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This paper revisits the problem of tidal conversion at a ridge in a uniformly stratified
fluid of limited depth using measurements of complex-valued added mass. When the
height of a sub-marine ridge is non-negligible with respect to the depth of the water,
the tidal conversion can be enhanced in the supercritical regime or reduced in the
subcritical regime with respect to the large depth situation. Tidal conversion can even
be null for some specific cases. Here, we study experimentally the influence of finite
depth on the added mass coefficients for three different ridge shapes. We first show
that, at low forcing frequency, the tidal conversion is weakly enhanced by shallow
depth for a semi-circular ridge. In addition, added mass coefficients measured for a
vertical ridge show strong similarities with the ones obtained for the semi-circular
ridge. Nevertheless, the enhancement of the tidal conversion at low forcing frequency
for the vertical ridge has not been observed, in contrast with its supercritical shape.
Finally, we provide the experimental evidence of a lack of tidal conversion due to the
specific shape of a ridge for certain depth and frequency tuning.

Key words: internal waves, stratified flows, topographic effects

1. Introduction
In stratified oceans, the interaction of the tidal motion with the bottom topography

continuously generates internal waves (Bell 1975; Vlasenko, Stashchuk & Hutter 2005;
Garrett & Kunze 2007). The global rate of energy conversion from a barotropic to
baroclinic tide is estimated to be approximately 1 TW (Morozov 1995; Garrett &
Kunze 2007). There exists an extensive literature on tidal conversion, which can
be approximately split into two branches depending on the focus of the studies:
(i) oceanographic applications to various specific cases of bottom topography and
stratification or (ii) structure of interior shear layers in internal wave beams generated
by bodies of simple geometrical shape.

The literature oriented toward oceanographic applications describes a variety of
mountain-shaped profiles (Baines 1973, 1982; Bell 1975; Craig 1987; Balmforth et al.
2002; Llewellyn Smith & Young 2002, 2003; Khatiwala 2003; St. Laurent et al.
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2003; Balmforth & Peacock 2009; Echeverri et al. 2009; Echeverri & Peacock 2010),
progressing from the flat subcritical topography in infinitely deep uniformly stratified
fluid to more realistic cases with finite-slope bottom profiles, rotation, non-uniform
stratification, limited depth, supercritical slopes, skewed mountain profiles and multiple
ridges. In particular, recent studies on supercritical ridges in the ocean of limited depth
(Khatiwala 2003; Llewellyn Smith & Young 2003; St. Laurent et al. 2003; Pétrélis,
Llewellyn Smith & Young 2006; Echeverri et al. 2009; Echeverri & Peacock 2010;
Rapaka, Gayen & Sarkar 2013) have been motivated by applications to internal
tides from the Hawaii ridge, which are well documented in the field and satellite
observations (Egbert & Ray 2000, 2001). Regarding the effect of limited depth, which
is the focus of the present paper, two different patterns have been observed for isolated
mountains. For a subcritical topography having a length scale of the same order as
the horizontal wavelength of the internal tide, Llewellyn Smith & Young (2002)
report the reduction of tidal conversion compared to the case of unlimited depth (Bell
1975) by a factor ranging from 0 to 1. They attribute it to destructive interference
of waves undergoing multiple reflections between the bottom and free surface. For
a sharp vertical ridge, an ultimate case of a supercritical topography, both Llewellyn
Smith & Young (2003) and St. Laurent et al. (2003) report the enhancement of tidal
conversion compared to the case of infinite depth by a factor, increasing from 1
to infinity as the gap between the top of the ridge and the free surface decreases
to zero. The calculations of Pétrélis et al. (2006) for a triangular ridge in a fluid
of limited depth have spanned the parameter space from the subcritical topography
of Llewellyn Smith & Young (2002) to the knife-edge ridge of Llewellyn Smith &
Young (2003) and have shown an enhancement of tidal conversion in the supercritical
regime when the depth is reduced. Obviously, for more complicated and natural
topographies either of the two scenarios is possible, depending on the combination of
the local conditions (stratification, frequency of the tides, geometry of the ridge, etc.).
Moreover, constructive and destructive interference of waves and wave focusing at a
complex topography in a fluid of limited depth provides many exciting possibilities,
including the physical curiosities such as wave attractors between mountain ridges
(Echeverri et al. 2011) and the lack of tidal conversion for ‘well-tuned’ topographic
profiles (Pétrélis et al. 2006; Maas 2011).

