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We present a detailed analysis of the modulational instability of the zone-boundary mode for one
and higher-dimensional Fermi–Pasta–UlamsFPUd lattices. Following this instability, a process of
relaxation to equipartition takes place, which we have called theAnti-FPU problembecause the
energy is initially fed into the highest frequency part of the spectrum, at variance with the original
FPU problemslow frequency excitations of the latticed. This process leads to the formation of
chaotic breathersin both one and two dimensions. Finally, the system relaxes to energy equiparti-
tion on time scales which increase as the energy density is decreased. We show that breathers
formed when cooling the lattice at the edges, starting from a random initial state, bear strong
qualitative similarities with chaotic breathers. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1854273g

Several nonlinear physical systems exhibit modulational
instability, which is a self-induced modulation of the
steady state resulting from a balance between nonlinear
and dispersive effects. This phenomenon has been studied
in a large variety of physical contexts: fluid dynamics,
nonlinear optics and plasma physics. The Fermi–Pasta–
Ulam (FPU) lattice is an extremely well-suited model sys-
tem to study this process. Both the triggering of the in-
stability and its further evolution can be studied in detail,
exciting initially high-frequency modes. The original FPU
problem was casted instead in the context of long wave-
lengths. This is why we call the process we analyze in this
paper, the anti-FPU problem because of the analogy with
the seminal FPU numerical simulation. At variance with
the appearance of (m)KdV-solitons in the FPU original
problem, in this process the pathway to equipartition
leads to the creation of localized objects that arechaotic
breathers. Similar localized structures emerge when cool-
ing the lattice at the edges, starting from thermalized ini-
tial states.

I. INTRODUCTION

In 1955, reporting about one of the first numerical simu-
lations, Fermi, Pasta, and UlamsFPUd sRef. 1d remarked that
it was … very hard to observe the rate of “thermalization”
or mixing… in a nonlinear one-dimensional lattice in which
the energy was initially fed into the lowest frequency mode.
Even if the understanding of this problem advanced signifi-
cantly afterwards,2,3 several issues are still far from being

clarified. In most cases, the evolution towards energyequi-
partition among linear modes has been checked considering
an initial condition where all the energy of the system is
concentrated in a small packet of modes centered around
some low frequency.

Beginning with the pioneering paper of Zabusky and
Deem,4 the opposite case in which the energy is put into a
high frequency mode has been also analyzed. In this early
paper, the zone-boundary mode was excited with an added
spatial modulation for the one-dimensionala-FPU model
squadratic nonlinearity in the equations of motiond. Here, we
will study the time-evolution of this mode without any spa-
tial modulation for theb-FPU modelscubic nonlinearity in
the equations of motiond and some higher-order nonlineari-
ties. Moreover, we will extend the study to higher dimen-
sional lattices. Since the energy is fed into the opposite side
of the linear spectrum, we call this problem theanti-FPU
problem.

In a paper by Bundinsky and Bountis,5 the zone-
boundary mode solution of the one-dimensional FPU lattice
was found to be unstable above an energy thresholdEc which
scales like 1/N, whereN is the number of oscillators. This
result was later and independently confirmed by Flach6 and
Poggiet al.,7 who also obtained the correct factor in the large
N-limit. These results were obtained by a direct linear stabil-
ity analysis around the periodic orbit corresponding to the
zone-boundary mode. Similar methods have been recently
applied to other modes and other FPU-like potentials by
Chechinet al.8,9 and Rink.10
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A formula for Ec, valid for all N, has been obtained in
Refs. 11–14 in the rotating wave approximation, and will be
also discussed in this paper. Associated with this instability is
the calculation of the growth rates of mode amplitudes. The
appropriate approach for Klein–Gordon lattices was first in-
troduced by Kivshar and Peyrard,15 following an analogy
with the Benjamin–Feir instability in fluid mechanics.16

Previously, a completly different approach to describe
this instability was introduced by Zakharov and Shabat,17

studying the associated nonlinear Schrödinger equation in
the continuum limit. A value for the energy threshold was
obtained in Ref. 18 in the continuum limit. The full deriva-
tion starting from the FPU equation of motions was then
independently obtained by Berman and Kolovskii19 in the
so-called “narrow-packet” approximation.

Only very recently the study of what happens after
modulational instability develops has been performed for
Klein–Gordon20 and FPU-lattices.13,21From these analyses it
turned out that these high-frequency initial conditions lead to
a completely new dynamical behavior in the transient time
preceeding the final energy equipartition. In particular, the
main discovery has been the presence on the lattice of sharp
localized modes.20,21 These latter papers were the first to
make the connection between energy relaxation and intrinsic
localized modes,22 or breathers.23–26 Later on, a careful nu-
merical and theoretical study of the dynamics of ab-FPU
model was performed.27 It has been shown that moving
breathers play a relevant role in the transient dynamics and
that, contrary to exact breathers, which are periodic solu-
tions, these have a chaotic evolution. This is why they have
been calledchaotic breathers.Following these studies, Lepri
and Kosevich28 and Lichtenberg and co-workers29,30 have
further characterized the scaling laws of relaxation times us-
ing also continuum limit equations.

