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Energy cascade in internal-wave attractors
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Abstract – One of the pivotal questions in the dynamics of the oceans is related to the cascade
of mechanical energy in the abyss and its contribution to mixing. Here, we propose internal-wave
attractors in the large-amplitude regime as a unique self-consistent experimental and numerical
setup that models a cascade of triadic interactions transferring energy from large-scale monochro-
matic input to multi-scale internal-wave motion. We also provide signatures of a discrete wave
turbulence framework for internal waves. Finally, we show how, beyond this regime, we have a
clear transition to a regime of small-scale high-vorticity events which induce mixing.

Copyright c⃝ EPLA, 2016

Introduction. – The continuous energy input to the
ocean interior comes from the interaction of global tides
with the bottom topography [1]. The subsequent mechani-
cal energy cascade to small-scale internal-wave motion and
mixing is a subject of active debate [2] in view of the im-
portant role played by abyssal mixing in existing models
of ocean dynamics [3–5]. A question remains: how does
energy injected through internal waves at large vertical
scales [6] induce the mixing of the fluid [2]?

In a stratified fluid with an initially constant buoy-
ancy frequency N = [(−g/ρ̄)(dρ/dz)]1/2, where ρ(z) is
the density distribution (ρ̄ a reference value) over vertical
coordinate z, and g the gravity acceleration, the dispersion
relation of internal waves is θ = ± arcsin(Ω), where θ is the
angle between the wave beams and the horizontal, while Ω
is the frequency of oscillations non-dimensionalized by N .
The dispersion relation requires preservation of the slope
of the internal-wave beam upon reflection at a rigid bound-
ary. In the case of a sloping boundary, this property gives a
purely geometric reason for a strong variation of the width
of internal-wave beams (focusing or defocusing) upon re-
flection. Internal-wave focusing provides a necessary con-
dition for large shear and overturning, as well as shear and
bottom layer instabilities at slopes [7–10].

In a confined fluid domain, focusing usually prevails,
leading to a concentration of wave energy on a closed loop,
the internal-wave attractor [11]. Attractors eventually
reach a quasi-steady state where dissipation is in balance

with energy injection regardless of the linear [12] or non-
linear mechanism of dissipation [13]. High concentration
of energy at attractors makes them prone [14] to triadic
resonance instability (TRI), an instability similar to para-
metric subharmonic instability (PSI) but where viscosity
plays a role [15–17]. The resonance occurs when temporal
and spatial conditions are satisfied: Ω1 + Ω2 = Ω0 and
−→
k1 +

−→
k2 =

−→
k0, where

−→
k is the wave vector while subscripts

0, 1 and 2 refer to the primary, and two secondary waves,
respectively. The secondary waves can also be unstable,
initiating a cascade.

In this letter, using laboratory experiments and numeri-
cal simulations, we suggest the energy cascade in internal-
wave attractors as a novel laboratory model of a natural
cascade. The cascade operates via a hierarchy of triadic
interactions inducing high-vorticity events and mixing at
sufficiently large forcing. The model setup represents a
trapezoidal fluid domain filled with a uniformly stratified
fluid where the energy is injected at global scale by wave-
like motion of the vertical wall.

Transition to mixing is non-trivial since it is clearly be-
yond the domain of pure wave-wave interactions. Sim-
ilarly, for surface waves, experimental reality deals with
the cascades of wave-wave interactions, often called wave
turbulence [18], significantly “contaminated” by effects
of a finite-size fluid domain, wave breaking, wave cusps,
nonlinear dispersion, viscous damping of wave field com-
ponents [18–21]. The very specific dispersion relation for
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Fig. 1: (Color online) Experimental setup showing the wave
generator on the left and the inclined slope on the right.
The color inset is a typical PIV snapshot showing the mag-
nitude (u2 + w2)1/2 of the experimental two-dimensional ve-
locity field obtained at t = 15 T0 (case B of table 1) with
T0 = 2π/(NΩ0). Black dashed lines show the billiard geomet-
ric prediction of the attractor.

internal waves introduces additional complications. For
instance, in rotating fluids, which have a dispersion rela-
tion analogous to stratified fluids, the usefulness of the
formalism of wave turbulence as a basis for the stud-
ies in rotating turbulence has been reported for experi-
ments only recently [22]. For internal waves, the question
received some attention theoretically [23] but remains
fully open, from the experimental and the numerical
points of view. Its consequences on mixing are moreover
widely open.

