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Abstract – For a many-particle system with long-range interactions and evolving under stochas-
tic dynamics, we study for the first time the out-of-equilibrium fluctuations of the work done on
the system by a time-dependent external force. For equilibrium initial conditions, the work distri-
butions for a given protocol of variation of the force in time and the corresponding time-reversed
protocol exhibit a remarkable scaling and a symmetry when expressed in terms of the average
and the standard deviation of the work. The distributions of the work per particle predict, by
virtue of the Crooks fluctuation theorem, the equilibrium free-energy density of the system. For
a large number N of particles, the latter is in excellent agreement with the value computed by
considering the Langevin dynamics of a single particle in a self-consistent mean field generated by
its interaction with other particles. The agreement highlights the effective mean-field nature of the
original many-particle dynamics for large N . For initial conditions in non-equilibrium stationary
states (NESSs), we study the distribution of a quantity similar to dissipated work that satisfies
the non-equilibrium generalization of the Clausius inequality, namely, the Hatano-Sasa equality,
for transitions between NESSs. Besides illustrating the validity of the equality, we show that the
distribution has exponential tails that decay differently on the left and on the right.

Copyright c⃝ EPLA, 2016

Introduction. – Fluctuations are ubiquitous in any
physical system, and characterizing their behavior is one of
the primary objectives of statistical physics. Fluctuations
may originate spontaneously or may be triggered by an
external force. When in thermal equilibrium, the system
is unable to distinguish between the two sources of fluctua-
tions, provided the fluctuations are small. As a result, the
response of the system in thermal equilibrium to a small
external force is related to the spontaneous fluctuations in
equilibrium. The latter fact is encoded in the fluctuation-
dissipation theorem (FDT), a cornerstone of statistical
physics [1]. Intensive research on generalizing the FDT to
situations arbitrarily far from equilibrium led to the for-
mulation of a set of exact relations, clubbed together as
the fluctuation relations (FRs). Besides quantifying the
fluctuations, these relations constrain the entropy produc-
tion and work done on the system [2]. Notable of the FRs
are the Jarzynski equality [3] and the Crooks theorem [4]
in which the system is driven far from an initial canonical
equilibrium, and the Hatano-Sasa equality [5] that applies

when the system is initially in a non-equilibrium station-
ary state (NESS).

Despite such a remarkable success on the theoretical
front, observing in experiments the full range of fluctu-
ations captured by the FRs has been limited almost ex-
clusively to small systems. In a macroscopic open system
comprising a large number (of the order of Avogadro num-
ber) of constituents, the dynamics is governed by the inter-
action of the environment with these many constituents,
so that any macroscopic observable such as the energy
shows an average behavior in time, and statistical excur-
sions are but rare. A small system, on the contrary, is one
in which the energy exchange during its interaction with
the environment in a finite time is small enough so that
large deviations from the average behavior are much more
amenable to observation [6]. Molecular motors constitute
a notable example of small systems involved in efficiently
converting chemical energy into useful mechanical work
inside living cells. Recent advances in experimental ma-
nipulation at the microscopic level led to experimentally
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testing the FRs, e.g., in an RNA hairpin [7], and in a
system of microspheres optically driven through water [8].

In this work, we consider a macroscopic system with
long-range interactions that is evolving under stochastic
dynamics in the presence of a time-dependent external
force. The stochasticity in the dynamics is due to the
interaction of the system with the environment. Long-
range interacting (LRI) systems are those in which the
inter-particle potential decays slowly with the separation
r as r−α for large r, with 0 ≤ α < d in d dimensions [9].

Here, we study the out-of-equilibrium fluctuations of
the work done on the system by the external force. We
show that although constituted of a large number N of
interacting particles, an effective single-particle nature of
the dynamics, which becomes more prominent the larger
the value of N is, leads to significant statistical excursions
away from the average behavior of the work. The single-
particle dynamics is represented in terms of a Langevin
dynamics of a particle evolving in a self-consistent mean
field generated by its interaction with other particles, and
is thus evidently an effect stemming from the long-range
nature of the interaction between the particles. For equi-
librium initial conditions, we show that the work distri-
butions for a given protocol of variation of the force in
time and the corresponding time-reversed protocol exhibit
a remarkable scaling and a symmetry when expressed in
terms of the average and the standard deviation of the
work. The distributions of the work per particle predict
by virtue of the Crooks theorem the equilibrium free en-
ergy per particle. For large N , the latter value is in excel-
lent agreement with the analytical value obtained within
the single-particle dynamics, thereby confirming its valid-
ity. For initial conditions in NESSs, we study the distri-
bution of the quantity Y appearing in the Hatano-Sasa
equality (2). We show that the distribution decays expo-
nentially with different rates on the left and on the right.