On the other hand, studies of the asymptotic state of the
FPU lattice dynamics when energy is extracted from the
boundaries have revealed the persistence of localized
modes.31–35 Already some of these authors33,34 have dis-
cussed the similarities of these modes with chaotic breathers.
In this paper, we will further study this connection.

Most of the previous studies are for one-dimensional lat-
tices. Here, we will derive modulational instability thresh-
olds also for higher dimensional lattices and we will report
on a study of chaotic breathers formation in two-dimensional
FPU lattices.

We have organized the paper in the following way. In
Sec. II, the modulational instability of zone-boundary modes
on the lattice is discussed, beginning with the one-
dimensional case, followed by the two-dimensional and
higher dimensional cases and finishing with the continuum
nonlinear Schrödinger approach. Section III deals with the
mechanisms of creation of chaotic breathers in one and two
dimensions. Finally, in Sec. IV, we discuss the relation with
numerical experiments performed when the lattice is cooled
at the edges. Some final remarks and conclusions are re-
ported in Sec. V.

II. MODULATIONAL INSTABILITY

A. The one-dimensional case

We will discuss in this section modulational instability
for the one-dimensional FPU lattice, where the linear cou-
pling is corrected by as2p+1dth order nonlinearity, withp a
positive integer. Denoting byunstd the relative displacement
of the nth particle from its equilibrium position, the equa-
tions of motion are

ün = un+1 + un−1 − 2un + sun+1 − und2p+1 − sun − un−1d2p+1.

s1d

We adopt a lattice ofN particles and we choose periodic
boundary conditions. For the sake of simplicity, we first re-
port on the analysis forp=1 si.e., the b-FPU modeld and
then we generalize the results to anyp-value.

Due to periodic boundary conditions, the normal modes
associated to the linear part of Eq.s1d are plane waves of the
form

unstd =
a

2
seiunstd + e−iunstdd, s2d

whereunstd=qn−vt andq=2pk/N sk=−N/2 , . . . ,N/2d. The
dispersion relation of nonlinear phonons in the rotating wave
approximation13 is v2sqd=4s1+adsin2sq/2d, where a
=3a2 sin2sq/2d takes into account the nonlinearity. Modula-
tional instability of such a plane wave is investigated by
studying the linearized equation associated with the envelope
of the carrier waves2d. Therefore, one introduces infinitesi-
mal perturbations in the amplitude and phase and looks for
solutions of the form

unstd =
a

2
f1 + bnstdgeifunstd+cnstdg +

a

2
f1 + bnstdge−ifunstd+cnstdg

= af1 + bnstdgcosfqn− vt + cnstdg, s3d

wherebn andcn are reals and assumed to be small in com-
parison with the parameters of the carrier wave. Substituting
Eq. s3d into the equations of motion and keeping the second
derivative, we obtain for the real and imaginary part of the
secular termeisqn−vtd the following equations:

− v2bn + 2vċn + b̈n = s1 + 2adfcosqsbn+1 + bn−1d − 2bng

− asbn+1 + bn−1 − 2bn cosqd

− s1 + 2adsinqscn+1 − cn−1d, s4d

− v2cn − 2vḃn + c̈n = s1 + 2adfcosqscn+1 + cn−1d − 2cng

+ s1 + 2adsinqsbn+1 − bn−1d

+ ascn+1 + cn−1 − 2cn cosqd. s5d

Further assuming bn=b0e
isQn−Vtd+c.c. and cn

=c0e
isQn−Vtd+c.c. we obtain the two following equations for

the secular termeisQn−Vtd

b0fV2 + v2 + 2s1 + 2adscosq cosQ − 1d − 2ascosQ

− cosqdg − 2ic0fvV + s1 + 2adsinq sinQg = 0, s6d
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c0fV2 + v2 + 2s1 + 2adscosq cosQ − 1d

+ 2ascosQ − cosqdg + 2ib0fvV

+ s1 + 2adsinq sinQg = 0. s7d

In the case of Klein–Gordon-type equations,15,20one neglects
the second order derivatives in Eqs.s4d ands5d. This can be
justified by the existence of a gap in the dispersion relation
for q=0, which allows to neglectV2 with respect tov2. In
the FPU case, this approximation is worse, especially for
long wavelengths, because there is no gap.

Non trivial solutions of Eqs.s6d and s7d can be found
only if the Cramer’s determinant vanishes, i.e. if the follow-
ing equation is fulfilled:

FsV + vd2 − 4s1 + 2adsin2Sq + Q

2
DG

3FsV − vd2 − 4s1 + 2adsin2Sq − Q

2
DG

= 4a2scosQ − cosqd2. s8d

This equation admits four different solutions when the
wavevectorsq of the unperturbed wave andQ of the pertur-
bation are fixed. If one of the solutions is complex, an insta-
bility of one of the modessq±Qd is present, with a growth
rate given by the imaginary part of the solution. Using this
method, one can derive the instability threshold amplitude
for any wavenumber. A trivial example is theq=0 case, for
which we obtainV= ±sinsQ/2d, which proves that the zero
mode solution is stable. This mode is present due to the
invariance of the equations of motions1d with respect to the
translationun→un+constand, as expected, is completely de-
coupled from the others.