The literature focused on viscous effects in internal wave beams describes the
development of interior shear layers due to oscillations of bodies of simple geometry
in a uniformly stratified fluid of infinite extent. For horizontal oscillations with small
amplitude (compared to the size of the body), this problem is equivalent to the
problem of tidal conversion, with the virtual ‘bottom’ taken at the horizontal plane of
symmetry of the body. The studied cases include elliptic cylinders in two dimensions
(Appleby & Crighton 1986; Gorodtsov & Teodorovich 1986; Hurley 1997; Hurley
& Keady 1997) and ellipsoids and spheres in three dimensions (Lai & Lee 1981;
Appleby & Crighton 1987; King, Zhang & Swinney 2009; Voisin, Ermanyuk &
Flor 2011). Note that these shapes always have parts with sub- and supercritical
slopes, and that the limiting case of a very thin vertical elliptical cylinder (Hurley
1997) is equivalent to a steep ridge (Llewellyn Smith & Young 2003) in an infinite
fluid. Considerable effort has been put into regularization of the divergence at the
characteristic lines tangent to the body surface by inclusion of viscous effects. The
theoretical solutions have been thoroughly verified experimentally by measurement of
wave fields (Sutherland et al. 1999, 2000; Sutherland & Linden 2002; Zhang, King &
Swinney 2007; Ermanyuk, Flor & Voisin 2011; Voisin et al. 2011) and forces acting
on oscillating bodies (Ermanyuk 2000, 2002). The force measurements confirmed
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that, at the laboratory scale, the radiated internal wave power can be estimated
from the ideal-fluid theory if the thickness of the boundary layer is sufficiently
small compared to the size of the body. The effect of limited depth on the radiated
internal wave power has been studied numerically and experimentally for a circular
cylinder (Sturova 2001; Ermanyuk & Gavrilov 2002a) and experimentally for a
sphere (Ermanyuk & Gavrilov 2003), demonstrating the reduction of the radiated
wave power similar to the subcritical case described in Llewellyn Smith & Young
(2002), rather than the enhancement anticipated for the supercritical case (Llewellyn
Smith & Young 2003). However, these studies were not fully conclusive because of
the limitations of the experimental techniques (Ermanyuk & Gavrilov 2002a) and
also numerics (Sturova 2001) at low frequencies of oscillation, of particular interest
for supercritical situations.

In this paper, we revisit the problem of tidal conversion in a uniformly stratified
fluid of limited depth by considering an isolated bi-dimensional bottom topography,
using the concepts of affine similitude and added mass (Ermanyuk 2002; Voisin et al.
2011). First, in § 2, we introduce the theoretical preliminaries on added mass in
homogeneous and stratified fluids. Then, in § 3, we present the experimental set-up
and the data analysis. Section 4 describes the results obtained for a cylinder with a
circular cross-section. This goes beyond the work performed by Ermanyuk & Gavrilov
(2002a) and highlights a trend toward enhancement of the tidal conversion at small
depth and frequency, which has been predicted by Llewellyn Smith & Young (2003)
for a vertical ridge. In § 5, we discuss experiments carried out with a vertical plate
and show strong similarities between the added mass coefficients measured with the
vertical plate and with the cylinder having a circular cross-section. Finally, in § 6, a
topography lacking tidal conversion for given frequencies (Pétrélis et al. 2006; Maas
2011) is tested. Experiments with such topographies have only been reported recently
(Maas, Paci & Yuan 2015) but the radiated wave power of such structures has never
been measured yet.

2. Theoretical preliminaries and set-up
2.1. Added mass in homogeneous and stratified fluids

When an object moves in an ideal fluid, it has to move the fluid around in order
to pass through. As the fluid has a given density, a higher force is necessary to
displace the object in the fluid than in the vacuum. Indeed, as both the object and
the surrounding fluid have to be accelerated, the necessary force is equal to the
acceleration of the object multiplied by the mass of the object and another mass mA,
due to the fluid (Lamb 1932). This mass is called the added mass and depends on
the shape of the object in the fluid. It is generally described using a tensor. In naval
architecture, the added mass plays an important role because it can easily be of the
same order of magnitude as the total mass of a ship or a submarine (Newman 1977;
Brennen 1982).