A recap of the fluctuation relations. – Consider
a system evolving under stochastic dynamics, and which
is characterized by a dynamical parameter λ that can be
externally controlled. Let us envisage an experiment in
which the system is subject to the following thermody-
namic transformation: starting from the stationary state
corresponding to a given value λ = λ1, the system under-
goes dynamical evolution under a time-dependent λ that
changes according to a given protocol, {λ(t)}0≤t≤τ ; λ(0) ≡
λ1, λ(τ) ≡ λ2, over time τ . Only when λ changes slowly
enough over a timescale larger than the typical relaxation
timescale of the dynamics does the system pass through
a succession of stationary states. On the other hand,
for an arbitrarily fast variation, the system at all times
lags behind the instantaneous stationary state. Dynam-
ics at times t > τ , when λ does not change anymore with
time, leads the system to eventually relax to the stationary
state corresponding to λ2. In case of transitions between
equilibrium stationary states, the Clausius inequality pro-
vides a quantitative measure of the lag at every instant of

the thermodynamic transformation between the station-
ary state and the actual state of the system [10]. For tran-
sitions between NESSs, Hatano and Sasa showed that a
quantity Y similar to dissipated work measures this lag [5],
where Y is defined as

Y ≡
∫ τ

0
dt

dλ(t)

dt

∂Φ

∂λ
(C(t), λ(t)). (1)

Here, Φ(C, λ) ≡ − lnρss(C; λ), and ρss(C; λ) is the station-
ary state measure of the microscopic configuration C of the
system at a fixed λ. Owing to the preparation of the ini-
tial state and the stochastic nature of the dynamics, each
realization of the experiment yields a different value of Y .
An average over many realizations corresponding to the
same protocol {λ(t)} leads to the following exact result
due to Hatano and Sasa [5]:

⟨e−Y ⟩ = 1. (2)

In the particular case in which the stationary state at
a fixed λ is given by the Boltzmann-Gibbs canonical equi-
librium state, let us denote by ∆F ≡ F2 − F1 the differ-
ence between the initial value F1 and the final value F2 of
the Helmholtz free energy that correspond, respectively,
to canonical equilibrium at λ1 and λ2. Then, if W is the
work performed on the system during the thermodynamic
transformation, the Jarzynski equality states [3] that

⟨e−βW ⟩ = e−β∆F , (3)

where β is the inverse temperature of the initial canoni-
cal distribution. Subsequent to the work of Jarzynski, a
remarkable theorem due to Crooks related i) the distri-
bution PF(WF) of the work done WF during the forward
process F, when the system is initially equilibrated at λ1

and inverse temperature β, and then the parameter λ is
changed according to the given protocol {λ(t)}, to ii) the
distribution PR(WR) of the work done WR = −WF during
the reverse process R when the system is initially equili-
brated at λ2 and β, and then the parameter λ is changed
according to the reverse protocol {λ̃(t) ≡ λ(τ − t)}. The
theorem [4] states that

PF(WF)

PR(−WF)
= eβ(WF−∆F ). (4)

Note that the two distributions intersect at WF = ∆F .
Multiplying both sides of the above equation by
exp(−βWF), and noting that PR(−WF) is normalized to
unity, one recovers the Jarzynski equality.