A first interesting case isq=p. One can easily see that
Eq. s8d admits two real and two complex conjugate imagi-
nary solutions if and only if

cos2
Q

2
.

1 + a

1 + 3a
. s9d

This formula was first obtained by Sandusky and PagefEq.
s22d in Ref. 13g using the rotating wave approximation. The
first mode to become unstable when increasing the amplitude
a corresponds to the wave numberQ=2p /N. Therefore, the
critical amplitudeac above which theq=p-mode looses sta-
bility is

ac = S sin2sp/Nd
3f3 cos2sp/Nd − 1gD

1/2

. s10d

This formula is valid for all even values ofN and its large
N-limit is

ac =
p

Î6N
+ OS 1

N3D . s11d

In Fig. 1, we show its extremely good agreement with the
critical amplitude determined from numerical simulations. It
is interesting to emphasize that the analytical formulas10d
diverges forN=2, predicting that thep-mode is stable for all
amplitudes in this smallest lattice. This is in agreement with

the Mathieu equation analysisssee Ref. 7, p. 265d.
It is also interesting to express this result in terms of the

total energy to compare with what has been obtained using
other methods.5–7,17,19 Since for thep-mode the energy is
given byE=Ns2a2+4a4d, we obtain the critical energy

Ec =
2N

9
sin2Sp

N
D 7 cos2sp/Nd − 1

f3 cos2sp/Nd − 1g2 . s12d

For largeN, we get

Ec =
p2

3N
+ OS 1

N3D . s13d

This asymptotic behavior is the same as the one obtained
using the narrow packet approximation in the context of the
nonlinear Schrödinger equation by Berman and Kolovskii
fEq. s4.1d in Ref. 19g. The correct scaling behavior withN of
the critical energy has been also obtained by Bundinsky and
Bountis fEq. s2.22d in Ref. 5g by a direct linear stability
analysis of thep-mode. The correct formula, using this latter
method, has been independently obtained by FlachfEq.
s3.20d in Ref. 6g and Poggi and Ruffosp. 267 of Ref. 7d.
Recently, theN−1-scaling of formulas13d has been confirmed
using a different numerical method and, interestingly, it
holds also for the 2p /3 andp /2 modes.36

This critical energy is also very close to the Chirikov
“stochasticity threshold” energy obtained by the resonance
overlap criterion for the zone boundary mode.37 The stochas-
ticity threshold phenomenon has been thoroughly studied for
long wavelength initial conditions, and it has been clarified
that it corresponds to a change in the scaling law of the
largest Lyapunov exponent.38 We will show in Sec. III that
above the modulational instability critical energy for the
p-mode one reaches asymptotically a chaotic state with a
positive Lyapunov exponent, consistently with Chirikov’s re-
sult.

The above results can be generalized to nonlinearities of
2p+1 order in the equations of motions1d. We limit the
analysis to thep-mode, for which the instability condition
s9d takes the form

FIG. 1. Modulational instability threshold amplitude for thep-mode versus
the number of particles in the one-dimensional FPU lattice. The solid line
corresponds to the analytical formulas10d, the dashed line to its large
N-estimates11d and the diamonds are obtained from numerical simulations.
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cos2
Q

2
.

1 + a

1 + s2p + 1da
, s14d

where

a =
s2p + 1d!

p ! sp + 1d!
a2p. s15d

Hence the critical amplitude above which thep-mode is un-
stable is

ac = F p ! sp + 1d ! sin2sp/Nd
s2p + 1d ! fs2p + 1dcos2sp/Nd − 1gG1/s2pd

, s16d

leading to the largeN scaling

ac , N−1/p, s17d

Ec , N1−2/p. s18d

This scaling also corresponds to the one found in Ref. 39
when discussing tangent bifurcations of band edge plane
waves in relation with energy thresholds for discrete breath-
ers. Their “detuning exponent”z has a direct connection with
the nonlinearity exponentp=z/2. We will see in Sec. II B
that this analogy extends also to higher dimensions.

For fixedN, ac is an increasing function of the power of
the coupling potential with the asymptotic limit limp→` ac

=0.5. Therefore, in the hard potential limit the critical energy
for the p-mode increases proportionally toN. The fact that
we find a higher energy region where the system is chaotic is
not in contradiction with the integrability of the one-
dimensional system of hard rods,40 because in the present
case we have also a harmonic contribution at small distances.

For the FPU-a model squadratic nonlinearity in the
equations of motiond, the p-mode is also an exact solution
which becomes unstable at some critical amplitude which,
contrary to the case of the FPU-b model, is
N-independent;8,13 which means that the critical energy is
proportional toN and then thatp-mode can be stable in
some low energy density limit also in the thermodynamic
limit.

It has also been realized7,8,10,41–43that group of modes
form sets which are invariant under the dynamics. The sta-
bility analysis9,41 of pair of modes has shown a complex
dependence on their relative amplitudes. The existence of
such invariant manifolds has also allowed to construct
Birkhoff–Gustavson normal forms for the FPU model, pav-
ing the way to KAM theory.44

B. Higher dimensions

In this section, we will first discuss modulational insta-
bility of the two-dimensional FPU model. The method pre-
sented in Sec. II A can be easily extended and the global
physical scenario is preserved. However, the scaling withN
of the critical amplitude changes in such a way to make
critical energy constant, in agreement with the analysis of
Ref. 39.