Experimental and numerical setups. – A rectan-
gular test tank of size 80 × 17 × 42.5 cm3 is filled with a
salt-stratified fluid [14] with N ≃ 1 rad · s−1. A sliding
sloping wall, inclined at an angle α to the vertical, delim-
its a trapezoidal fluid domain of length L (measured along
the bottom) and depth H. The input forcing (see fig. 1)
is introduced into the system by an internal-wave gener-
ator [24] (left wall) with a time-dependent vertical profile
given by a sin(NΩ0t) cos(πz/H), where a is the amplitude
of oscillations. The horizontal and vertical components of
the velocity field u and w measured in the vertical mid-
plane are then monitored as a function of spatial coordi-
nates and time, using standard PIV technique [25,26] with
a cross-correlation algorithm applied to analyzing windows
of typical size 20-by-20 pixels. Below, we discuss mainly
three different experiments from low to large forcing.

Numerical computations are performed with spectral
element methods [27,28]. The geometry of the numerical
setup closely reproduces the experimental one. The full
system of equations being solved consists of the Navier-
Stokes equation in the Boussinesq approximation, the con-
tinuity equation and the equation for the transport of salt.
Typical meshes used in calculations consist of 50 thousand
to half-million elements, with 8-to-10–order polynomial
decomposition within each element. Time discretization
was 10−4 to 10−5 of the external forcing period. Com-
parisons of experimental and numerical results present a

Fig. 2: (Color online) Well-developed instability. Magnitude of
the experimental two-dimensional velocity field for case B (see
table 1) at t = 400 T0. Black dashed lines show the billiard
geometric prediction of the attractor, which is fully recovered
when considering small forcing amplitude [14] or at an earlier
time when considering larger forcing as in fig. 1(a).

beautiful agreement, not only qualitative but also quan-
titative [29]. The numerical simulations clearly empha-
size the importance of the three-dimensionality (case Z)
to recover experimental laboratory results quantitatively,
nevertheless 2D simulations (case X) are fully sufficient
for qualitative agreement. We checked as in [14,29] that
the temporal and spatial resonance conditions are satisfied
experimentally and numerically.

Energy cascade revealed by the time-frequency
analysis. – An example of an experimental velocity field
is shown in fig. 2 at a much later stage. The attractor
is still visible, but branches are deformed by the presence
of secondary waves. As will be clear below, the internal-
wave frequency spectrum which was initially a Dirac func-
tion has been progressively enriched to give rise to a very
complex spectrum, through a cascade of central interest.

The experimental or numerical measured velocity fields
are analyzed using a time-frequency representation [30]
calculated at each spatial point. More precisely, we com-
pute the quantity

Su(Ω, t) =

〈

∣

∣

∣

∣

∫ +∞

−∞

u(x, z, τ)eiΩτh(t − τ) dτ

∣

∣

∣

∣

2
〉

xz

, (1)

where u stands for the horizontal velocity component de-
fined by the spatial coordinates x and z, while h is a
smoothing Hamming window of energy unity. The cal-
culations are performed with the dedicated Matlab tool-
box [30]. To increase the signal-to-noise ratio, the data
are averaged over the square represented in fig. 2 by the
white dashed line: this is the meaning of the notation
⟨.⟩xz. We present only the analysis of the horizontal ve-
locity field, but the results are similar for the vertical one.