Our model. – Our model comprises N interacting
particles, labelled i = 1, 2, . . . , N , moving on a unit cir-
cle. Let the angle θi ∈ [0, 2π) denote the location of
the i-th particle on the circle. A microscopic configu-
ration of the system is C ≡ {θi; i = 1, 2, . . . , N}. The
particles interact through a long-range potential V(C) ≡
K/(2N)

∑N
i,j=1[1 − cos(θi − θj)], with K being the cou-

pling constant that we take to be unity in the following
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to consider an attractive interaction1. An external field of
strength h produces a potential Vext(C) ≡ −h

∑N
i=1 cos θi;

thus, the total potential energy is V (C) ≡ V(C) + Vext(C).
The external field breaks the rotational invariance of V(C)
under equal rotation applied to all the particles.

The dynamics of the system involves configurations
evolving according to a stochastic Monte Carlo (MC) dy-
namics. Every particle in a small time dt → 0 attempts
to hop to a new position on the circle. The i-th particle
attempts with probability p to move forward (in the anti-
clockwise sense) by an amount φ; 0 < φ < 2π, so that θi →
θ′

i = θi+φ, while with probability q = 1−p, it attempts to
move backward by the amount φ, so that θi → θ′

i = θi −φ.
In either case, the particle takes up the attempted position
with probability g(∆V (C))dt. Here, ∆V (C) is the change
in the potential energy due to the attempted hop from
θi to θ′

i: ∆V (C) = (1/N)
∑N

j=1[− cos(θ′
i − θj) + cos(θi −

θj)] − h[cos θ′
i − cos θi]. The dynamics does not preserve

the ordering of particles on the circle. The function g has
the form g(z) = (1/2)[1 − tanh(βz/2)], where β is the in-
verse temperature. Such a form of g(z) ensures that for
p = 1/2, when the particles jump symmetrically forward
and backward, the stationary state of the system is the
canonical equilibrium state at inverse temperature β (see
footnote 2). The case p ̸= q mimics the effect of an ex-
ternal drive on the particles to move in one preferential
direction along the circle. The field strength h has the
role of the externally controlled parameter λ discussed in
the preceding section.

The model was introduced in ref. [12] as an LRI sys-
tem evolving under MC dynamics. Depending on the pa-
rameters in the dynamics, the system relaxes to either
a canonical equilibrium state or a NESS. In either case,
the single-particle phase space distribution can be solved
exactly in the thermodynamic limit.

A model that has been much explored in the recent past
to study static and dynamic properties of LRI systems is
the so-called Hamiltonian mean-field (HMF) model [9].
This model involves N particles moving on a circle, inter-
acting via a long-range potential with the same form as
V(C), and evolving under deterministic Hamilton dynam-
ics. The dynamics leads at long times to an equilibrium
stationary state. Our model may be looked upon as a gen-
eralization of the microcanonical dynamics of the HMF
model to a stochastic dissipative dynamics in the over-
damped regime, with an additional external drive causing

1The exponent α characterizing the decay of the inter-particle
potential with separation is zero here, thus corresponding to the
extreme case of long-range interactions, when the potential does not
decay at all with distance.

2Non-additivity of LRI systems brings in complications in deriv-
ing the canonical equilibrium while starting from a microcanonical
one, whereby the former describes fluctuations in a subsystem that
is a part of and is in interaction with the rest of the system. We
however invoke canonical equilibrium in the sense that although non-
additive, an LRI system in contact with an external short-ranged
heat bath via a small coupling will be in canonical equilibrium at a
temperature given by that of the bath [11].

a biased motion of the particles on the circle. The dissipa-
tion mimics the interaction of the system with an external
heat bath.

In the Fokker-Planck limit φ ≪ 1, we may in the
thermodynamic limit N → ∞ consider, in place of the
N -particle dynamics described above, the motion of a sin-
gle particle in a self-consistent mean field generated by its
interaction with all the other particles. The dynamics of
the particle is described by the Langevin equation [12]

θ̇ = (2p − 1)φ −
φ2β

2

d⟨v⟩
dθ

+ φη(t), (5)

where the dot denotes differentiation with respect to
time, and η(t) is a Gaussian, white noise with η(t) =
0, η(t)η(t′) = δ(t − t′). Here, overbars denote averaging
over noise realizations. In eq. (5), ⟨v⟩ ≡ ⟨v⟩[ρ](θ, t) ≡
−mx[ρ] cos θ−my[ρ] sin θ−h cos θ is the mean-field poten-
tial, with (mx[ρ], my[ρ]) ≡