Added mass can be used to investigate the tidal conversion in the oceans (Voisin
et al. 2011), which are continuously stratified in density. In such a fluid, internal
waves can propagate using buoyancy as a restoring force. One defines the buoyancy
frequency N = [(g/ρ̄)(dρ/dz)]1/2, where ρ(z) is the density distribution over vertical
coordinate z, ρ̄ a reference value and g the gravity acceleration. Note that, here,
the vertical axis z points downwards, as shown in figure 1. The dispersion relation
of internal waves is ω/N = ± sin θ where θ is the angle between the direction of
propagation of the wave and the horizontal, and ω the frequency of the wave. In the
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Stratified fluid Homogeneous fluid

x b H

a
a

z

(a) (b)

FIGURE 1. Geometries of the original and fictitious problems. (a) Two-dimensional object
oscillating horizontally at the non-dimensional frequency Ω in a linearly stratified fluid
of depth H. The horizontal and vertical sizes of the object are a and b, respectively.
(b) Fictitious body oscillating horizontally in a homogeneous fluid after an affine
transformation of the object in (a). The transformation changes the vertical scales by a
factor α = (Ω2

− 1)1/2/Ω , for Ω > 1. The horizontal and vertical sizes of the fictitious
object are a and b∗ = αb, respectively. The fluid has a depth of αH.

ocean, internal waves are created thanks to the tidal oscillations of the fluid upon the
topographies. This can also be viewed as topographies oscillating in a stratified fluid.
The two problems are totally equivalent for small amplitude oscillations.

Let us consider an object oscillating horizontally in a stratified fluid. With the
dispersion relation, internal waves can only be emitted if the body oscillates at a
frequency ω smaller than N. This leads to two different behaviours of the body
depending on the frequency of the oscillations. If ω > N, no wave can be emitted,
and the added mass is a real-valued function of ω. But if ω < N, waves are emitted
by the body and the added mass becomes a complex-valued function of ω. For
unidirectional rectilinear oscillations of a body having three planes of symmetry, the
added mass can be decomposed in two parts (Lai & Lee 1981; Ermanyuk 2002)

mA =µ(ω)− i
λw(ω)

ω
, (2.1)

where the real part µ corresponds physically to the force component oscillating
in phase with the acceleration of the body (inertial force), and the imaginary part
λw(ω)/ω corresponds to the force component oscillating in phase with the velocity
of the body (damping force). µ is therefore called the inertial mass while λw is the
wave damping rate, proportional to the radiated wave power as follows

P(ω)= 1
2(Aω)

2λw(ω), (2.2)

A being the amplitude of oscillations. The power is directly related to the tidal
conversion, with U = Aω, the amplitude of tidal velocity. Note that we assume an
ideal fluid. In a real fluid, as in experiments, the motion of the object is affected by
viscosity. Thus, in a uniformly stratified fluid when ω > N, there is only a viscous
damping while, when ω < N, the damping is due to the combined effects of wave
radiation and viscosity. Note that, in the latter case, the largest part of the energy
dissipation is associated with the wave emission (see for example Ermanyuk (2000,
2002)).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

th
èq

ue
 D

id
er

ot
 d

e 
Ly

on
, o

n 
18

 O
ct

 2
01

7 
at

 1
2:

49
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.616
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Added mass: a complex facet of tidal conversion at finite depth 105

2.2. Affine similitude in a linearly stratified fluid
Let us consider a two-dimensional object submerged at depth H/2 in a channel of
full depth H filled with an ideal uniformly stratified fluid, as sketched in figure 1(a).
We assume that the horizontal extent of the channel is infinite. The upper and lower
boundaries of the channel are assumed to be rigid. A Cartesian coordinate system is
introduced with the x-axis located at mid-depth of fluid and pointing to the left and
z-axis pointing downwards. The y-axis is horizontal and perpendicular to the x-axis.
The horizontal and vertical sizes of the object are denoted a and b, respectively. One
defines the aspect ratio of the body p= b/a and the non-dimensional vertical size of
the body q = b/H. We restrict our consideration to the case of horizontal harmonic
oscillations of the object with frequency ω and amplitude A. The non-dimensional
frequency is introduced as Ω =ω/N. Note that on figure 1(a), the body is a circular
cylinder but the theoretical preliminaries of this section are also valid for any other
shapes. Below we consider experimentally the cases of cylinders with cross-sections
being a disk, a line and a double flat top. In the oceanographic context, these
geometries correspond to the semi-circular, knife-edge and flat-top ridges.