Figure 3 presents the basic types of the newly observed
cascades, with progressively increasing complexity: a
simply monochromatic spectrum (case A of table 1), and
rich multi-peak spectra (cases B and C).
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Fig. 3: (Color online) Time-frequency diagrams log
10

(Su(Ω, t)/S0), defined in eq. (1), for three different forcing amplitudes a.
The quantity S0 is defined as the time average of the main component Su(Ω0, t). The time-frequency diagrams are calculated
on the 5 × 5 cm2 square region, close to the reflection of the attractor on the slope and indicated by the white dashed line
in fig. 2.

Table 1: Parameters used for data presented in this letter.

Type Ω0 H L α a tmax

cm cm ◦ mm T0

A Exp. 0.59 30.0 45.0 27.3 1.5 149
B Exp. 0.61 30.3 44.4 25.4 5 693
C Exp. 0.60 30.1 44.2 24.8 10 651
X 2D sim. 0.62 30.8 45.6 29.9 1–9 1000
Z 3D sim. 0.59 30.0 45.6 29.9 2.5 270

The appropriate choice1 of the length of the Hamming
window h allows us to tune the resolution in frequency
and time. A large (respectively, small) window provides
a high (respectively, low) resolution in frequency and a
weak (respectively, good) resolution in time. In order to
separate the different frequencies in the cases B and C, a
good resolution in frequency is necessary. The three panels
have been obtained with a 15min long Hamming window
(≃ 80T0).

The size of the Hamming window is also responsible of
the wrong impression that the continuous spectrum can
be seen right at the start of the experiment in fig. 3(c).
We checked that a time-frequency diagram with a shorter
Hamming window emphasizes that the continuous spec-
trum does appear gradually like for the secondary fre-
quency peaks in fig. 3(b). However, with such a choice,
the frequency resolution would not be sufficient to dis-
criminate the frequencies.

In well-developed cascades, apart from triads given by
Ωi±Ωj = Ω0 associated with the primary wave oscillating

1As the size of the Hamming window is on the order of the dura-
tion of the experiments, some edge problems appear at the beginning
and end of the time-frequency diagrams. This can be clearly seen
in fig. 3, at the beginning of all diagrams, around Ω0, where the
peak is wider than in the rest of the experiments. This problem is
not visible at the end because we deliberately cut off diagrams just
before.

Fig. 4: (Color online) Bicoherence calculated from the signal
represented in fig. 3(b).

at the forcing frequency Ω0, secondary waves are act-
ing as primary waves for higher-order triadic interactions.
Below we illustrate this by calculation of the frequency
triplets for case B where the spectrum is rich and the
discrete peaks in the spectrum are well defined. To de-
tect the frequency triplets, we use the bispectrum anal-
ysis. It measures the extent of statistical dependence
among three spectral components (Ωk, Ωi, Ωj) satisfy-
ing the relationship Ωk = Ωi + Ωj , with the quantity
M(Ωi,Ωj) = F (Ωi)F (Ωj)F ∗(Ωi + Ωj), where F is the
Fourier transform and ∗ denotes the complex conjugate.
In practice, the bispectrum is usually normalized and con-
sidered in form of bicoherence which is 0 for triplets with
random phases and 1 for triplets with perfect phase cou-
pling [31]. The bicoherence shown in fig. 4 for case B is
obtained using the HOSA Matlab toolbox as an average
over the same square region used for the time-frequency
analysis and in the time interval [200, 690]T0. In addi-
tion to the strong peak (0.61, 0.61) corresponding to the
forcing frequency (therefore to self-correlation), the pos-
sible triplets satisfying the definition of triadic resonance
at Ωk = Ω0 can be found on the line with slope −1 con-
necting the points (0, 0.61) and (0.61, 0). This emphasizes
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that the mechanism at play is triadic. Other peaks are
also visible corresponding to other choices of Ωk revealing
that the instability mechanism is repeated and leads to a
cascade.