∫
dθ (cos θ, sin θ)ρ(θ, t), where

ρ(θ, t) is the probability density of the particle to be at
location θ on the circle at time t. Together with ρ(θ, t) =

ρ(θ + 2π, t), and the normalization
∫ 2π

0 dθ ρ(θ, t) = 1 ∀ t,
ρ(θ, t) is a solution of the Fokker-Planck equation [12]

∂ρ

∂t
= −

∂

∂θ

[(
(2p − 1)φ −

φ2β

2

d⟨v⟩
dθ

)
ρ

]
+

φ2

2

∂2ρ

∂θ2
. (6)

Steady state. – Let P (C, t) be the probability to
observe configuration C at time t. At long times, the
system relaxes to a stationary state corresponding to time-
independent probabilities Pst(C). For p = 1/2, the system
has an equilibrium stationary state in which the condition
of detailed balance is satisfied, and Pst(C) is given by the
canonical equilibrium measure Peq(C) ∝ e−βV (C). On the
other hand, for p ̸= 1/2, the system at long times reaches
a NESS, which is characterized by a violation of detailed
balance that leads to closed loops of net non-zero proba-
bility current in the phase space.

For the single-particle dynamics (5), the stationary
solution ρss of eq. (6) is given by [12]

ρss(θ; h) =
ρss(0; h)

eg(θ)

[
1 + (e− 4π(2p−1)

φ − 1)
A(θ)

A(2π)

]
; (7)

g(θ) ≡ −2(2p − 1)θ/φ + β⟨v⟩[ρss](θ), A(θ) ≡
∫ θ

0 dθ′eg(θ′),
while the constant ρss(0; h) is fixed by the normalization∫ 2π

0 dθ ρss(θ; h) = 1 ∀ h. To show the effectiveness of the
single-particle dynamics in describing the stationary state
of the N -particle dynamics for large N and for φ ≪ 1,
fig. 1 shows a comparison between the result (7) and
MC simulation results for the N -particle dynamics with
N = 500, φ = 0.1, demonstrating an excellent agreement.

For p = 1/2, eq. (7) gives the equilibrium single-
particle distribution ρeq(θ; h) = e−β⟨v⟩[ρeq](θ)/Z(h), with

Z(h) ≡
∫ 2π

0 dθ ρeq(θ; h) = 2πI0(βmeq), and In(x) the
modified Bessel function of order n. Here, meq ≡√

(meq
x + h)2 + (meq

y )2 is obtained by solving the tran-
scendental equation meq+h = I1(βmeq)/I0(βmeq), see [9].

60008-p3



Shamik Gupta et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  1  2  3  4  5  6

ρ
(θ

;h
)

θ

N=500,φ=0.1,p=0.55

β=10,h=-1
β=10,h=1

β=5,h=1

Fig. 1: (Colour online) Stationary distribution ρss(θ; h) for
p ̸= 1/2: a comparison between MC simulation results (points)
for φ = 0.1, N = 500 and three values of field h, and the the-
oretical result (continuous lines) in the Fokker-Planck approx-
imation in the limit N → ∞ given by eq. (7) illustrates an
excellent agreement.

For h = 0, meq as a function of β decreases continuously
from unity at β = ∞ to zero at the critical value βc = 2,
and remains zero at smaller β, thus showing a second-order
phase transition at βc [9]. For h ̸= 0, the magnetization is
non-zero at all β, hence, there is no phase transition.

Equilibrium initial condition. – Let us consider
p = 1/2 in our model, when the system at a fixed value
of h has an equilibrium stationary state. In the following,
we measure time in units of MC steps, where one MC step
corresponds to N attempted hops of randomly chosen par-
ticles. Starting with the system in equilibrium at h = h0,
we perform MC simulations of the dynamics while chang-
ing the field strength linearly over a total time τ ∈ I, with
τ ≪ τeq, such that at the α-th time step, the field value
is hα = h0 + ∆h α/τ ; α ∈ [0, τ ]. Here, ∆h is the total
change in the value of the field over time τ . Note that the
FRs are expected to hold for arbitrary protocols {λ(t)};
the linear variation we consider is just a simple choice.
Here, τeq is the typical equilibration time at a fixed value
of h, and the condition τ ≪ τeq ensures that the sys-
tem during the thermodynamic transformation is driven
arbitrarily far from equilibrium. The initial equilibrium
configuration is prepared by sampling independently each
θi from the single-particle distribution ρeq(θ; h), with meq

determined by solving meq + h0 = I1(βmeq)/I0(βmeq).
The work done on the system during the evolution is [3]

