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We present an experimental study on the excitation of superharmonic internal wave
by resonant interaction of internal wave modes in finite-depth nonuniform stratifications.
In a nonuniform stratification, the primary wave field composed of a single horizontally
propagating vertical mode or combination of two horizontally propagating vertical modes
is forced from one end of the tank using the wave generator at a forcing frequency ω0. The
spontaneous excitation of a superharmonic wave at frequency 2ω0 by resonant interaction
of the internal wave modes of the primary wave field forced at frequency ω0 is observed.
We experimentally demonstrate that even an isolated single mode could resonantly interact
with itself to excite a superharmonic wave at frequency 2ω0 in a nonuniform stratification,
which is inhibited in the case of a uniform stratification. The resonant peak frequencies at
which the strength of superharmonic signal is maximum, and the corresponding vertical
structure of the superharmonic internal wave mode, qualitatively agree well with the
theoretical predictions obtained from the weakly nonlinear analysis. The paper concludes
with a discussion on experiments performed to observe superharmonic triadic resonant
interactions in an oceanlike nonuniform stratification profile, for which the excited super-
harmonic internal wave modes were found to be trapped within the pycnocline region.

DOI: 10.1103/PhysRevFluids.9.094806

I. INTRODUCTION

Internal waves generated at spatially localized regions in the ocean due to barotropic tidal flow
over bottom topography can be represented as horizontally propagating vertical modes at the tidal
frequency, which ensures that the boundary conditions on the ocean floor and the free surface (often
modeled as a rigid lid) are satisfied [1]. Vertical modes satisfy the no normal flow boundary condi-
tion at the ocean floor and the free surface of the ocean, with mode-m corresponding to a mode shape
(vertical eigen function) having m + 1 zero crossings in the vertical direction. Low modes detected
from satellite altimetry are observed to propagate larger distance (as far as 1000 km for mode-1)
from generation sites [2,3], whereas high modes associated with higher shear dissipate locally near
the generation sites [4]. As the low modes propagate, they transport both energy and momentum,
and can transfer energy to higher modes due to scattering by further ocean bottom topography [5]
and continental shelves [6]. Internal waves could also dissipate energy due to interactions with mean
flows and due to buoyancy-driven and shear-driven instabilities [7]. Another potential mechanism
through which energy from far-propagating low-mode internal tides could get transferred to shorter
length and timescales are wave-wave interactions, such as the triadic resonant interactions [8–10].

Three interacting internal waves satisfying the relations k1 ± k2 ± k3 = 0 and ω1 ± ω2 ± ω3 = 0
form a resonant triad, where k1,2,3 are the wave vectors and ω1,2,3 are the corresponding frequencies
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obtained from the linear internal wave dispersion relation [11]. These aforementioned relations are
referred to as the spatial and temporal resonant triad conditions. Most studies on triadic resonant
interactions have focused on triadic resonant instability [11–15] in a uniform stratification, where
one primary wave at frequency ω0 gets unstable by exciting two secondary waves at subharmonic
frequencies (<ω0), also referred to as subharmonic triadic resonance [15]. The first experimental
evidence of subharmonic triadic resonance or triadic resonant instability in internal waves was
shown by Davis and Acrivos [12]. Considering a stratified thin layer between two constant density
layers in their experiments, Davis and Acrivos [12] observed that a mode-1 internal wave above a
threshold amplitude, succumbs to a subharmonic instability with the secondary wave frequencies
being noticeably different from half the primary wave frequency.

Another possible manifestation of triadic resonance is when two internal waves of the same
frequency present in the primary wave field, excite a third wave as the secondary wave field due to
triadic resonant interactions, referred to as superharmonic triadic resonance [15]. In a first theoretical
study on internal wave modes in a finite-depth uniform stratification, Thorpe [16] computed the
resonant frequency (i.e., the forcing frequency at which three interacting waves satisfy the resonant
triad conditions) at which two horizontally propagating vertical internal waves mode-m and mode-n
(where m and n are the mode numbers) in the primary wave field at frequency ω0 are in triadic
resonance with mode-|m − n| at frequency 2ω0. The theoretically identified resonant frequencies
[16] at which superharmonic triadic resonance occurs have been validated in numerical simulations
by Varma et al. [17] and in laboratory experiments by Husseini et al. [18]. Both aforementioned
studies also captured the initial spatial evolution of the internal wave modes in the resonant triad
to be in quantitatively good agreement with the theoretical predictions based on the amplitude
evolution equations [17,18]. Excitation of superharmonics due to resonant interactions has also
been observed in a more recent experimental study with an axisymmetric confined geometry for a
uniform stratification [19].

Thorpe [20] considered a simpler two layer model, a mixed layer above a uniformly stratified
fluid layer, to show that higher harmonic internal waves can be excited when an upward propagating
internal wave (in uniformly stratified fluid layer) impinges at the interface between the two layers.
McHugh [21] generalized the aforementioned theoretical study by considering a two layer model
with two uniformly stratified fluid layers of different buoyancy frequency, to show the generation of
higher harmonics at the interface boundary due to nonlinear interactions of internal waves. While the
generation of superharmonics in a continuous nonuniform stratification has received attention more
recently in theoretical studies [22–26], experimental studies [27–29] and numerical simulations
[17,30–34], to the best of our knowledge no previous experimental studies on internal waves have
identified superharmonic resonant triads arising from nonlinear interactions of internal wave modes
in a finite-depth nonuniform stratification. Experimental studies [27–29] and numerical simulations
[30,31] on nonlinear interactions of internal waves in a nonuniform stratification, consider their
primary wave field to be locally forced in some part of the vertical fluid column, i.e., internal
wave beams, impinging on a pycnocline to excite higher harmonics in the pycnocline region due
to nonlinear interactions.