Let us consider first the problem where Ω > 1, i.e. where the added mass is a real
quantity. The added mass coefficient K of a body undergoing horizontal oscillations
at the dimensionless frequency Ω in a uniformly stratified fluid are known (Ermanyuk
2002) to be related with the added mass coefficient K∗ of a fictitious affinely similar
body oscillating in a homogeneous fluid

K(Ω)=K∗. (2.3)

Here, the added mass coefficients are defined as K = mA/ρ0S and K∗ = mA∗/ρ0S∗,
where ρ0 is the reference density at the depth corresponding to the centre of the body,
mA and mA∗ are the added masses per unit length, S and S∗ are the cross-sections of
the original and fictitious bodies, respectively. The fictitious problem is obtained by
compressing the original body and channel in the vertical direction α times, where
α = (Ω2

− 1)1/2/Ω . This is shown in figure 1(b) where the fictitious body is an
ellipse of major axis a and minor axis b∗ = αb and where the fictitious channel has
a height αH. Consequently, the cross-section area S= πab/4 of the original body is
transformed in S∗ = πab∗/4 = αS for the fictitious body. Note that as the fictitious
body oscillates in a homogeneous fluid, its added mass coefficient K∗ is independent
of the frequency of oscillations. Therefore, the dependence on Ω for K only comes
from the dependence of K∗ on the compression coefficient α. Moreover, when Ω
becomes much greater than 1, α tends to 1. Thus, the original and fictitious problem
geometries are the same for high oscillation frequencies. The added mass coefficient
in the original problem for high frequency is supposed to tend to the one measured
in the homogeneous case, with the same geometry.

In many problems, it is more convenient to normalize the added mass of
the oscillating cylinder by the added mass of a flat plate of height b so that
k = mA/(ρ0πb2/4) and k∗ = mA∗/(ρ0πb2

∗
/4). This normalization is particularly

suitable in geophysical fluid dynamics in view of the scaling used for the tidal
conversion (Llewellyn Smith & Young 2003). Obviously, with such a normalization,
equation (2.3) should be replaced by

k(Ω)= k∗α. (2.4)

Equation (2.3) has been obtained by Ermanyuk (2002) by considering the integrals
of pressure over the body surface and the control surface surrounding the body, and
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applying the Gauss theorem to the fluid volume located between these surfaces, in
spirit of Newman (1977). The control surface can be a material surface that undergoes
the same affine transformation as the body surface. In this case, equation (2.3) remains
valid since the conversion factors relating surface integrals over original and fictitious
bodies, as well as over original and transformed control surfaces, are the same.
However, to extend the solution to the case Ω < 1, one should keep in mind that the
control surface cannot be a closed one. There must be a possibility for radiation of
internal wave energy.

Now we consider a body belonging to a certain family of shapes and oscillating in
a homogeneous fluid between two horizontal parallel rigid planes. Let us suppose that
we know the function, representing the dependence of the added mass coefficients on
non-dimensional geometrical parameters p= b/a and q= b/H for this family of bodies

K∗ = F∗(p, q) or k∗ = f∗(p, q). (2.5a,b)

Note that q= b/H does not change under affine transformation. Then, for Ω > 1, the
added mass coefficient of a body in a uniformly stratified fluid at certain given values
of p and q can be found as follows

K(Ω)= F∗(pα, q) or k(Ω)= f∗(pα, q)α. (2.6a,b)

As discussed in Ermanyuk (2002) in the context of Hurley (1997), K(Ω) and k(Ω)
at Ω < 1 can be obtained by the analytic continuation in frequency. This can be
done if the radiation condition formulated in the causal sense does hold true, i.e. the
internal waves are radiated from the source to infinity and never return. For Ω<1, the
analytic continuation for α is iη, where η= (1−Ω2)1/2/Ω is the real-value parameter.
Accordingly, equation (2.6) becomes

K(Ω)= F∗(piη, q) or k(Ω)= f∗(piη, q)iη. (2.7a,b)

Thus, knowing the added mass coefficient for a family of bodies in a homogeneous
fluid, one can deduce the added mass coefficient of related bodies in a linearly
stratified fluid as a function of the frequency. This can be useful because added mass
in a homogeneous fluid is well studied (Brennen 1982; Korotkin 2010) while the
added mass in a stratified fluid has been investigated only recently.