WF ≡
∫ τ

0

∂V

∂h
ḣ dt = −

1

τ

τ∑

α=1

N∑

i=1

cos θ(α)
i , (8)

where θ(α)
i is the angle of the i-th particle at the α-th

time step of evolution. In another set of experiments,
we prepare the system to be initially in equilibrium at
h = hτ , and then evolve the system while decreasing
the field strength linearly in time as hα = hτ − ∆h α/τ .
During these forward and reversed protocols of changing
the field, we compute the respective work distributions
PF(WF) and PR(WR), for φ ≪ 1 and a number of sys-
tem sizes N ≫ 1. We take τeq = N2, confirming that the
distributions PF(WF) and PR(WR) do not change appre-
ciably by considering τeq larger than N2.
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Fig. 2: (Colour online) Starting with an initial equilibrium
state at inverse temperature β = 1 and field h = h0 = 1.0,
and then increasing the field linearly in time to h = 2.0 over
a time τ = 10 Monte Carlo steps (thus, ∆h = 1.0), panel (a)
shows the scaled work distribution for this forward (F) pro-
tocol, while (b) shows the same for the corresponding reverse
(R) protocol, both for a range of system sizes N . Scaling col-
lapse in (c) suggests for the scaling functions in (a) and (b)
the symmetry gF(x) = gR(−x). Panel (d) shows NPF(WF)
(right set of curves) and NPR(WR) (left set) as a function
of WF/N and WR/N , respectively, for different N , with the
curves intersecting at a value given by the free-energy differ-
ence per particle ∆f estimated using eq. (11) for single-particle
equilibrium. Panels (e) and (f) show, respectively, the depen-
dence of the average and the standard deviation of the forward
and the reverse work on N , suggesting that while the aver-
age grows linearly with N , one has σF ∼ Na; a ≈ 0.528, and
σR ∼ Nb; b ≈ 0.504. Here, φ = 0.1, p = 0.5.

Figures 2(a), (b) show the forward and the reverse work
distribution for a range of system sizes N . Here, we have
taken φ = 0.1, h0 = 1.0, τ = 10, β = 1, ∆h = 1.0. The
data collapse evident from the plots suggests the scaling

PB(WB) ∼
1

σB
gB

(
WB − ⟨WB⟩

σB

)
; B ≡ F,R, (9)

where gB is the scaling function, while ⟨WB⟩ and σB are,
respectively, the average and the standard deviation of the
work. A similar scaling, termed the Bramwell-Holdsworth-
Pinton (BHP) scaling, was first observed in the context
of fluctuations of injected power in confined turbulence
and magnetization fluctuations at the critical point of a
ferromagnet [13]. Over the years, a similar scaling has
been reported in a wide variety of different contexts, from
models of statistical physics, such as Ising and percola-
tion models, sandpiles, granular media in a self-organized
critical state [14], to fluctuations in river level [15], and
even in fluctuations in short electrocardiogram episodes
in humans [16]. Here, the BHP scaling is shown for the
first time to also hold for work distributions out of equilib-
rium. The dependence of the average and the standard de-
viation on the system size N is shown in panels (e) and (f),
respectively, with the numerically data suggesting that
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⟨WB⟩ ∝ N , σF ∼ Na; a ≈ 0.528, and σR ∼ N b; b ≈ 0.504.
The data collapse in (c) suggests the remarkable symmetry

gF(x) = gR(−x). (10)

An understanding of the origin of this symmetry, and par-
ticularly, whether it is specific to our model or holds in
general, is left for future work. Figure 2(d) shows the dis-
tribution of the work per particle. Two essential features
of the plots are evident, namely, i) significant fluctuations
of the work values even for large system size, and ii) the
forward and the reverse distribution intersecting at a com-
mon value regardless of the system size. By virtue of the
Crooks theorem (4), this common value should be given
by the free-energy difference per particle ∆f between the
canonical equilibrium states of the system at field values
hτ and h0. This latter quantity may be computed theoret-
ically by knowing the free energy per particle in the limit
N → ∞ and at a fixed value of h [9]:

f(h) =
1

2
m2

eq −
1

β
ln

(∫
dθ eβ[(meq

x +h) cos θ+meq
y sin θ]

)
.