The masses lie on a two-dimensional square lattice with
unitary spacing in thesx,yd plane. We consider a small rela-
tive displacement un,m sn,mP f1,Ngd in the vertical

z-direction. Already with a harmonic potential, if the spring
length at equilibrium is not unitary, the series expansion in
un,m of the potential contains all even powers. We retain only
the first two terms of this series expansion. After an appro-
priate rescaling of time and displacements to eliminate mass
and spring constant values, one gets the following adimen-
sionalized equations of motions:

ün,m = un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m

+ sun+1,m − un,md3 + sun−1,m − un,md3

+ sun,m+1 − un,md3 + sun,m−1 − un,md3. s19d

Considering periodic boundary conditions, plane waves so-
lutions have the form

un,m = a cossqxn + qym− vtd. s20d

In the rotating wave approximation,13 one immediately ob-
tains the dispersion relation

v2 = 4 sin2 qx

2
+ 4 sin2 qy

2
+ 12a2Fsin4 qx

2
+ sin4 qy

2
G ,

s21d

which becomes exact for the zone-boundary modesqx,qyd
=sp ,pd,

vp,p
2 = 8s1 + 3a2d. s22d

In order to study the stability of the zone-boundary mode, we
adopt a slightly different approach. Namely, we consider the
perturbed relative displacement field of the form

un,m = Sa

2
+ bn,mDeispn+pm−vp,ptd + c.c., s23d

wherebn,m is complex. This approach turns out to be equiva-
lent to the one of Sec. II A in the linear limit.

Substituting this perturbed displacement field in Eq.
s19d, we obtain

f1 + 2agfbn+1,m + bn−1,m + bn,m+1 + bn,m−1 + 4bn,mg

− afbn+1,m
* + bn−1,m

* + bn,m+1
* + bn,m−1

* + 4bn,m
* g

= − b̈n,m + 2ivp,pḃn,m + vp,p
2 bn,m, s24d

wherea=3a2. Looking for solutions of the form

bn,m = AeisQxn+Qym−Vtd + Be−isQxn+Qym−Vtd, s25d

we arrive at the following set of linear algebraic equations
for the complex constantsA andB

fsV + vp,pd2 − 8s1 + 2adDgA + 8aDB = 0, s26d

8aDA + fsV − vp,pd2 − 8s1 + 2adDgB = 0, s27d

where 2D=cos2sQx/2d+cos2sQy/2d. As for the one-
dimensional case, we require that the determinant of this
linear system inA andB vanishes, which leads to the follow-
ing condition:
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fsV + vp,pd2 − 8Ds1 + 2adgfsV − vp,pd2 − 8Ds1 + 2adg

= 64a2D2. s28d

This equation admits two real and two complex conjugated
imaginary solutions inV if

D .
1 + a

1 + 3a
, s29d

which is the analogous for two dimensions of conditions9d.
One can achieve the minimal nonzero value of the r.h.s. of
the above expression choosingQx=0, Qy=2p /N, which
leads to the following result for the critical amplitude

ac = S sin2sp/Nd
3f3 cos2sp/Nd + 1gD

1/2

. s30d

Its largeN limit is

ac =
p

Î12N
+ OS 1

N3D . s31d

This prediction is compared with numerical data in Fig. 2.
The agreement is good for all values ofN.

Since the relation between energy and amplitude is now
E=2N2s2a2+4a4d, we obtain the critical energy in the large
N-limit as

Ec =
p2

3
+ OS 1

N2D . s32d

This shows that the critical energy is now constant in the
thermodynamic limit, which agrees with the remark of Ref.
39 about the existence of a minimal energy for breathers
formation.26

The results of this section can be easily extended to any
dimensiond. Repeating the same argument, we arrive at the
following estimates for the critical amplitude and energy in
the largeN limit

ac =
p

Î6d

1

N
+ OS 1

N3D , s33d

Ec =
p2

3
Nd−2 + OsNd−4d. s34d

This means that the critical energy density«c=Ec/N for de-
stabilizing the zone boundary mode vanishes as 1/N2, inde-
pendently of dimension.

C. Large N limit using the nonlinear Schrödinger
equation

The largeN limit expressionss33d and s34d can be de-
rived also by continuum limit considerations. We will derive
the general expression for any dimensiond. The displace-
ment field can be factorized into a complex envelope partc
multiplied by the zone boundary mode pattern ind dimen-
sions,

un1,. . .,nd
=

csn1, . . . ,nd,td
2

eispoi=1
d ni−vp,. . .,ptd + c.c., s35d

where

vp,. . .,p = Îdf4s1 + 3ucu2dg. s36d

Substituting Eq.s35d into the FPU lattice equations ind di-
mensions, a standard procedure45,46 leads to the followingd
dimensional nonlinear SchrödingersNLSd equation:

i
]c

]t
+

P

2
Ddc − Qcucu2 = 0, s37d

whereDd is thed dimensional Laplacian. The parametersP
andQ are derived from the nonlinear dispersion relation

v2 = o
i=1

d F4 sin2 qi

2
+ 12ucu2 sin4 qi

2
G , s38d

as

P =
]2v

]qi
2 sq1 = p, . . . ,qd = p,ucu = 0d =

1

2Îd
, s39d

Q = −
]v

]ucu2
sq1 = p, . . . ,qd = p,ucu = 0d = − 3Îd. s40d

Assuming that, at the first stage, modulational instability
develops along a single directionx and that the field remains
constant along all other directions, one gets the one-
dimensional NLS equation

i
]c

]t
+

P

2

]2c

]x2 − Qcucu2 = 0. s41d

Following the results of the inverse scattering approach,17

any initial distribution of amplitudeucu and lengthl alongx,
and constant along all other directions, produces a final lo-
calized distribution if18

suculd2 . p2U P

Q
U . s42d

This means that if the initial state is taken with constant
amplitudeucu=a on thed-dimensional lattice withNd oscil-
lators, the modulational instability threshold is

FIG. 2. Modulation instability threshold for thesp ,pd mode versus number
of oscillators in two-dimensional array. The solid line is given by the cor-
responds to the estimate obtained from the nonlinear Schrödinger equation
in largeN limit fsee formulas43dg and the diamonds are results of numerical
simulations.
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sacNd2 =
p2

6d
s43d

which coincides with the leading order in Eq.s33d.

III. CHAOTIC BREATHERS

In this section, we will discuss what happens when the
modulational energy threshold is overcome. The first thor-
ough study of this problem can be found in Ref. 21, many
years after the early pioneering work of Zabusky and Deem.4

Already in Ref. 21, it has been remarked that an energy
localization process takes place, which leads to the formation
of breathers.26 This process has been further characterized in
terms of time scales to reach energy equipartition and of
quantitative localization properties in Ref. 27. The localized
structure which emerges after modulational instability has
been here called “chaotic breather”sCBd. The connection
between CB formation and continuum equations has been
discussed in Refs. 28 and 30, while the relation with the
process of relaxation to energy equipartition has been further
studied in Ref. 29. We will briefly recall some features of the
localization process in one dimension and present new re-
sults for two dimensions.

For long time simulations, we use appropriate symplec-
tic integration schemes in order to preserve as far as possible
the Hamiltonian structure. For the one-dimensional FPU, we
adopt a 6th-order Yoshida’s algorithm47 with a time stepdt
=0.01; this choice allows us to obtain an energy conservation
with a relative accuracyDE/E ranging from 10−10 to 10−12.
For two dimensions, we use instead the 5th order symplectic
Runge–Kutta–Nyström algorithm of Ref. 48, which gives a
similar quality of energy conservation.

We report in Fig. 3sad a generic evolution of the one-
dimensionalp-mode above the modulation instability critical
amplitudesa.acd. The grey scale refers to the energy resid-
ing on siten,

En = 1
2u̇n

2 + 1
2Vsun+1 − und + 1

2Vsun − un−1d, s44d

where the FPU-potential isVsxd= 1
2x2+ 1

4x4. Figures
3sbd–3sdd are three successive snapshots of the local energy
En along the chain. At short time, a slight modulation of the
energy in the system appearsfsee Fig. 3sbdg and thep-mode
is destabilized.13 Later on, as shown in Fig. 3sad, only a few
localized energy packets emerge: they are breathers.26 Inelas-
tic collisions of breathers have a systematic tendency to
favour the growth of the big breathers at the expense of small
ones.49,50 Hence, in the course of time, the breather number
decreases and only one, of very large amplitude, survives
fsee Fig. 3scdg: this is the localized excitation we have called
chaotic breathersCBd. The CB moves along the lattice with
an almost ballistic motion: sometimes it stops or reflects.
During its motion the CB collects energy and its amplitude
increases. It is important to note that the CB is never at rest
and that it propagates with a given subsonic speed.51 Finally,
the CB decays and the system reaches energy equipartition,
as illustrated in Fig. 3sdd. The final CB decay is present in all
the simulations we have performed, but one cannot exclude
the existence of examples where the final breather does not
disappear.

In order to obtain a quantitative characterization of en-
ergy localization, we introduce the “participation ratio”

C0std = N
oi=1

N
Ei

2

soi=1

N
Eid2 , s45d

which is of order one ifEi =E/N at each site of the chain and
of orderN if the energy is localized on only one site. In Fig.
4sad, C0 is reported as a function of time. Initially,C0 grows,
indicating that the energy, evenly distributed on the lattice at
t=0, localizes over a few sites. This localized state survives
for some time. At later times,C0 starts to decrease and finally

reaches an asymptotic valueC̄0 which is associated with the

disappearance of the CBfan estimate ofC̄0 has been derived
in Ref. 27 taking into account energy fluctuations and is
reported with a dashed line in Fig. 4sadg. At this stage, the
energy distribution in Fourier space is flat, i.e. a state of
energy equipartition is reached.