In a nonuniform stratification, an isolated primary internal wave at frequency ω0 could interact
with itself (form hereon referred to as self-interaction) to excite a secondary wave at frequency
2ω0, which is inhibited in a uniform stratification [16]. Considering an isolated internal wave mode
in a nonuniform stratification, Sutherland [32] performed numerical simulations and demonstrated
that self-interaction of internal wave modes can excite superharmonic internal waves through super-
harmonic triadic resonance. Under the weakly nonlinear theoretical framework, earlier theoretical
studies [22–24] have identified the conditions under which self-interacting primary internal wave
modes would excite superharmonic internal waves in oceanlike nonuniform stratifications. Varma
and Mathur [23] considered a more general scenario in which two different modes in the primary
wave field at a given frequency ω0, would excite a third mode at the superharmonic frequency 2ω0

due to superharmonic triadic resonance. Varma et al. [17] performed numerical simulations con-
sidering an oceanlike nonuniform stratification profile with a pycnocline, to show self-interaction
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FIG. 1. Schematic representation of our experimental study of superharmonic triadic resonance in an
idealized nonuniform stratification. The primary horizontal velocity wave field is either an isolated mode or
a combinations of two different modes at ω0 (mode-3 and/or mode-4), and their resonant interaction leads to
excitation of a superharmonic internal wave mode at 2ω0 (mode-1 or mode-2).

of mode-3 at and around the resonant frequency, resulting in excitation mode-1 superharmonics.
Numerical simulations by Baker and Sutherland [33] showed nonlinear self-interaction of a mode-1
internal tide in a nonuniform stratification to excite mode-1 superharmonics at moderately different
from twice the internal tide frequency. In more recent numerical simulations by Sutherland and
Dhaliwal [34] with stronger nonlinear forcing, superharmonic cascade of energy from primary
mode-1 to mode-1 higher harmonics was observed.

The focus of this paper, as shown in the schematic Fig. 1, is to experimentally investigate
superharmonic triadic resonance in a nonuniform stratification, resulting from resonant interaction
of two distinct modes at a forcing frequency, from hereon referred to as cross-modal interaction,
and also by a self-interaction of an isolated mode, resulting in excitation of a superharmonic
mode at twice the forcing frequency. The spontaneously excited superharmonic internal wave mode
at frequency 2ω0 can be evanescent in some sections of the vertical fluid column (as shown in
Fig. 1) depending on the stratification profile. In our experimental study two specific cases of
superharmonic internal wave resonant triads are considered.

A. Cross-modal interaction

The primary wave field is composed of two internal wave modes, mode-3 and mode-4 at forcing
frequency ω0. Depending on the forcing frequency ω0, mode-3 and mode-4 could resonantly interact
to excite a mode-1 or mode-2 internal wave at the superharmonic frequency 2ω0.

B. Self-interaction

The primary wave field has an isolated internal wave mode, mode-3 (or mode-4) at forcing
frequency ω0. Depending on the forcing frequency ω0, the isolated mode could resonantly self-
interact to excite a mode-1 or mode-2 internal wave at superharmonic frequency 2ω0.

In Sec. II, we present a weakly nonlinear theory valid for any nonuniform stratification to
evaluate the resonant frequency at which two distinct modes (or an isolated single mode) would
interact to excite a superharmonic mode at twice the forcing frequency. The weakly nonlinear
theory was developed in an earlier theoretical study by Varma and Mathur [23]. In a uniform
stratification, modes (m, n) at ω0 can resonantly interact to give only mode-(|m − n|) at 2ω0 [16],
so there is no possibility for self-interaction (m = n). But for a nonuniform stratification: (1) the
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superharmonic mode at 2ω0 need not be mode-(|m − n|), thus allowing for many more triadic
interactions and (2) self-interaction is also allowed [23]. Both the aforementioned possibilities are
explored in the present experimental study, and the experimental results are validated with the
theoretical findings for two specific forms of stratification profiles: (1) linear N(z) profiles and
(2) idealized ocean like Gaussian stratification profiles. The experimental apparatus and methods
used are described in Sec. III. Mode-3 and mode-4 were the optimal choice for our experimental
study as: (i) mode-1 and mode-2 have larger group velocities, and would travel faster and reflect
back to the visualization window, allowing a smaller time window for analyzing the flow dynamics;
(ii) considering higher modes (higher than mode-4) would introduce nonnegligible viscous effects.
In Sec. IV,the experimental results are discussed for the two cases (i) cross-modal interaction and
(ii) self-interaction. An oceanlike nonuniform stratification with a pycnocline is also considered
making our study relevant for ocean, and both the aforementioned cases are investigated in Sec. V.
The concluding remarks are presented in Sec. VI.

II. THEORY

For any arbitrary nonuniform stratification, the equations governing an inviscid, incompressible,
nonrotating, two-dimensional flow within the Boussinesq approximation (LeBlond and Mysak [35])
are

∂2

∂t2
∇2ψ + N2(z)

∂2ψ

∂x2
= ∂

∂x
[J (ψ, b)] − ∂

∂t
[J (ψ,∇2ψ )], (1)

∂b

∂t
= −J (ψ, b) + N2(z)

∂ψ

∂x
, (2)

where ψ (x, z, t ) and b(x, z, t ) are the stream function and buoyancy perturbation, respec-
tively. The background stratification is specified by the buoyancy frequency defined as N (z) =√

(−g/ρref )dρ0/dz, where gravity g acts along negative z, ρref is a reference density and ρ0(z) is
the background density profile. For laboratory experiments the reference density (ρref ) is assumed
to be the density of water ρref = 1000 kg/m3. The Jacobian and Laplacian operators are defined as
J (A, B) = (∂A/∂x)(∂B/∂z) − (∂B/∂x)(∂A/∂z) and ∇2A = ∂2A/∂x2 + ∂2A/∂z2, respectively. The
velocity field is given by (u,w) = (−∂ψ/∂z, ∂ψ/∂x).