(11)
Using the above gives ∆f ≈ 0.725, which is seen in fig. 2(d)
to match very well with the intersection point of the for-
ward and the reverse distribution of the work.

While fig. 2 was for inhomogeneous initial equilibrium,
in order to validate our results also for homogeneous ini-
tial conditions, fig. 3 repeats the plots at h0 = 0.0 and
at a temperature larger than 1/βc. In this case, the
scaled work distributions fit quite well to a Gaussian
distribution with zero average and unit standard devia-
tion, see figs. 3(a), (b), so that g(x) = exp(−x2/2)/

√
2π,

and, therefore, the symmetry (10) is obviously satisfied.
The free-energy difference ∆f can be estimated by using
eq. (11), but can also be obtained by using eq. (4) and
the fact that in the present situation, the scaled work dis-
tributions are Gaussian. Using the latter procedure, one
gets the expression ∆f = (⟨WF⟩− ⟨WR⟩)/(2N) [17]; then,
on substituting our numerical values for ⟨WF⟩ and ⟨WR⟩,
we get ∆f ≈ 0.161. In fig. 3(c), we show that this value of
∆f coincides with the point of intersection of the forward
and the reverse work distribution.

In figs. 2 and 3, it may be seen that σF > σR, and also
⟨WR⟩ > |⟨WF⟩|. In computing σF, we start with a smaller
magnetized state (thus, with the particles more spread out
on the circle) than the state we start with in computing
σR. As a result, the work done in the former case during
the thermodynamic transformation in which the increas-
ing field tries to bring the particles closer together will
show more variation from one particle to another, result-
ing in σF > σR. Now, ⟨W ⟩, either F or R, is basically
the time-integrated magnetization, see eq. (8). During
the forward process, we start with a less-magnetized equi-
librium state with magnetization meq

0 , and then increase
the field for a finite time. The final magnetization value
mfin,F reached thereby will be smaller than the actual
equilibrium value meq

1 for the corresponding value of the
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Fig. 3: (Colour online) Plots similar to those in fig. 2, but
with β = 0.5, h0 = 0.0, τ = 10, ∆h = 1.0. The black lines in
panels (a) and (b) denote a Gaussian distribution with zero
average and unit standard deviation. While the averages in
(d) grow linearly with N , the standard deviations in (e) satisfy
σF ∼ Na; a ≈ 0.501, and σR ∼ Nb; b ≈ 0.5.

field, since we did not allow the system to equilibrate
during the transformation. For the reverse process, we
started with this equilibrium value meq

1 , and during the
transformation when the field is decreased, the magneti-
zation decreases but not substantially to the value meq

0 ,
since the system remains out of equilibrium during the
transformation. As a result, the time-integrated forward
magnetization, whose mean value is ⟨WF⟩, is smaller in
magnitude than the time-integrated reverse magnetiza-
tion, whose mean value is ⟨WR⟩. In fig. 3, ⟨WF⟩ is very
close to zero. This is because here, we start with a homo-
geneous equilibrium for which the magnetization value is
meq

0 = 0, and then increase the field for a finite time to
a not-so-high value h = 1, so the magnetization does not
increase much from the initial value. Hence, ⟨WF⟩, which
is the time-integrated magnetization during this forward
transformation, is close to zero.

Figures 2 and 3, while illustrating the validity of the
Crooks theorem (and hence, of the Jarzynski equality) for
many-body stochastic LRI systems, underline the effective
single-particle nature of the actual N -particle dynamics
for large N in the Fokker-Planck limit φ ≪ 1. This feature
is further illustrated by our analysis of fluctuations while
starting from NESSs, as we now proceed to discuss.