Internal-wave attractors in the large-amplitude regime
present therefore a nice cascade of triadic interactions
transferring energy from large-scale monochromatic in-
put to many discrete internal-wave frequencies. More-
over, comparing fig. 3(b) with fig. 3(c), we note that
the frequency spectrum remains qualitatively similar: a
“discrete” part, with well-defined peaks, and a “continu-
ous” part (not visible in fig. 3(b) but really present). How-
ever, in case C, the magnitudes of peaks in the “discrete”
part of the spectrum fluctuate in time, and the energy con-
tent of the “continuous” part is significantly higher (two
orders of magnitude), as is clearly visible from the back-
ground color. This cascade thus presents features reminis-
cent of wave turbulence, worth to explore.

Signatures of discrete wave turbulence? – The
presence of wave-turbulence–like phenomena and a pos-
sible qualitative transition from discrete wave turbulence
to wave-turbulence–like regime with extreme events is il-
lustrated in fig. 5 using the energy spectra experimentally
obtained for different wave number intervals as a diagnos-
tic tool [22].

The wave energy spectra are computed using the fol-
lowing procedure. Horizontal and vertical velocity fields
u(x, z, t) and w(x, z, t) are obtained with 2D PIV mea-
surements in the entire trapezoidal domain, on a grid with
0.36 cm×0.36 cm spatial resolution and 0.5 s temporal res-
olution2. A three-dimensional (two dimensions for space,
one for time) Fourier transform3 of these fields leads to
û(kx, kz,Ω) and ŵ(kx, kz,Ω). One can thus define the 2D
energy spectrum by

E(kx, kz,Ω) =
|û(kx, kz,Ω)|2 + |ŵ(kx, kz,Ω)|2

2ST
, (2)

where S = 45×30 cm2 is the area of the PIV measurement
and T = 80T0 its duration. The spatio-temporal resolu-
tion of our measurements leads to upper bounds in wave
numbers and frequency. We thus have kmax = 8.6 rad/cm
and NΩmax = 6.28 rad/s.

In the dispersion relation for internal waves, Ω =

sin θ, the wave vector
−→
k and its components do not

appear directly but they are linked with the angle θ by
sin θ = kx/

√

k2
x + k2

z . To compute the energy spectrum

22D PIV measurements are performed with a 10×10 pixel resolu-
tion. The x-direction length being 45 cm and the z-direction length
30 cm, this leads to a resolution of 0.36 cm in both directions. The
temporal resolution is 0.5 s and we used 80T0 to compute each en-
ergy spectrum. Thus, the total data grid size is 125 × 80 × 1600
points.

3For the Fourier transform, we padded the velocity fields with
zeros to increase the resolution in the wave number and frequency.
The final data grid used for E(kx, kz , Ω) is 400 × 400 × 2000. The
resolution in the wave number is thus ∆kx = ∆kz = 0.043 rad/cm
and the frequency resolution is N∆Ω = 6.28 × 10−3 rad/s.

Fig. 5: (Color online) Energy spectra E(θ, Ω)/E(Ω) for two
forcing amplitudes and two length scale intervals: 0.22 to
1 rad · cm−1 for (a) and (c); 1 to 1.86 rad · cm−1 for (b) and (d)
(i.e. wavelengths 28.5 cm to 6.3 cm for the left panels, while
6.3 cm to 3.4 cm for the right ones). The dashed black lines cor-
respond to the dispersion relation Ω = ± sin θ. In panels (a)
and (b) which correspond to the triadic cascade experiment B,
energy is localized on the dispersion relation confirming the
wave turbulence picture. For the mixing box experiment C,
the localization is only preserved for panel (c), while it is not
the case for panel (d).

as a function of variable θ, one can interpolate the energy
spectrum E(kx, kz,Ω) to get E(k, θ,Ω), where k is the
norm of the wave vector. For this interpolation, we define
∆k as the smallest wave vector that has data points in the
Cartesian coordinates. Here, ∆k = 0.043 rad/cm and we
chose kmin = 5∆k ≈ 0.22 rad/cm to have a good interpo-
lation at low wave numbers. We chose to take 200 points
for k between 0 and kmax and 300 points for θ between
−π and π. Then, one can integrate over the entire range
of wave vectors [kmin, kmax] as follows:

E(θ, Ω) =

∫ kmax

kmin

E(k, θ,Ω)kdk, (3)

or on any range of wave vectors between kmin and kmax.
Because the energy levels of the different frequencies cover
several orders of magnitude, one has to normalize the
energy density E(θ, Ω) by the frequency energy density
E(Ω), obtained by integrating E(θ, Ω) on all θ range.