We consider a flow field given by a regular perturbation series in a small nonlinearity parameter
ε (LeBlond and Mysak [35])

ψ (x, z, t ) = εψ1(x, z, t ) + ε2ψ2(x, z, t ) + O(ε3), (3)

b(x, z, t ) = εb1(x, z, t ) + ε2b2(x, z, t ) + O(ε3), (4)

representing perturbations to the background flow state described by a quiescent fluid with a stable
stratification N (z). The O(ε) solution can be written as a linear superposition of right-propagating
linear internal vertical modes [23] as

ψ1 =
∞∑
j=1

� j

2
φ j (z)ei(k j x−ω0t ) + c.c., (5)

where c.c. denotes complex conjugate. The complex modal amplitudes � j are assumed to be
constant. The mode shapes φ j (z), of horizontal wave number k j > 0 and frequency ω0 satisfy

d2φ j

dz2
+ k2

j

(
N (z)2 − ω2

0

)
ω2

0

φ j = 0, (6)

with the mode shapes φ j (z) satisfying the boundary conditions φ j (z = 0) = φ j (z = H ) = 0, where
H is the depth of the stratified fluid column.
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O(ε2) solution results from the interaction of the terms of the linear solution [Jacobian terms in
governing Eqs. (1) and (2)] and can be written as

ψ2 =
∞∑

m=1

∞∑
n=1

hmn(z)ei[(km+kn )x−2ω0t] + gmn(z)ei[(km−kn )x] + c.c., (7)

composed of terms with superharmonic waves at frequency 2ω0 with horizontal wave number
km + kn, and time-independent standing waves with horizontal wave number km − kn. The governing
equation for hmn(z) of the the superharmonic wave at frequency 2ω0 is

d2hmn

dz2
+ (km + kn)2 N2(z) − 4ω2

0

4ω2
0

hmn = Cmn(z), (8)

with hmn(z) satisfying the boundary conditions hmn(z = 0) = hmn(z = H ) = 0. The forcing term
Cmn(z) is a complicated analytical function which depends on the mode shapes φ j (z), wave numbers
k j , stratification profile N (z) and the forcing frequency ω0. More details of the form of analytical
functions, simplifications of the analytical functions, and the detailed derivations, valid for any
arbitrary stratification N (z), can be found in Varma and Mathur [23], and here, we refrain from
showing the expressions of analytical functions.

For a given nonuniform stratification N (z) and a given modal combination (m, n) at ω0, hmn(z) is
calculated numerically by solving Eq. (8) along with the boundary conditions as a boundary value
problem using the in-built Matlab function bvp4c. The amplitude hmax

mn = max[hmn(z)] is computed
for a range of forcing frequencies, to obtain the local maxima of hmax

mn and the associated frequency
ωres. The identified frequency ωres is the resonant frequency at which mode-p (mode number
associated with hmn(z)) at superharmonic frequency 2ω0, would be in triadic resonance with modes
(m, n) at the forcing frequency ω0, for a prescribed nonuniform stratification profile N (z) [23]. This
procedure is used to identify the resonant forcing frequencies for all the stratification profiles and the
modal combinations considered in our experimental study. For a uniform stratification, i.e., N (z) is
constant, the mode number p of the superharmonic wave at 2ω0 satisfies the condition p = |m − n|
[16]. Such a condition is not necessarily true for a nonuniform stratification as shown in a theoretical
study by Varma and Mathur [23].

In Sec. IV, we consider a linear (nonuniform) stratification N (z) profile specified by

N (z)

Nmin
= 1 + (β − 1)

z

H
, (9)

where β = Nmax/Nmin is a characteristic measure of the slope of the stratification profile N (z), used
here as a proxy to measure its nonuniformity. Figure 2(a) shows the stratification profile considered
as in Eq. (9) in a finite-depth water column of depth H . The nonuniform stratification profile
considered is a linear N (z) profile with the slope specified by (β − 1). Depending on the forcing
frequency ω0 < Nmin or ω0 > Nmin, the internal wave modes can be propagating throughout the
vertical fluid column or just in the upper section of the vertical fluid column, respectively. For β = 3,
mode-3 and mode-4 at forcing frequency ω0 = 0.9Nmin are shown in Fig. 2(b), and as ω0 < Nmin the
modes are propagating in the entire depth. If ω0 > Nmin, then we observe a mode propagating only
in the upper section of the vertical fluid column and is evanescent in the lower section of vertical
fluid column as shown in Fig. 2(c), where mode-1 and mode-2 are forced at a forcing frequency
ω0 = 1.8Nmin.

We also consider an idealized oceanlike nonuniform stratification profile N1(z) with a pycnocline
defined by

N1(z)

Nmin
= 1 + (β − 1) exp

(
− (z − zc)2

σ 2

)
, (10)
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FIG. 2. (a) Linear (nonuniform) stratification profile as defined in Eq. (9), (b) mode-3 (solid curve) and
mode-4 (dashed curve) propagating in the entire depth for forcing frequency ω0 = 0.9Nmin, and (c) mode-1
(solid curve) and mode-2 (dashed curve) propagate only in the upper section of the vertical fluid column
above the red dashed line, and are evanescent in the lower section of the vertical fluid column for forcing
frequency ω0 = 1.8Nmin (the red dashed line corresponds to the z/H of cutoff frequency below which waves
are evanescent). For panels (b) and (c), stratification profile as shown in Eq. (9) for β = 3 is considered.

where Nmin is the deep ocean uniform stratification and zc is the center of the pycnocline whose
characteristic width is σ . More details of idealized oceanlike nonuniform stratification profile and
the experimental observations are discussed in Sec. V.

