ )

2
sin

(
(n − m)πz

H

)
ei((kpx−2ω0t ) + c.c., (28)

where it is assumed that the same modal amplitudes exist at all x. It is noteworthy that the transient
wave field in our experiments contains quite strong amplitude variations along x, too. In this
subsection, however, we ignore these spatial variations to potentially capture the leading order
temporal evolution of the amplitudes before they reach steady state.

Following a procedure that is very similar to how Eqs. (20) and (21) were derived, the amplitude
evolution equations can now be shown to be

d j

dτ
= iβ j

∗
q p, where ( j, q) = (m, n) or (n, m), (29)

dp

dτ
= iβpmn, (30)

where

β j = α jcg, j = α j

(
ω j

k j

)(
1 − ω2

j

N2
0

)
for j = m, n, and p. (31)

The coefficients α j appeared earlier in the amplitude evolution Eqs. (20) and (21), and cg, j is the
group speed of mode j at frequency ω j .

We investigate the usefulness of Eqs. (29) and (30) in describing the temporal evolution
of the observed transient wave field in the case-1 resonant triad experiment, i.e., (m, n, p) =
(3, 4, 1), forced at resonance. The temporal evolution (from very early times) of the primary and
superharmonic wave amplitudes at two different x locations are shown in Fig. 11. At x = 7.5
cm [Fig. 11(a)], we observe that the primary wave amplitudes reach steady state by around
t = 3T0 − 4T0, by which point the superharmonic mode 1 has also started growing. The slope
of initial growth of the superharmonic mode 1 is well captured by the theoretical slope of initial
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TABLE I. Theoretical [Eq. (34)] and experimentally observed spatial viscous decay rates Cj (in m−1) for
mode 3 at ω0 (column 1), mode 4 at ω0 (column 2), and mode 1 at 2ω0 (column 3) from analytical expression
(34) and individual mode experiments.

Cj (in m−1) C3 C4 C1

2D [Eq. (34)] 0.0238 0.0563 0.4608
Individual mode experiments 0.66 0.73 –

growth (black dashed-dotted line) based on Eqs. (29) and (30). A similar result holds at x = 21 cm
[Fig. 11(b)], except that the slope of initial growth of the superharmonic mode 1 sustains for a longer
duration. As a result, and as already discussed, the steady-state superharmonic mode-1 amplitude
is larger at x = 21 cm than at x = 7.5 cm. In summary, Fig. 11 has shown that the slow temporal
evolution theory is useful in describing the initial growth of the superharmonic mode-1 wave at
a fixed location, which subsequently saturates at its steady value. Once the wave field reaches
steady state, the amplitude evolution equations (20) and (21) take over to quantitatively describe the
spatial growth of the superharmonic mode 1 for distances of around one wavelength of the primary
mode 3.

B. Viscous effects

As reported in Fig. 5, while the inviscid amplitude evolution equations (20) and (21) accurately
capture the spatial growth of the superharmonic wave at small x, they evidently underestimate the
spatial decay of the primary wave amplitudes. We approximately incorporate viscous effects in the
amplitude evolution equations in the following manner:

d

dx
(ε j ) = iα jε

∗
q εp − Cjε j, where ( j, q) = (m, n) or (n, m), (32)

d

dx
(εp) = iαpεmεn − Cpεp, (33)

where Cj ( j = m, n, or p) represents the spatial viscous decay rate for mode j at its corresponding
frequency. We recall that ε j represents the modal amplitude in the physical wave field. In the
absence of viscous effects, Eqs. (32) and (33) reduce to the inviscid amplitude evolution equations
(20) and (21). In the absence of amplitude evolution due to triadic resonance, each modal amplitude
evolves spatially as exp(−Cjx). The values of Cj are directly measured from experiments where
mode j is forced in isolation at the corresponding frequency with a relatively small amplitude of
Aj = 2 mm. Before discussing the observed viscous decay rates, it is instructive to discuss their
physical origins.

Based on weak viscous dissipation in linear, two-dimensional flows with a kinematic viscosity
ν, the spatial viscous decay rate of mode j at frequency ω j is [46]

C2D
j = j3

( π

H

)3 ν

2N

1(
1 − ω2

j/N2
)5/2 . (34)

The viscous decay rate in Eq. (34) for the modal amplitudes can be obtained as half of the product
between the kinematic viscosity ν, the inverse of the group speed ∂ω j/∂k j (the speed with which
energy, proportional to the square of the amplitude, propagates), and [k2

j + ( jπ/H )2], which results
from the Laplacian operator in the viscous term of the momentum equations. Equation (34) suggests
that the decay rate goes as the cube of the mode number, hence resulting in larger viscous decay
for higher modes. Furthermore, the closer ω j/N is to unity, the larger the viscous decay is. For the
three waves that form the case-1 resonant triad, i.e., (m, n, p) = (3, 4, 1) with ω0/N = 0.4841, the
corresponding values of C2D