This is what has been done in fig. 5. The two spa-
tial integration ranges are [0.22, 1] and [1, 1.86] rad/cm, for
cases B and C. For case B, the first integration range rep-
resents 84% of the energy in the entire range [kmin, kmax]
while the second represents 11%. For case C, the first
range has 82% of the total energy and the second one 11%.

The linear dispersion relation is seen to attract the max-
ima of the energy spectra regardless of the length scales in
case B, and for large-scale perturbations only, in case C.
Short-scale perturbations in the latter case clearly escape
any relation to linear wave dynamics. This is expected to
be due to extreme events, natural precursors to mixing.
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Fig. 6: (Color online) Mixing and vorticity. (a) Ratio between
the density profiles measured after and before the experiments
for cases B (black) and C (red). (b) Experimental probability
density functions of the vorticity ξ(x, z, t) in the tank, calcu-
lated on the grid from experimental images for cases A (blue),
B (black) and C (red). Samples are taken using 400 images
close to the end of the experiment, when the wave regime
is fully developed. The individual PDFs are averaged over
roughly 8× 103 equally spaced points covering the whole wave
field, and are normalized by the buoyancy frequency N .

The above results are convincing signatures of a dis-
crete wave turbulence framework for internal waves in the
intermediate forcing amplitude regime. For the largest
amplitude, we have indications that a system is beyond
the wave-turbulence–like regime and has reached a mix-
ing regime.

Mixing inferred from vorticity distribution. – An
important issue is whether or not sufficiently energetic
internal-wave motion can produce an irreversible energy
contribution to mixing. Figure 6(a) presents the compar-
ison between density profiles measured before and after
experiments: while no modification of the density (within
experimental error) can be observed in case B, one gets a
clear evidence of mixing in case C.

Further, differences between the regimes corresponding
to low and high mixing are clearly seen in statistics of
extreme events. This statistic is obtained by the calcu-
lation of probability density functions (PDF), a widely
used tool for describing turbulence [32]. Since we are
interested in small-scale events destabilizing the stratifi-
cation, we take the horizontal y-component of vorticity
ξ(x, z, t) = ∂u/∂z − ∂w/∂x measured in the vertical mid-
plane of the test tank as a relevant quantity and consider
its PDF. In fig. 6(b), we present the vorticity PDFs corre-
sponding to different wave regimes in the attractor. Note
that the area under each PDF is equal to unity, which
allows a meaningful comparison between the probabilities
of extreme events in the cases A, B and C. In a stable at-
tractor (see case A), extreme events (defined with respect
to 2N , see below) are completely absent and the wave mo-
tion is concentrated within the relatively narrow branches
of the attractor while the rest of the fluid is quiescent.
Accordingly, the PDF has a sharp peak at zero vorticity
and is fully localized between well-defined maximum and
minimum values of vorticity. In cases B and C, the PDF

Fig. 7: (Color online) Potential energy. Time evolution of the
normalized potential energy for three different forcing ampli-
tudes: green (a = 1 mm), magenta (a = 5 mm) and black
(a = 9 mm). The curves were obtained using long-duration 2D
numerical simulations for case X of table 1.

broadens and the development of TRI increases the proba-
bility of extreme events due to summation of primary and
secondary wave components.