III. EXPERIMENTAL APPARATUS AND METHODS

Experiments were performed in a thin long acrylic tank of 4 m length, 0.17 m width, and
0.4 m height, composed by joining 5 components of 0.8 m length, as shown in Fig. 3. The

FIG. 3. Experimental setup with a 4 m long tank, filled with continuously varying density fluid using the
double bucket method, with the two programmable pumps. The vertical density profile is measured by the
vertically traversing CT probe, and internal wave modes of prescribed shape are forced by a wave generator on
the left end, and the evolving flow field is captured by synthetic Schlieren technique.
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FIG. 4. (a) A measured density profile (blue dotted line) along with the fitted density profile (black solid
line) corresponding to linear N (z) fit, (b) a measured stratification profile (blue dotted line) along with the fitted
N (z) profile (black solid line) corresponding to N (z) fit with β = 2.1 [as in Eq. (9)], and (c) mode-3 (black
solid curve) and mode-4 (blue dashed curve) for β = 2.1 at ω0/Nmin = 0.9.

double-bucket method [36–38] is used to setup the prescribed nonuniform salt stratification over
a depth of H = 0.325 m in the tank, by varying the flow rates of the computer programmable
pump (pump 1 shown in Fig. 3) connecting the two buckets, while the pump 2 was maintained
at constant flow rate. After filling the tank, the vertical density profile is measured by a vertically
traversing conductivity-temperature (CT) probe (see Fig. 3), which is a priori calibrated using
known density samples. A linear N (z) profile defined by Eq. (9) was fit to the measured density
profile by using the method of least squares to obtain β and Nmin. The experimental error in
measurement of β is estimated to be around 3%−5%, while computing the linear fit N (z) profile.
This error is associated to the presence of small mixed layers (≈3 mm) at the free surface and
bottom of the tank. For the set of experiments performed in this study, the stratification profiles were
reproducible with certain differences in the upper few millimeters, which is associated to the mixed
layer formation. Replicating the same stratification profile is achievable by carefully repeating the
exact procedure and setting the same input parameters like pumps flow rates, initial volumes and
initial densities of the two buckets. For all the experiments performed, N (z = 0) = Nmin was fixed
at Nmin ≈ 0.5 rad s−1, and β was varied to investigate the shift in the resonant peak frequency, and
change in mode number of the superharmonic wave both in the case of a mode propagating in the
entire depth of the vertical fluid column and in the case of a mode propagating only in the upper
section of the vertical fluid column. A representative measured density profile along with the fitted
density profile corresponding to a linear N (z) is shown in Fig. 4(a), and the corresponding fitted
linear N (z) profile for β = 2.1 is shown in Fig. 4(b). The mode shapes of the primary wave modes
corresponding to the fitted linear N (z) profile at forcing frequency ω0/Nmin = 0.9 are shown in
Fig. 4(c).

The internal wave generator comprises 50 plates of 6.5 mm thickness each, each of which is
independently driven by a motor. More details of the configuration of the wave generator can be
found in previous experimental studies by Mercier et al. [39] and Dossmann et al. [40]. Each plate
of the wave generator executes a constant amplitude horizontal oscillation, and the vertical profile of
the horizontal displacement field at the wave generator location (x = 0) can be given by (t denotes
time)

�x(x = 0, z, t ) =
[

Am
dφm

dz
+ An

dφn

dz

]
cos ω0t, (11)

thus comprising left-to-right propagating modes m and n with amplitudes Am and An, respectively
at forcing frequency ω0. Equation (6) is solved numerically as a boundary value problem (imple-
menting φ(z = 0) = φ(z = H ) = 0) with the measured fit N (z) profile, and the prescribed internal
wave forcing frequency ω0, to obtain the mode shapes φ(z). The numerically obtained internal
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TABLE I. Parameter values for all the experiments performed for linear nonuniform stratification specified
by Eq. (9), and an oceanlike nonuniform stratification profile with a pycnocline specified by Eq. (12). Either a
combination of modes (3, 4) or an isolated mode-3/mode-4 are the primary waves forced at the left end of the
tank.

Stratification Primary modes β ωres/Nmin mode at 2ω0

Linear N (z) profile (3,4) 1.3 0.5703 1
N (z)
Nmin

= 1 + (β − 1) z
H (3,4) 1.6 0.6729 1

(3,4) 1.8 0.7451 1
(3,4) 2.1 0.8571 1
(3,4) 2.2 0.8953 1

Linear N (z) profile (3,4) 2.1 0.6743 2

Linear N (z) profile 3 2.1 0.8326 1
N (z)
Nmin

= 1 + (β − 1) z
H 4 3 1.2368 1

Oceanlike N1(z) profile (zc/H = 0.8 and σ/H = 0.15) (3,4) 3 1.3705 1
N1(z)
Nmin

= 1 + (β − 1) exp
(− (z−zc )2

σ 2

)
3 3 0.6842 2

wave modes at a fixed frequency ω0 (time period T0 = 2π/ω0), are then forced at the left end
of the tank using the internal wave generator. For all the experiments performed Am and An were
fixed to be 5 mm, corresponding to fixed horizontal displacement amplitudes for all the forcing
frequencies. For the case of self-interaction m = n, the forcing amplitude of an isolated mode would
be 10 mm. In our experimental setup the wave generator plates cannot be displaced more than 10 mm
and these amplitudes are also well-suited for examining weakly nonlinear interactions. Table I
shows the details of all the experiments performed with varying β at resonant and off-resonant
frequencies. The resonant frequencies ωres/Nmin were determined by analyzing the divergence in
the superharmonic amplitude hmn across a continuous range of frequencies for a specific modal
combination (m, n), and a particular stratification profile prescribed by specifying β.

Synthetic Schlieren technique [41] is used to measure the density gradient fields. A CCD AVT
Pike F-505 camera of resolution 2452×2054 pixels placed at a distance of D = 2.8 m from the
front wall of the tank (as shown in Fig. 3), captures images (6 Hz) of the back-lit random pattern of
dots of length L = 1 m placed behind the back wall of the tank at a distance of d = 0.125 m. For
each of the captured images, the apparent displacement of the dots caused by the density gradient
perturbations in the flow, with reference to the image captured without any flow, was estimated
using correlation image velocimetry [42], implemented in the open source software UVMAT [43].
A quantitative measurement of the horizontal and vertical density gradient perturbation fields over
a domain of 1 m in the horizontal and 0.325 m in the vertical was obtained as the final output of the
image processing.