When Ω < 1, the added mass is complex valued, as defined by (2.1). One can
introduce the inertial coefficient

Cµ
=Re(k)=Re(K)

4S
πb2
=

4µ
ρ0πb2

, (2.8)

and the wave damping coefficient

Cλ =Ω Im(k)=Ω Im(K)
4S
πb2
=

4λw

ρ0πb2N
. (2.9)

Using (2.2), the dimensionless form for the radiated wave power is defined as

Pw =
1
2Ω

2Cλ(Ω). (2.10)
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Screw
Counter
weight
Axis of
rotation

Small
annulus

Wave-breakers Wave-breakers

Plate

Ball

Pendulum

Assembly

Cylinder

FIGURE 2. (Colour online) Schema of the pendulum set-up viewed from the side: arrows
show the different elements of the set-up, relevant lengths are labelled and coordinates are
shown. The surface of the water is the horizontal dashed blue line. The body is moving
horizontally along the x-axis, as depicted by the thick arrows in the centre of the body.

Note that in the case of an ideal and homogeneous fluid without free surface, one can
define only the inertial coefficient Cµ, the damping being identically zero.

In the case of a fluid of infinite extent, equations (2.6) and (2.7) can be used
to re-derive the formulas for hydrodynamic loads acting on an elliptic cylinder
(Hurley 1997), and a vertically oscillating spheroid (Lai & Lee 1981). Solutions
for horizontally oscillating spheroids (Ermanyuk 2002) and squares (Ermanyuk &
Gavrilov 2002b) can also be obtained. However, there are only few analytical solutions
for the added mass of bodies oscillating in ideal homogeneous fluid of finite depth.
The known results are limited to the cases of the vertical flat plate (Lockwood-Taylor
1930), the elliptic cylinder (Clarke 2001) and the rectangle (Gurevich 1940; Newman
1969).

3. Set-up and data processing
3.1. Experimental set-up

The experimental set-up is sketched in figure 2. It is very similar to the one described
by Ermanyuk (2000, 2002) and by Ermanyuk & Gavrilov (2002a, 2003). The
pendulum has a cross shape, with a massive cylinder attached at the lower end.
The cylinder has a centre of gravity G′ and a mass M′ and is invariant in the
y-direction. It can have different cross-sectional shapes, a disk as in figure 2 or other
shapes (see table 1). The cross-section has a horizontal (respectively vertical) length
scale denoted a (respectively b). The vertical arm opposite to the cylinder is a screw
where two different counter weights of mass m′ = 167 g and m′ = 704 g can be
placed. Changing the position of the counter weights with respect to the axis of
rotation allows us to tune the characteristic frequency of the pendulum, defined as ωc.
The purpose of having two different counter weights is to be able to cover a large
range of frequencies for all the shapes studied in this article. The pendulum has also
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Section § Appendix A 4 5 6

Cross-section shape Unit Square Circle Flat vertical plate Flat-top hill
a cm 14 5 0.3 20
b cm 14 5 10 8
H cm 95 6–16 13–22 12–95
H/b= 1/q — 6.8 1.2–3.2 1.3–2.2 1.5–11.9
b/a= p — 1 1 30 0.4
W ′ cm 17 16 15.5 16.4
ρc g cm−3 1.08 1.43 2.86 1.21
M g 2730 1339 1022 2833
L cm 57.5 56.7 55.5 55.3
` (measured) cm 41.0± 0.3 22.3± 0.3 19.2± 0.4 39.7± 0.2
J (measured) g m2 655± 4 173± 3 127± 2 639± 5

TABLE 1. Parameters of the four cylinders used in the different sections of this paper.
The shape indicates the cross-section of the cylinder in the x–z plane. a (respectively b)
corresponds to the horizontal (respectively vertical) dimension of the cross-section. The
fluid depth H indicates the range of depths explored in this paper. W ′ is its width in
the y-direction and ρc its density. M is the total mass of the pendulum and the cylinder,
without the counter weight. L and ` are defined in figure 2 while J is the moment of
inertia of the whole pendulum (without the counter weight). Note that J and ` are carefully
measured in air. The horizontal line in the middle of the table separates the parameters that
determine the added mass (top) to the ones that are simple characteristics of the cylinders
used (bottom).