As explained in Ref. 27, the destruction of the breathers
is related to its interaction with low frequency modes which
are dominant in the chain after the initial stage. A full study
of the scattering of plane waves by FPU-breathers would be
necessary to quantify this explanation either as anticipated in

FIG. 3. Time evolution of the local energys44d. In panelsad, the horizontal
axis indicates lattice sites and the vertical axis is time. The grey scale goes
from En=0 swhited to the maximumEn-value sblackd. The lower rectangle
corresponds to 0, t,3 104 and the upper one to 0.9943106, t,106. sbd,
scd; andsdd show the instantaneous local energyEn along theN=128 chain
at three different times. Remark the difference in vertical amplitude in panel
scd, when the chaotic breather is present. The initialp-mode amplitude is
a=0.15.ac.0.01.
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Ref. 27 or, even better, as recently performed by Flach and
collaborators for the discrete NLS equation, Klein–Gordon
or FPU chains.53,54

In Fig. 4sbd, we show the finite time largest Lyapunov
exponentl1std for the same orbit as in Fig. 4sad. We observe
a growth ofl1std when the CB emerges on the lattice and a
decrease when it begins to dissolve. The peak inl1std per-
fectly coincides with the one inC0. Due to this increase of
chaos associated with localization, we have called the
breather chaoticsalthough chaos increase could be the result
of a more complicated process of interaction with the back-
groundd.

In Ref. 27, the time scale for the relaxation to equiparti-
tion has been found to increase assE/Nd−2 in the small en-
ergy limit. This has been confirmed by the followers of this
study.28–30 Such power law scalings are found also for the
FPU relaxation starting from long wavelengths:52 the so-
called FPUproblem. We have termed the relaxation process
which starts from short wavelengths theanti-FPU problem,
just because of the similarities in the scaling laws. The main
feature of the latter problem is that relaxation to equipartition
goes through a complex process of localized structures for-
mation well described by breathers or, in the low-amplitude
limit, by solitons of the nonlinear Schrödinger equation. On
the contrary, for the original FPU problem, an initial long
wavelength excitation breaks up into a train of mKdV-
solitons. The final relaxation to equipartition is however due
to an energy diffusion process which has similar features for
both the FPU and the anti-FPU problem.29

A similar evolution of the local energy

En,m = 1
2u̇n,m

2 + 1
4Vsun+1,m − un,md + 1

4Vsun,m+1 − un,md

+ 1
4Vsun−1,m − un,md + 1

4Vsun,m−1 − un,md s46d

is observed for the two-dimensional casessee Fig. 5d. In this
figure, we just show the initial evolution which leads to
breathers formation. As for the one-dimensional case, bigger
breathers eat up smaller ones, and finally only one breather
survives. However, note that, depending on the initial condi-
tions, the simulations do not always lead to the coalescence
into a single breather, because collisions are more rare in two
dimensions than in one. After the formation of a few local-
ized structures, one also observes the final relaxation to eq-
uipartition, which is not shown in Fig. 5. This latter is instead
evident from the time evolution ofC0std, the localization
parameter, shown in Fig. 4scd: its behavior is very similar to
the one-dimensional case. Indeed, also the largest finite time
Lyapunov exponent behaves similarlyfsee Fig. 4sddg.

IV. SPONTANEOUS LOCALIZATION
BY EDGE COOLING

Breathers play an important role in the nonequilibrium
dynamics of the FPU model. The relaxation to equipartition
of the zone-boundary mode, analyzed thus far in this paper,
is one example. Another interesting case in which breathers
emerge spontaneously is when the lattice is cooled at its
boundaries.31–35This process may be thought of as modeling
a nonequilibrium process where energy exchange in the bulk
is much slower than at the surface. Although in this case the

FIG. 4. Panelsad presents the evolution ofC0std of
formula s45d for the one-dimensional FPU lattice with
N=128 oscillators, initialized on thep-mode with an
amplitudea=0.126.ac.0.010. The dashed line indi-

cates the equilibrium valueC̄0=1.795. Panelsbd pre-
sents the corresponding finite time largest Lyapunov ex-
ponent. Panelscd showsC0std for the two-dimensional
FPU lattice with 20p20 oscillators, initialized on the
sp ,pd-mode with an amplitudea=0.425.ac.0.045.
Panelsdd presents the finite time largest Lyapunov ex-
ponent for two dimensions.
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dynamics is dissipative, it turns out that there is a deep con-
nection with the original Hamiltonian model.

Specifically, when modeling this process, we add a dis-
sipative term −hu̇n in the r.h.s. of Eq.s1d whenn=1 andn
=N. Similarly, in two dimensions, the same term is intro-
duced at all edge sites. The parameterh controls the strength
of the coupling with the external reservoirs at zero tempera-
ture. Since we are interested in the exchange of energy be-
tween a finite system and the environment, we shall consider
either free-ends or fixed-ends boundary conditions.

In a typical simulation, first an equilibrium micro-state is
generated by letting the Hamiltonian systemsh=0d evolve
for a sufficiently long transient. Then, the dissipative dynam-
ics sh.0d is started. The initial condition for the Hamil-
tonian transient is assigned by setting all relative displace-
ments to zero and by drawing velocities at random from a
Gaussian distribution. The velocities are then rescaled by a
suitable factor to fix the desired value of the initial energy
Es0d ssee Ref. 33 for the detailsd.