The occurrence of local destabilizing events can be
viewed as a competition between stratification and vor-
ticity. In a two-dimensional flow, a relevant stability pa-
rameter is a version of the Richardson number, which can
be introduced as Riξ = N2/ξ2. For a horizontal strati-
fied shear flow this parameter reduces to the conventional
gradient Richardson number Ri = N2/(du/dz)2, where
du/dz is the velocity shear. Flows with large Ri are gener-
ally stable, and the turbulence is suppressed by the strat-
ification. The classic Miles-Howard necessary condition
for instability requires that Ri < 1/4 somewhere in the
flow. If this condition is satisfied, the destabilizing effect
of shear overcomes the effect of stratification, and some
mixing occurs as a result of overturning. The threshold
value |ξ/N | = 2 is marked on the plot of vorticity PDFs.
It can be seen that data corresponding to cases B and C
have “tails” extending into the domains |ξ/N | > 2. The
area under the tails represents the probability of events
of strength |ξ/N | > 2. In case C, this probability is an
order of magnitude greater than in case B, in qualitative
agreement with much higher mixing in case C as compared
to case B.

The measure of the mixing can be defined as the normal-
ized potential energy A(t) = (Ep(t)−Ep(0))/(E∗

p−Ep(0)),
in which Ep =

∫

dxdz ρ(x, z, t)gz stands for the potential
energy and ∗ stands for its final value for the fully mixed
system. For the mixing box experiment (see profile C
shown in fig. 6(a)), one attains a final value A ≈ 25%.
Mixing is therefore remarkably strong: two hours of exper-
iment in case C are equivalent to the action of molecular
diffusion on a time scale of several weeks.

The density profiles measured before and after the ex-
perimental runs do not allow monitoring the time evolu-
tion of the mixing dynamics. However, these dynamics are
nicely revealed in numerical calculations as shown in fig. 7.
The dramatic effect of the amplitude of oscillations on the
mixing (with other parameters being fixed) is clearly seen,
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ranging from slow erosion of initial stratification to violent
mixing.

Conclusions. – In the present letter, we have reported
and described a novel experimental and numerical setup,
an “internal-wave mixing box”, which presents a complete
cascade of triadic interactions transferring energy from
large-scale monochromatic input to multi-scale internal-
wave motion, and subsequent cascade to mixing. We have
reported interesting signatures of discrete wave turbulence
in a stratified idealized fluid problem. Moreover, we have
shown how extreme vorticity events lead to mixing that
occurs in the bulk of the fluid, similarly to [33].

Confinement of the fluid domain and focusing of wave
energy at an attractor play an important role in the cas-
cade; however, these conditions are not very restrictive.
Under natural conditions, internal waves can travel thou-
sands of kilometers which means that quite large bodies of
water (for instance, seas) can be considered as confined do-
mains. Also, since attractors can occur in laterally open
domains with an appropriately shaped bottom [34], the
mechanism of the triadic wave cascade and the bulk mix-
ing described in the present paper is likely to occur in
domains with multi-ridge topography as described in [35].

From a broader perspective, the complete scenario that
we have identified here thus provides an analog of energy
cascade in the abyss that should shed new light on the
full energy cascade in the oceans. However, the quasi–
two-dimensional setup and the absence of Coriolis forces
hinder, at this stage, the generalization beyond the ideal-
ized fluid problem that we study here. Work along these
lines to more closely reproduce the cascade in the oceans
would be highly interesting.

∗ ∗ ∗

EVE gratefully acknowledges his appointment as a
Marie Curie incoming fellow at ENS de Lyon. This
work has been partially supported by ONLITUR grant
(ANR-2011-BS04-006-01), by Russian ministry of edu-
cation (RFMEFI60714X0090), RFBR (15-01-06363) and
CFD web-laboratory unihub.ru. It has been carried out
with resources of PSMN from ENS de Lyon. Most of
the numerical simulations were performed on supercom-
puter Lomonosov of Moscow State University. We thank
P. Borgnat, P. Flandrin, N. Mordant, A. Obabko,
H. Scolan, A. Venaille, A. Wienkers for helpful
discussions.

REFERENCES

[1] Garrett C. and Kunze E., Annu. Rev. Fluid Mech., 39

(2007) 57.
[2] Ivey G. N., Winters K. B. and Koseff J. R., Annu.