j are shown in Table I. Among the three waves, C2D
j is largest for the
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FIG. 12. Comparison between observations and inviscid/viscous theory at resonance for the case-1
resonant triad experiment presented in Fig. 5. (a) Spatial evolution of the experimental steady-state mode-3
amplitude (
). Predictions from the inviscid amplitude evolution Eqs. (20) and (21) and the viscous amplitude
evolution Eqs. (32) and (33) are shown in red (◦) and black (�), respectively. Shown in magenta (�) is
the viscous decay of the primary mode 3 as observed in an individual mode-3 experiment (observed decay
rate C3 is given in Table I). (b) Same as (a), but for the primary mode 4. (c) Spatial evolution of the
experimental normalized steady-state superharmonic mode-1 amplitude (
). Predictions from the inviscid
amplitude evolution Eqs. (20) and (21) and the viscous amplitude evolution Eqs. (32) and (33) are shown
in red (◦) and black (�), respectively. The normalization factor Rω0

3 Rω0
4 is as measured at x = 5.5 cm.

superharmonic mode 1 owing to its frequency being close to N . The measured viscous decay rates
C3 and C4 for the individual primary modes are, however, an order of magnitude larger than what
is estimated based on Eq. (34) (Table I). These significantly larger measured viscous decay rates
can be attributed to the viscous effects acting at the side walls of the tank in the experiments [47],
an effect that is not captured in a two-dimensional model such as that corresponding to Eq. (34).
For the superharmonic mode 1, it was difficult to estimate its viscous decay rate from the individual
mode experiment owing to the occurrence of parametric subharmonic instability [36]. As a result,
the corresponding entry in Table I is left blank. For the viscous amplitude evolution equations, while
we use the experimentally measured C3 and C4 as reported in the second row of Table I, Cp = C2D

p
is assumed for the superharmonic wave. Owing to the frequency of the superharmonic wave being
close to N0, it is reasonable to assume that the corresponding viscous decay is dominated by the 2D
effect captured in Eq. (34).

Figure 12 shows a comparison between experimental observations and predictions from viscous
amplitude evolution equations (32) and (33) for the case-1 resonant triad experiment at resonance,
i.e., the same experiment as presented in Fig. 5. Figures 12(a) and 12(b) show the spatial evolution
of the primary wave amplitudes, indicating a good quantitative agreement between observations
and the viscous theory. Furthermore, the viscous damping estimated from the individual mode
experiments [shown using � in Figs. 12(a) and 12(b)] also describe the observed spatial decay well.
In summary, the observed decay is mainly due to viscous damping rather than energy transfer to the
superharmonic wave. In contrast, the spatial growth of the superharmonic wave is described well
by the inviscid theory, with the incorporation of viscous effects seemingly capturing the departure
from linear growth from around x = 0.3 m [Fig. 12(c)].

VI. CONCLUSIONS

In this paper, we have presented an experimental study of triadic resonance in internal wave
modes when the primary wave field contains two waves of the triad. Using the internal wave
generator to force two different modes simultaneously at the theoretically predicted resonant
frequency, spontaneous excitation of a superharmonic wave of a mode number equal to the
difference between the mode numbers of the primary waves was observed. The steady-state wave
field was then shown to comprise a combination of spatially evolving internal wave modes that
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constitute the resonant triad. The spatial growth of the steady-state superharmonic wave at small
distances from the wave generator is captured accurately by the inviscid amplitude evolution
equations, based on the method of multiple scales. Indeed, the assumption of a large-scale spatial
evolution of the modal amplitudes effectively describes the observed steady-state wave field, at least
for small distances from the wave generator. Experiments at off-resonant frequencies suggest that
superharmonic wave generation due to triadic resonance is non-negligible at least over a forcing
frequency range (around the resonant frequency) of around 0.03 times the buoyancy frequency
associated with the uniform stratification. Inviscid amplitude evolution equations based on a slow
temporal evolution of the modal amplitudes were then shown to reasonably describe the transient
evolution of the wave field towards steady state. Finally, viscous effects were shown to be the
dominant factor in the spatial decay of steady-state primary wave amplitudes.

For a validation of the viscous theory over larger distances, it would be necessary to eliminate
the effect of the right-to-left propagating waves reflected from the right end of the tank in the
experiments. Also, a more rigorous treatment of viscous effects in deriving the amplitude evolution
equations, i.e., by including viscous terms that capture decay due to 2D and side wall effects in the
governing equations, may also improve the theoretical predictions of spatial evolution over larger
distances. It would be interesting to perform experiments where primary waves of multiple resonant
triads are simultaneously forced, a scenario that may occur in internal wave generation mechanisms
like tide-topography interaction. The relative importance of superharmonic wave generation due
to triadic resonance with respect to other mechanisms such as parametric subharmonic instability,
interaction with the mean flow or topography, etc., remains to be explored for realistic oceanic
regimes. Finally, incorporating the effects of nonuniform stratification [37,44,48], background
rotation [44,49], and three dimensionality [50] would make our study more relevant for oceanic
settings.
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