IV. RESULTS: LINEAR N(z) PROFILE

In this section, we present the experimental and theoretical results, for the two cases considered:
(i) cross-modal interaction of mode-3 and mode-4 at ω0, and (ii) self-interaction of isolated mode-3
or isolated mode-4 at ω0, in a nonuniform stratification specified by linear N (z) profile shown in
Eq. (9). We recall that the divergence of amplitude of superharmonic term in Eq. (7), i.e., hmn(z),
for a given primary wave field composed of modes (m, n) at a frequency ω0 allows us to identify the
resonant peak frequency ωres at which the resonant triad conditions get satisfied [23]. The resonant
peak frequencies can thus be theoretically estimated in both of the aforementioned cases for any
given value of β and modal combination (m, n).
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FIG. 5. (a) Variation of amplitude of the superharmonic mode-1 (log10 |hmax
34 |) with ω0/Nmin is plotted for

three various values of β = 1 (black solid curve), 1.5 (blue dashed curve), and 2 (red dash-dotted curve), to
identify the resonant peak frequency ωres/Nmin for each value of β. (b) Continuous variation of resonant peak
frequency (solid curve) with β, corresponding to excitation of mode-1 superharmonic. Forcing frequencies for
which superharmonic mode would be evanescent (2ω0/Nmin > β) is shown in gray color.

A. Cross-modal interaction

Cross-modal interaction of two internal wave modes (m, n) at frequency ω0 in a uniform strat-
ification can only result in excitation of mode-(p = |m − n|) at the superharmonic frequency 2ω0

[16]. But for a nonuniform stratification this specific criterion of mode-p excited at superharmonic
frequency 2ω0 satisfying p = |m − n| is not necessary, as shown in the theoretical study of Varma
and Mathur [23]. In the following Secs. IV A 1 and IV A 2, we show experimental observations of
cross-modal interactions of mode-3 and mode-4 at frequency ω0 resonantly exciting superharmonic
mode-1 at frequency 2ω0, and superharmonic mode-2 at frequency 2ω0, respectively.

1. Superharmonic mode-1

For the case of cross-modal interaction, composed of primary internal wave modes, mode-3 and
mode-4 at forcing frequency ω0, the amplitude of the superharmonic mode-1 |h34(z)| [Eq. (8)]
is numerically computed for a continuous range of forcing frequencies to identify the resonant
peak frequency ωres for a given β, as discussed in Sec. II. Figure 5(a) shows the variation of
log10|hmax

34 | with the forcing frequency for values of β = 1, β = 1.5, and β = 2, and a clear peak
resonant frequency for mode-1 superharmonic could be observed for each value of β considered. As
shown in Fig. 5(a), the resonant peak frequency shifts toward the right as the value of β increases.
In Fig. 5(b), we plot the variation of resonant peak frequency of mode-1 superharmonic for a
continuous range of values of β varying from 1 to 2.5. In the limit of β = 1, which corresponds
to a uniform stratification, i.e., constant N (z) = Nmin, we recover the resonant frequency to be
ωres/Nmin = 0.4841 [18]. As shown in Fig. 5(b) by the solid line, the resonant peak frequency
ωres/Nmin increases monotonically with increase in value of β, and the resonant peak frequency
ωres/Nmin is always below the cutoff frequency regime [shown by gray region in Fig. 5(b)] in which
the superharmonic wave would be completely evanescent (2ω0/Nmin > β).

In the experiments, a mode form corresponding to a combination of mode-3 and mode-4 (A3 =
A4 = 5 mm), was forced for various values of forcing frequency ω0, at the left end of the tank using
the wave generator. The mode shapes were numerically obtained by solving Eq. (6) considering
the corresponding nonuniform stratification profile measured using the CT probe. For a prescribed
β, the range of forcing frequencies ω0/Nmin were chosen at and around the theoretically identified
resonant peak frequency ωres/Nmin (see Table I) corresponding to superharmonic mode-1, at which
hmax

34 diverges. The reason attributed to this choice of modal combination (m, n) = (3, 4) is in respect
to the experimental limitations of the tank length, the group velocities of the modes and a sufficient
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FIG. 6. Horizontal density gradient wave-fields for the cross-modal interaction, i.e., (m, n, p) = (3, 4, 1), at
the resonant forcing frequency of ωres/Nmin = 0.8571 for β = 2.1. (a) Instantaneous horizontal density gradient
field, (b) Horizontal density gradient field filtered at the forcing frequency ωres/Nmin, and (c) Horizontal density
gradient field filtered at the superharmonic frequency 2ωres/Nmin. All the plots correspond to t = 20T0, where
T0 = 2π/ωres.

time window for analysis. Mode-1 and mode-2 have higher group velocities compared to higher
modes (m > 2), hence allowing a smaller time window before they get reflected back from the right
end of the tank to reach the region of flow visualization. The time window 20T0−25T0 was observed
to be a reliable estimate for the analysis, which was long enough for the primary wave field to attain
a constant amplitude, and not so long before the reflected wave reaches the flow visualization region.
All the set of experiments performed with various values of β and forcing frequencies are shown
in Table I. We now discuss one such set of experiments for a stratification profile with β = 2.1,
which was shown in Fig. 4. For β = 2.1, the amplitude of superharmonic term in Eq. (7), i.e., h34(z)
diverges at ωres/Nmin = 0.8571 corresponding to superharmonic mode-1 being excited at frequency
2ωres/Nmin.

For the stratification profile setup with β = 2.1, mode-3 and mode-4 at ωres/Nmin = 0.8571
are forced at the left end of the tank using the wave generator. Figure 6(a) shows a snapshot of
the instantaneous horizontal density gradient wave field at t = 20T0, where T0 = 2π/ωres. The
horizontal density gradient field filtered at the forcing frequency ωres/Nmin = 0.8571 as shown
in Fig. 6(b), displays a clean spatial structure of wave field corresponding to a superposition of
mode-3 and mode-4 as forced from at x = 0. Figure 6(c) shows the spatial structure of the horizontal
density gradient field filtered at the superharmonic frequency 2ωres for the same experiment. The
observed wave field at the superharmonic frequency 2ωres, shows a clean mode-1 spatial structure
which is propagating only in the upper section of the vertical fluid column as 1 < 2ωres/Nmin < β.
This experimental observation validates the theoretical prediction of triadic resonant interaction of
mode-3 and mode-4 at ωres/Nmin = 0.8571 for β = 2.1, exciting a superharmonic mode-1.