Rev. Fluid Mech., 40 (2008) 169.
[3] Munk W., Deep-Sea Res., 13 (1966) 707.

[4] Munk W. and Wunsch C., Deep-Sea Res., 45 (1998)
1977.

[5] Nikurashin M. and Vallis G., J. Phys. Oceanogr., 42

(2012) 1652.
[6] McComas C. H. and Muller P., J. Phys. Oceanogr.,

11 (1981) 970.
[7] Buhler O. and Muller C. J., J. Fluid Mech., 588

(2007) 1.
[8] Dauxois T. and Young W. R., J. Fluid Mech., 390

(1999) 271.
[9] Gayen B. and Sarkar S., Phys. Rev. Lett., 104 (2010)

218502.
[10] Zhang H. P., King B. and Swinney H. L., Phys. Rev.

Lett., 100 (2008) 244504.
[11] Maas L. R. M., Benielli D., Sommeria J. and Lam

F. P. A., Nature, 388 (1997) 557.
[12] Hazewinkel J., van Breevoort P., Dalziel S. and

Maas L. R. M., J. Fluid Mech., 598 (2008) 373.
[13] Jouve L. and Ogilvie G. I., J. Fluid Mech., 745 (2014)

223.
[14] Scolan H., Ermanyuk E. and Dauxois T., Phys. Rev.

Lett., 110 (2013) 234501.
[15] Bourget B., Dauxois T., Joubaud S. and Odier P.,

J. Fluid Mech., 723 (2013) 1.
[16] Koudella C. R. and Staquet C., J. Fluid Mech., 548

(2006) 165.
[17] Sutherland B. R., J. Fluid Mech., 724 (2013) 1.
[18] Nazarenko S. V., Wave Turbulence, Lect. Notes Phys.,

Vol. 825 (Springer, Berlin) 2011.
[19] Aubourg Q. and Mordant N., Phys. Rev. Lett., 114

(2015) 144501.
[20] Deike L., Fuster D., Berhanu M. and Falcon E.,

Phys. Rev. Lett., 112 (2014) 234501.
[21] Denissenko P., Lukaschuk S. and Nazarenko S.,

Phys. Rev. Lett., 99 (2007) 014501.
[22] Yarom E. and Sharon E., Nat. Phys., 10 (2014) 510.
[23] Lvov Y. V. and Tabak E. G., Phys. Rev. Lett., 87 (2001)

168501.
[24] Mercier M., J. Fluid Mech., 657 (2010) 308.
[25] Westerweel J., Meas. Sci. Technol., 8 (1997) 1379.
[26] Fincham A. and Delerce G., Exps. Fluids, 29 (2000)

S13.
[27] Fischer P., J. Comput. Phys., 133 (1997) 84.
[28] Fischer P., Lottes J., Pointer D. and Siegel A.,

J. Phys.: Conf. Ser., 125 (2008) 012076.
[29] Brouzet C., Sibgatullin I., Scolan H., Ermanyuk

E. and Dauxois T., to be published in J. Fluid Mech.
(2016).

[30] Flandrin P., Time-Frequency/Time-Scale Analysis,
Time-Frequency Toolbox for Matlab (Academic Press)
1999.

[31] Favier B., Grannan A. M., Le Bars M. and Aurnou

J. M., Phys. Fluids, 27 (2015) 066601.
[32] Batchelor G. K., The Theory of Homogeneous Turbu-

lence (Cambridge University Press, Cambridge) 1982.
[33] Swart A., Manders A., Harlander U. and Maas L.,

Dyn. Atmos. Oceans, 50 (2010) 1634.
[34] Echeverri P., Yokossi T., Balmforth N. J. and

Peacock T., J. Fluid Mech., 669 (2011) 354.
[35] Polzin K. L., Toole J. M., Ledwell J. R. and

Schmitt R. W., Science, 276 (1997) 5309, 93.

44001-p6