The one-dimensional numerical simulations reveal that
the dissipation rate of the energy is dominated by two se-
quential effects, that characterize the pathway to localization.
In the first stage of the energy release process, the relaxation
law undergoes a crossover from the exponential expf−t /t0g
to the power lawst /t0d−1/2, wheret0=N/ s2hd sets the short-
est time scale of the systemssee Fig. 6d.34 Asymptotically,
energy reaches a plateau and, correspondingly, the localiza-
tion parameterC0std also saturatesssee the inset of Fig. 6d.

The crossover att0 is a signature of the hierarchical
nature of the early stages of the process. In the harmonic
approximation, if one adds a small dissipation, the frequency
v of each linear mode acquires an imaginary partgsvd,
which represents its damping rate. Initially, it is only the
fastest mode which determines the energy relaxation rate. As
time goes on, pastt.t0, it is the full spectrum of decay
times of the linear modes that sets the rules of energy relax-
ation. Actually, it turns out that at this stage, for small non-
linearities, the system behaves approximately as its linear

counterpartssee Fig. 6d. In particular, a perturbative calcula-
tion to first order ing confirms that34

Estd
Es0d

; E e−2gsvdtgsvddv . 5e−t/t0 for t ! t0

1
Î2pt/t0

for t @ t06 ,

s47d

where the density of statesgsvd is derived from the disper-
sion relationvsqd=2 sinsq/2d, with q=pk/N for free-ends
boundary conditions, andq=psk+1d / sN+1d for fixed-ends
boundary conditionssk=0, . . . ,N−1d.

The time range after the crossover coincides with the
onset of localization. Now the dynamics is significantly af-
fected by the spontaneous appearance of breathers. As the
latter exhibit a very weak interaction among themselves and
with the boundaries, the energy release undergoes a slowing
down, thus freezing the system in a quasistationary configu-
ration far from thermal equilibrium.

FIG. 5. Local energys46d surface plots for the two-
dimensional FPU lattice with 20p20 oscillators, initial-
ized on thesp ,pd-mode with an amplitudea=0.225
.ac.0.045. Snapshots at four different timest are
shown. Breathers form after a coalescence process simi-
larly to the one-dimensional case. The mobility of the
breathers is evident and one also observes in the last
panel the final decrease.

FIG. 6. Log–log plot of −logfEstd /Es0dg versus time for an FPU chain with
free-ends boundary conditions. In this representation, an exponential is a
straight line with slope one. Symbols are the results of numerical simula-
tions averaged over 20 initial conditions. The dashed line is a plot of the
theoretical results47d sRef. 33d for a harmonic chain. The arrow indicates
the crossover timet0. Parameters areN=100 andh=0.1.
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Such residual state is characterized by the presence of
one, highly energetic localized objectspossibly accompanied
by a few much smaller onesd, which is mobile and alternates
periods of rest and erratic motion, as shown in Fig. 7. This
behaviour is reminiscent of the chaotic breathers which
emerge in the Hamiltonian system from modulational insta-
bility of band-edge modes, discussed in Sec. IIIssee also Fig.
3d.

But what do we know of the mechanisms leading to
spontaneous localization in the presence of dissipation? As
noticed above, there is evidence that it is the modulation
instability of short lattice waves that triggers the formation of
localized structures. This hypothesis is supported by the ob-
servation that the emergence of spatial patterns in the early
stages of the relaxation is intimately related to how dissipa-
tion acts on vibrational modes of different wavelength. In
particular, if the system is swiftly enough depleted of long-
wavelength modes, the instability associated with the band-
edge waves may effectively trigger the process of localiza-
tion. A key test for the above hypothesis is offered by the
nature of the boundary conditions. In the case of free-ends,
the modes of small wave number indeed disappear very fast,
in conjunction with the onset of spontaneous localization. On
the contrary, in the presence of fixed boundaries the former
turn out to be as long-lived as the modes with large wave
numbers. The corresponding numerical evidence is that
hardly no localization is observed in this case. Rather, the
energy decays following exactly the behavior of the har-
monic chains47d.33 This scenario can be observed directly,
by computing the time-dependent spatial power spectrum
Ssq,td during the relaxationssee Fig. 8d.

It is possible to get a quantitative confirmation of the
above hypothesis by calculating the exact relaxation spec-
trum gsvd of the linearized system. In the harmonic approxi-
mation, the equations of motion may be written in matrix
form as

U̇ = AU, s48d

where U=su1, . . . ,uN,u̇1, . . . ,u̇NdT is a 2N column vector,
andA is the matrix

A = S0 IN

K − hB
D . s49d

The tridiagonal matrix of force constantsKnm also contains
the information on the type of boundary conditions, whereas
the matrixBnm=dnmsdm1+dmNd describes the coupling with
the environment. The spectrum of damping rates can be cal-
culated by straight diagonalization of matrixA. In Fig. 9 we
plot gsvd, where g is the opposite of the real part of an
eigenvalue ofA andv its imaginary part. This representation
of the relaxation spectrum is preferable with respect to the
one in terms of wave numbers, since the vibration frequen-
cies are shifted as a consequence of the damping.