Experiments were also performed at several other off-resonant frequencies to identify the
frequency range (around the resonant frequency) over which a superharmonic mode-1 is excited,
and also to identify the resonant peak frequency. The normalized strength of the superharmonic
signal ̂A2ω0/Aω0 (strength here refers to the amplitude of the horizontal density gradient, filtered at
the respective frequency), is computed for all the forcing frequencies for each stratification profile
considered (i.e., for every value of β considered), where A2ω0 and Aω0 are the strengths/amplitudes
of the signal filtered at the superharmonic frequency 2ω0 and the forcing frequency ω0, respectively.
It is important to compute a normalized quantity (A2ω0/Aω0 ) as a fixed horizontal displacement of the
plates (5 mm or 10 mm) of the wave generator at different forcing frequencies does not correspond
to a same amplitude of forcing for the horizontal density gradient field (the quantity measured
using synthetic Schlieren technique). The normalized strength of the superharmonic signal is
re-normalized to compare across various β or the stratification profiles setup in the experiments.
The re-normalization is defined as X̂ = X/ max(X ). The solid red curve in Fig. 7(a) shows the
variation of the renormalized strength of the superharmonic signal ̂(A2ω0/Aω0 ) for β = 2.1 with the
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FIG. 7. (a) Variation of renormalized strength of the superharmonic wave ̂(A2ω0/Aω0 ) with forcing fre-
quency ω0/Nmin for five different values of β (tabulated in Table I). (b) The resonant peak frequencies from
plot (a) plotted over the theoretically expected resonant frequency curve ωres/Nmin as in Fig. 5(b).

forcing frequency (around the expected resonant frequency). A clear resonant peak is identified very
close to the theoretical predicted value ωres/Nmin = 0.8571.

Experiments were also performed for various stratification profiles with values of β in the range
1 < β < 2.5 for a range of forcing frequencies around the theoretically predicted resonant forcing
frequency. Figure 7(a) shows the resonant/off-resonant strength of the renormalized superharmonic
signal ̂(A2ω0/Aω0 ), for the five stratification profiles with different values of β (see Table I). The
resonant peaks are observed for all the five values of β, with peak frequency ωres/Nmin shifting
toward the right (as seen in Fig. 7(a) with an increase in the value of β. In Fig. 7(b), the solid
black line corresponds to the theoretical prediction of the variation of resonant peak frequency
with β, same as shown by black curve in Fig. 5(b). The observed resonant peak frequencies are
plotted as points in colors corresponding to the color of the resonant peak in Fig. 7(a). Error bars
are plotted for each value of β, associated with computing the linear fit N (z) profile as discussed
in Sec. III. The experimentally observed resonant peak frequencies have close agreement with
the theoretically predicted values of resonant peak frequencies ωres/Nmin within the limits of the
experimental errors. All the experiments performed for resonant cross-modal interactions of mode-3
and mode-4 resulting in excitation of mode-1 superharmonic internal wave, clearly capture the
resonant peak frequencies predicted by the weakly nonlinear theory for all values of β considered.

2. Superharmonic mode-2

In a finite-depth nonuniform stratification, its not necessary for the superharmonic mode excited
by resonant interaction of (m, n) at frequency ω0 to be mode-|m − n| [23]. For a prescribed stratifi-
cation corresponding to a given value of β, depending on the range of forcing frequencies, modes
other than mode-|m − n| could also be excited due to superharmonic resonant interaction. To explore
this possibility, experiments were also performed at and around the resonant frequency ωres/Nmin, at
which mode-3 and mode-4 at ωres/Nmin would resonantly interact to excite a superharmonic mode-2
at 2ωres/Nmin.

For a prescribed stratification with β = 2.1, the superharmonic wave amplitude |hmax
34 | diverges

at ωres/Nmin = 0.6743 corresponding to a mode-2 superharmonic internal wave. For the same
stratification profile as shown in Fig. 4 corresponding to β = 2.1, experiments were performed
by forcing mode-3 and mode-4 at ωres/Nmin = 0.6743 at the left end of the tank. Figure 8(a) shows
the instantaneous horizontal density gradient field at t = 20T0 as forced by the wave generator from
x = 0. The horizontal density gradient field filtered at the resonant forcing frequency ωres/Nmin =
0.6743 shows primary wave field to be composed of the forcing modes, mode-3 and mode-4 [shown
in Fig. 8(b)]. When the horizontal density gradient field is filtered at ωres/Nmin as shown in Fig. 8(c),
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FIG. 8. Horizontal density gradient wave-fields for the cross-modal interaction, i.e., (m, n, p) = (3, 4, 2),
at the resonant forcing frequency of ωres/Nmin = 0.6743. (a) Instantaneous horizontal density gradient field,
(b) Horizontal density gradient field filtered at the forcing frequency ωres/Nmin, and (c) Horizontal density
gradient field filtered at the superharmonic frequency 2ωres/Nmin. All plots are to t = 20T0, where T0 = 2π/ωres.

the wave field shows a mode-2 structure as we move away from the wave generator at x = 0. So
indeed the resonant interaction of mode-3 and mode-4 at ωres/Nmin excites a superharmonic mode-2
at 2ωres/Nmin, which was not a possibility in a uniform stratification. Depending on the forcing
resonant frequency ωres/Nmin, mode-3 and mode-4 can resonantly interact to excite a mode-1 or
mode-2 superharmonic internal wave.

B. Self-interaction

In a nonuniform stratification, self-interaction of a mode at a prescribed ω0/Nmin could also
result in resonant excitation of a superharmonic mode which is inhibited for the case of a uni-
form stratification [N (z) = Nmin] [16]. This suggests that individual modes can inherently become
unstable by resonant self-interactions resulting in excitation of superharmonic modes at frequency
2ω/Nmin. To investigate the resonant self-interaction of isolated modes in our experiments, two cases
are considered (i) resonant self-interaction of a mode-3 exciting mode-1 superharmonic and (ii)
resonant self-interaction of a mode-4 exciting mode-1 superharmonic. In Secs. IV B 1 and IV B 2,
the experimental results from the resonant self-interaction of an isolated mode-3 and mode-4 are
discussed, respectively.