Non-equilibrium initial condition. – We now con-
sider p ̸= 1/2 in our model. In this case, the system
at a fixed value of h relaxes to a NESS. We wish to
compute the distribution of the quantity Y appearing in
the Hatano-Sasa equality (2). To proceed, we consider
a large value of N and φ ≪ 1 and use a combination
of N -particle dynamics, and the knowledge of the single-
particle stationary-state distribution (7). Starting with
the initial value h = h0, the field is varied linearly in time,
as in the equilibrium case; specifically, at the α-th time

60008-p5



Shamik Gupta et al.

 0

 5

 10

 15

 20

 25

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

P
ro

b
(Y

)

Y

N=500,f=0.1,p=0.55

β=5.0
β=10.0

10-4

10-3

10-2

10-1

1

10

-0.3 -0.1  0.1  0.3

Fig. 4: (Colour online) Starting with initial conditions in a
NESS at h = h0 = 1.0, and then increasing the field linearly
in time to h = 1.15 over τ = 15 Monte Carlo steps (thus,
∆h = 0.15), the figure shows for two values of initial inverse
temperature β the distribution of the quantity Y appearing
in the Hatano-Sasa equality (2). The black lines in the inset
stand for the exponential fit ∼ exp(aY ) to the left tail, with
a ≈ 280 for β = 5 and a ≈ 300 for β = 10, and the exponential
fit ∼ exp(−bY ) to the right tail, with b ≈ 7 for β = 5 and
b ≈ 11.5 for β = 10. Here, N = 500, φ = 0.1, p = 0.55.

step, the field is hα = h0 +∆h α/τ ; α ∈ [0, τ ]. Again, the
choice of the protocol is immaterial in as far as validity of
the Hatano-Sasa equality is concerned. The steps in com-
puting the Y -distribution for fixed values of β, h0, ∆h, τ
are as follows. A state prepared by sampling indepen-
dently each θi uniformly in [0, 2π) is allowed to evolve
under the N -particle MC dynamics with h = h0 to even-
tually relax to the stationary state, which is confirmed by
checking that the resulting single-particle distribution is
given by eq. (7). Subsequently, the particles are allowed
to evolve under the time-dependent field hα for a total
time τ , and the quantity Y is computed along the trajec-
tory of each particle according to eq. (1), which is given
in the present case for the i-th particle by the following
expression, as an approximation to the integral and the
derivative appearing in eq. (1):

Yi =
τ∑

α=1

ln

(
ρss(θ

(α)
i ; hα−1)

ρss(θ
(α)
i ; hα)

)

, (12)

where {θ(α)
i }0≤α≤τ gives the trajectory of the i-th parti-

cle, and ρss(θ
(α)
i ; hα) is computed by using eq. (7). Re-

peating these steps yields the distribution of Y for each
particle, which is finally averaged over all the particles
to obtain the distribution P (Y ) depicted in fig. 4. Here,
we use two values of β, while the other parameters are
p = 0.55, N = 500, φ = 0.1, h0 = 1.0, ∆h = 0.15, τ =
15. As is evident from the figure, the distribution is
highly asymmetric, and in particular, has exponential tails
(see the inset). From the data for P (Y ), we find for
⟨exp(−Y )⟩ the value 1.04 for β = 10, and the value 1.11
for β = 5, which within numerical accuracy are consis-
tent with the expected value of unity. Let us reiterate the
combined use of the N -particle dynamics and the exact
single-particle stationary state distribution in obtaining

the Y -distribution, and remark that the consistency of the
final results with the Hatano-Sasa equality further high-
lights the effective mean-field nature of the N -particle dy-
namics for large N .

To conclude, in this work, we studied the out-of-
equilibrium fluctuations of the work done by a time-
dependent external force on a many-particle system with
long-range interactions and evolving under stochastic
dynamics. For both equilibrium and non-equilibrium ini-
tial conditions, we characterized the fluctuations, and
revealed how a simpler single-particle Langevin dynam-
ics in a mean field gives accurate quantitative predic-
tions for the N -particle dynamics for large N . This,
in turn, highlights the effective mean-field nature of the
original many-particle dynamics for large N . It is in-
teresting to generalize recent studies of work statistics in
quantum many-body short-range systems, e.g., [18,19], to
those with long-range interactions, and unveil any effective
mean-field description.
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