This calculation confirms that the free-ends and fixed-
ends systems display considerably different behaviors. In the
former case, the least damped modes are the short-
wavelength onessv<2, the band-edge frequencyd, the
smallest damping constant beinggs2d<p2h /2N3, while the
most damped modes are the ones in the vicinity ofv
,1/N. On the contrary, for fixed ends, the most damped

FIG. 7. Space–time contour plot of the site energiess44d. Time flows up and
the horizontal axis is the site index. Parameters areN=100, h=0.1, and
Es0d /N=1.

FIG. 8. Surface plot of the time-dependent spatial spectrum of particle ve-
locities for the one-dimensional FPU lattice.sad Fixed-ends boundary con-
ditions. sbd Free-ends boundary conditions. Parameters areN=100,h=0.1,
andEs0d /N=1.
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modes are those around the band centersv,Î2d while both
short- and long-wavelength waves dissipate very weaklysg
,1/N3d.

The above analysis helps understanding why spontane-
ous localization is strongly inhibited if the system is trapped
between rigid walls, thus in parallel unveiling the role of
modulational instability in the process.

We have also performed similar numerical simulations
for the two-dimensional FPU models19d, with dissipation
added at the edges and free-ends boundary conditions. Re-
markably, the asymptotic scenario changes. The quasistation-
ary state is now a static collection of tightly-packed localized
objects, arranged in a sort of random latticessee Fig. 10d.
Moreover, it turns out that spontaneous localization in two
dimensions is a thermally-activated phenomenon, described
by an Arrhenius law for the average breather density, where
the parameter that controls the strength of thermal fluctua-
tions is the initial energy densityEs0d /N.34 The origin of this
behavior is that, in the two-dimensional FPU system, dis-
crete breathers may be excited only above a certain energy
threshold,39 as discussed in Sec. II B. Despite the different
nature of the asymptotic state, the onset of localization fol-
lows the same path in one and two dimensions,34 well de-

scribed the hierarchy of relaxation times underlying Eq.s47d.
In particular, a crossover is observed from the exponential
expf−2t /t0g to the power lawst /t0d−1.

V. CONCLUSIONS

In this paper, we have presented a detailed analysis of
the zone-boundary mode modulational instability for the
FPU lattice in both one and higher dimensions. Formulas for
the critical amplitude have been derived analytically and
compare very well with numerics for all system sizes. We
have extended to two dimensions the study of the process
which leads to the formation of chaotic breathers. The physi-
cal picture is similar to the one-dimensional case. Besides
that, we make the bridge between breathers created by modu-
lational instability of plane waves and the ones formed when
extracting energy from the boundaries: similarities and dif-
ferences are highlighted.

All results on modulational instability of zone-boundary
modes can be straightforwardly extended to other initial
modes and, correspondingly, instability rates can be derived.
This has already partially been done in Ref. 14 and compares
very well with the numerical results by Yoshimura.55 This
author has recently reanalyzed the problem56 to determine
the growth rates for generic nonlinearities in the high energy
region, obtaining exact results based on Mathieu’s equation.

Going to many-modes initial excitations, it has been re-
marked that instability thresholds depend on relative ampli-
tudes and not only on the total energy.9 Although this makes
the study of the problem extremely involved, we believe that
a detailed study of some selected group of modes, which
play some special role in FPU dynamics, could be interest-
ing. The method discussed in this paper could be adapted to
treat this problem. Historically, the first study is in the paper
by Bivins, Metropolis, and Pasta himself,57 where the au-
thors tackle the problem by studying numerically the insta-
bilities of coupled Mathieu’s equations.

The study we have presented in this paper of the two-
dimensional FPU lattice is extremely preliminary and further
analyses are needed. In particular, the full process of relax-
ation to energy equipartion and the associated time scales
have not been studied at all. Preliminary results on the relax-
ation process in two dimensions from low frequency initial
states seem to indicate a faster evolution to equipartition.58 A
similar analysis for high frequencies remains to be per-
formed.

In one-dimensional studies, a connection between the
average modulation instability rates and the Lyapunov expo-
nents has been suggested.11,14Recently,59 high frequency ex-
act solutions have been used in the context of a differential
geometric approach60 to obtain accurate estimates of the
largest Lyapunov exponent. Similar studies could be per-
formed for the two-dimensional FPU lattice and the corre-
sponding scaling laws with respect to energy density could
be obtained.

The study we have reported in the last section about
lattices that are cooled at the boundaries points out the simi-
larity of the localized objects obtained in the long time limit
with chaotic breathers. However, this resemblance, although

FIG. 9. Damping ratesgsvd for an harmonic chain withN=100 andh
=0.1. Free-ends boundary conditionssstarsd and fixed-ends boundary con-
ditions sdiamondsd.

FIG. 10. 2D FPU lattice, site energies in the residual state state. Parameters
are:N=80, h=0.1, Es0d /N=1.
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convincing, is only qualitative. Quantitative studies on the
comparison of these breathers with the chaotic ones obtained
from modulational instability should be performed.
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