1. Mode-3 self-interaction

For the same stratification profile β = 2.1 as discussed in the previous Sec. IV A and as
shown in Fig. 4, the superharmonic wave amplitude |hmax

33 | due to self-interaction of mode-3
diverges at ωres/Nmin = 0.8326. Experiments are performed with isolated mode-3 being forced at
ωres/Nmin = 0.8326, with the wave generator at the left end of the tank. Figure 9(a) shows a snapshot
of the instantaneous horizontal density gradient wave field for an isolated mode-3 forced at the
expected resonant frequency of ωres/Nmin = 0.8326. The horizontal density gradient field filtered
at the forcing frequency ωres as shown in Fig. 9(b), displays a spatial structure corresponding to a
clear isolated mode-3 as forced at x = 0. Figure 9(c) shows the spatial structure of the horizontal
density gradient field filtered at the superharmonic frequency 2ωres for the same experiment. The
observed wave field at the superharmonic frequency 2ωres, shows a clean mode-1 spatial structure
which is propagating only in the upper section of the vertical fluid column (as 1 < 2ωres/Nmin < β)
as we move further away from x = 0. This result experimentally validates the theoretical prediction
of triadic resonant interaction of an isolated mode-3 at ωres/Nmin = 0.8326 for β = 2.1, exciting a
superharmonic mode-1.

2. Mode-4 self-interaction

As discussed in previous Sec. IV B 1 where a mode-3 resonantly self-interacted to excite a
mode-1 superharmonic internal wave, even a mode-4 could resonantly interact to excite a mode-1
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FIG. 9. Horizontal density gradient wave-fields for the self interaction, i.e., (m, n, p) = (3, 3, 1), at the
resonant forcing frequency of ωres/Nmin = 0.8326. (a) Instantaneous horizontal density gradient field, (b) Hori-
zontal density gradient field filtered at the forcing frequency ωres/Nmin, and (c) Horizontal density gradient field
filtered at the superharmonic frequency 2ωres/Nmin. All the plots correspond to t = 20T0, where T0 = 2π/ωres.

superharmonic internal wave. For β = 3, the superharmonic wave amplitude |hmax
44 | diverges at

ωres/Nmin = 1.2368. An isolated mode-4 was forced using the wave generator at forcing frequency
ωres/Nmin = 1.2368. Figure 10(a) shows a snapshot of the instantaneous horizontal density gradient
wave field for an isolated mode-4 forced at x = 0. The horizontal density gradient field filtered
at the forcing frequency ωres is shown in Fig. 10(b), displays a spatial structure corresponding
to a clear isolated mode-4 as forced at the left end of the tank at x = 0. Figure 10(c) shows the
spatial structure of the horizontal density gradient field filtered at the superharmonic frequency
2ωres for the same experiment. The observed wave field at the superharmonic frequency 2ωres,
shows a clean mode-1 spatial structure which is propagating only in the upper section of the vertical
fluid column as 1 < 2ωres/Nmin < β. This result experimentally validates the theoretical prediction
of triadic resonant interaction of an isolated mode-4 at ωres/Nmin = 1.2368 for β = 3, exciting a
superharmonic mode-1. This provides an experimental evidence for self-interaction of an isolated
modes exciting superharmonic internal waves in finite-depth nonuniform stratifications.

V. RESULTS: OCEANLIKE NONUNIFORM STRATIFICATION PROFILE

In this section, an idealized oceanlike nonuniform stratification profile with a pycnocline is
considered. As done in the preceding sections, the cross-modal interaction of mode-3 with mode-4,
and the self-interaction of mode-3 are considered. We present results for an oceanlike nonuniform
stratification profile N1(z) defined [as in Eq. (10)] by

N1(z)

Nmin
= 1 + (β − 1) exp

(
− (z − zc)2

σ 2

)
, (12)

FIG. 10. Horizontal density gradient wave-fields for the self interaction, i.e., (m, n, p) = (4, 4, 1), at the
resonant forcing frequency of ωres/Nmin = 1.2368. (a) Instantaneous horizontal density gradient field, (b) Hori-
zontal density gradient field filtered at the forcing frequency ωres/Nmin, and (c) Horizontal density gradient field
filtered at the superharmonic frequency 2ωres/Nmin. All the plots correspond to t = 20T0, where T0 = 2π/ωres.
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FIG. 11. (a) A measured stratification profile (blue dotted line) along with the fitted N (z) profile (black
solid line) corresponding to N1(z) fit with β = 3 [as in Eq. (12)]. (b) Mode-3 (black solid curve) and mode-4
(blue dashed curve) for β = 3 at ω0/Nmin = 1.3705.

where Nmin is the deep ocean uniform stratification and zc is the center of the pycnocline whose
characteristic width is σ . This idealized oceanlike nonuniform stratification profile has been con-
sidered in various previous studies relevant to ocean [17,23,25,30,44]. The mode shapes for such
a nonuniform stratification [as in Eq. (12)] assume a sinusoidal form in the uniformly stratified
deep ocean, and contain smaller vertical length scales in the pycnocline region. For the results
discussed in this section, experiments were setup with a stratification profile corresponding to β = 3,
with a pycnocline centered at zc/H = 0.8 with a pycnocline width of σ/H = 0.15. Dotted line in
Fig. 11(a) shows the measured stratification profile setup in the tank and the solid line is the fit
N1(z) profile for β = 3 and Nmin = 0.5. The mode shapes of the primary wave modes, mode-3
and mode-4 corresponding to forcing frequency of ω0/Nmin = 1.3705 are shown in Fig. 4(b). The
experimental results for cross-modal interaction of mode-3 and mode-4, and self-interaction of
mode-3 are presented in the preceding subsections.

A. Cross-modal interaction

For the nonuniform stratification profile considered, mode-3 and mode-4 resonantly self-interact
to excite a mode-1 superharmonic internal wave at resonant peak frequency ωres/Nmin = 1.3705
(obtained from the divergence of superharmonic wave amplitude |hmax

34 |). Mode-3 and mode-4 at
ωres/Nmin = 1.3705 are forced at the left end of the tank using the wave generator. Figure 12(a)

FIG. 12. Horizontal density gradient fields for the cross-modal interaction, i.e., (m, n, p) = (3, 4, 1) at the
resonant frequency ωres/Nmin = 1.3705 for a nonuniform stratification with a pycnocline. (a) Instantaneous
horizontal density gradient field, (b) Horizontal density gradient field filtered at the forcing frequency ωres/Nmin,
and (c) Horizontal density gradient field filtered at the superharmonic frequency 2ωres/Nmin. All the plots
correspond to t = 20T0, where T0 = 2π/ωres.
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FIG. 13. Horizontal density gradient fields for the self-interaction, i.e., (m, n, p) = (3, 3, 2) at the resonant
frequency ωres/Nmin = 0.6842 for a nonuniform stratification with a pycnocline. (a) Instantaneous horizontal
density gradient field, (b) Horizontal density gradient field filtered at the forcing frequency ωres/Nmin, and
(c) Horizontal density gradient field filtered at the superharmonic frequency 2ωres/Nmin. All the plots correspond
to t = 20T0, where T0 = 2π/ωres.

shows a snapshot of the instantaneous horizontal density gradient wave field at t = 20T0, where T0 =
2π/ωres. The horizontal density gradient field filtered at the forcing frequency ωres/Nmin = 1.3705
as shown in Fig. 12(b), displays a spatial structure of wave field corresponding to a superposition
of mode-3 and mode-4 propagating only in the pycnocline region. Figure 12(c) shows the spatial
structure of the horizontal density gradient field filtered at the superharmonic frequency 2ωres for the
same experiment. The observed wave field at the superharmonic frequency 2ωres, shows a very clean
mode-1 spatial structure which is trapped in the pycnocline region. This experimental observation
indeed validates the theoretical prediction of triadic resonant interaction of mode-3 and mode-4 at
ωres/Nmin = 1.3705 exciting a superharmonic mode-1, for the oceanlike nonuniform stratification
profile considered.

B. Self-interaction

Using the same nonuniform stratification profile as in the previous Sec. V A, experiments were
performed for resonant self-interaction of a mode-3 exciting a mode-2 superharmonic internal
wave, at the corresponding resonant peak frequency ωres/Nmin = 0.6842. An isolated mode-3 is
forced with the prescribed mode shape corresponding the nonuniform stratification profile using
the wave generator. Figure 13(a) shows a snapshot of the instantaneous horizontal density gradient
wave field for an isolated mode-3 forced at x = 0. The horizontal density gradient field filtered
at the forcing frequency ωres is shown in Fig. 13(b), displays a spatial structure corresponding
to a clear isolated mode-3 as forced at the left end of the tank at x = 0. Figure 13(c) shows the
spatial structure of the horizontal density gradient field filtered at the superharmonic frequency
2ωres for the same experiment. The observed wave field at the superharmonic frequency 2ωres,
shows a very clean mode-2 spatial structure which is trapped in the pycnocline region. This result
experimentally validates the theoretical prediction of triadic resonant interaction of isolated mode-3
at ωres/Nmin = 0.6842 exciting a mode-2 superharmonic internal wave for the oceanlike nonuniform
stratification profile considered.

VI. CONCLUSIONS

Experiments were performed to investigate the excitation of superharmonic internal wave modes
by nonlinear interactions of internal waves in finite-depth nonuniform stratifications. Two cases
were considered: (i) cross-modal interaction resulting from interaction of two different modes
at same frequency and (ii) self-interaction of an isolated mode. In both cases, the excitation of
superharmonic internal wave mode at twice the resonant forcing frequency due to resonant interac-
tions of internal wave modes was observed in the experiments. Cross-modal interaction of internal
wave modes (m, n) at frequency ω0 resulting in excitation of superharmonic mode other than the
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mode-|m − n| was also observed in the experiments, which is inhibited for a uniform stratification.
Resonant self-interaction of an isolated mode exciting a superharmonic internal wave mode was
observed, which is a possibility for a nonuniform stratification only. The resonant peak frequency
ωres/Nmin was well captured by performing experiments over a range of forcing frequencies, and
was in close agreement with the theoretically predicted resonant peak frequency obtained using
the weakly nonlinear framework. The theoretical prediction for the variation of the resonant peak
frequency with β (a characteristic measure of the strength of nonuniformity in stratification) was
well captured in the experiments performed for various values of β [Fig. 7(b)].

Finally, experiments were also performed for an idealized oceanlike stratification profile with a
pycnocline, to study both cross-modal interactions and self-interactions. For a nonuniform stratifi-
cation profile with a pycnocline, the resonantly excited superharmonic internal wave modes were
found to be trapped in the pycnocline region. The trapping of superharmonics in the pycnocline re-
gion was also observed in the earlier experimental study of Wunsch et al. [29], when an internal wave
beam (from the bottom) impinges on the pycnocline. The excitation of low mode higher harmonics
in experiments [29] could either be by cross-modal interaction or by self-interaction of internal
waves depending on how close the forcing frequency is to the resonant frequency of the nonlinear
interactions between the constituent internal wave modes in the incident wave beam (as discussed
in Sec. 4.2 of Varma and Mathur [23]). Recent theoretical study by Wunsch and Marcellino [26]
shows the relevance of excitation of higher harmonics by triadic resonant interactions in different
parts of the ocean by considering global ocean stratification profiles measured by ARGO floats.

Further studies considering internal wave modes at smaller forcing frequencies in the primary
wave field, with a nonuniform stratification profile with pycnocline could be more relevant to
various internal waves phenomena in the ocean like topographic scattering/generation of internal
tides, propagation of low modes away from the generation sites and generation of near inertial
waves in the presence of background rotation. The current study also raises important questions on
the validity of linear models that assume the presence of multiple modes at a given frequency, which
is often the case in the ocean. Including the effects of background rotation, effects of finite-shear
and considering a stratification profile from in-situ observations in the ocean, in the future studies
could give more insights.
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