two long horizontal arms. At the end of the right one, there is a small horizontal
circle, covered by a tensioned rubber membrane. A ball, initially hold by an electric
magnet, can be dropped on the membrane to excite the pendulum. As the period of
the oscillations of the pendulum is of several seconds, if the membrane is sufficiently
tight, the excitation of the pendulum is very close to an instantaneous impulse.
Attached to the right arm, one also has a small plate which can contain a mass m for
the calibration procedure explained further, in § 3.2. On the left horizontal arm, there
is a small annulus which can be displaced horizontally to adjust very precisely the
horizontality of the pendulum before the beginning of each experiment. The centre
of mass of the pendulum with the cylinder but without the counter weight is noted
G, its mass M and its moment of inertia is defined as J. Note that the mass of
the pendulum alone, without the cylinder and the counter weight is 889 g. All the
relevant distances are defined in figure 2, with respect to the rotation axis. This axis
is shown by a white spot in figure 2. L and ` are given in table 1 for each cylinder.
d is equal to 40 cm while `′ varies in the range [5.1–21] cm. The different masses
are also shown in figure 2. The coordinates are defined in figure 2, with the origin
of the coordinate system taken at the centre of mass of the cylinder, G′.

The lower end of the pendulum with the cylinder is immersed at mid-depth of a
stably density stratified fluid of depth H, contained in a tank also sketched in figure 2.
Two tanks were used to achieve different fluid depths. Experiments with H = 95 cm
were performed in a rectangular test tank of size 200 × 17 × 100 cm3 while the
experiments with all the other fluid depths were conducted in a rectangular tank of
size 160× 17× 42.5 cm3. The tank is filled with uniformly stratified fluid using the
conventional double-bucket technique and using salt as a stratifying agent. The density
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profile is measured prior to experiments by a conductivity probe attached to a vertical
traverse mechanism. The value of the buoyancy frequency N is evaluated from the
measured density profile. Note that the volume of the immersed streamlined part of
the pendulum is less than 1 % of the volume of the cylinder. Thus, one can neglect its
influence on the fluid–body interactions. The cylinder has a width W ′ slightly smaller
than W, the width of the tank, to avoid friction on the lateral walls of the tank. For
experiments performed with a small depth, the frequency of the surface seiche modes
of the tank can be close to the characteristic frequency of the pendulum ωc. Thus, it
is possible to have an energy transfer from the pendulum to the surface seiche modes.
A rigid lid placed on the free surface prevents the surface wave propagation and thus
eliminates the energy transfers.

The pendulum is supported by an assembly which is fixed upon the tank. The
rotation is made possible by two wedge-shaped supports made of very strong steel
attached to the pendulum. Each wedge is in contact with a horizontal cylinder made
of steel, oriented perpendicularly to the rib of the wedge and fixed on the assembly.
With this arrangement, the friction at the contact points can be safely neglected. The
rotation of the pendulum is limited to very small angles so we can consider the motion
of the cylinder as horizontal. This is shown by the two thick arrows in the centre of
the body in figure 2.

The horizontal displacement x of the cylinder is measured as a function of time
using a laser and a position sensor, assuming the pendulum oscillates within very
small angles. Experimentally, we took care to limit the forcing in order to have a
maximal horizontal displacement of 1 cm. The laser spot is reflected on a small mirror,
fixed on the pendulum and located on the axis of rotation. These small details are not
shown in figure 2. As the pendulum oscillates, the mirror deflects the laser beam by
an angle twice larger than the angular displacement. The deviation is measured via an
elongated position sensor, giving a voltage proportional to the deviation of the laser
spot. The deflection of the laser beam is recorded at a frequency of 50 Hz during the
experiment. Using the angular displacement and the distance L between the rotation
axis and the centre of mass of the cylinder, one can get the horizontal displacement x.

To prevent the internal wave reflection, wave absorbers are placed at each end of
the tank (see figure 2). They are composed of a network of five layers of grids with
two different mesh sizes, 3 and 1 cm. The space between the grids is approximately
5 cm.

3.2. Data acquisition procedure and impulse response function analysis
Experiments have been performed with four different cylinders and for a set of
different fluid depths. For each cylinder, the moment of inertia J and the distance
` between the rotation axis and the centre of mass G have been measured in air.
Table 1 summarizes the different characteristics of the four cylinders used.

In a homogeneous or a stratified fluid, the equation of horizontal oscillations x of
the centre of mass of the cylinder in the frequency domain can be written (Cummins
1962) as follows(

J +m′`′2 +µ(ω)L2

L2

)
ẍ+ λ(ω) ẋ+

(
C− `′m′g

L2

)
x= F0 exp(iωt), (3.1)

with C being the constant containing the effects of the pendulum torque and of the
buoyancy force; µ(ω) is the inertial mass, λ(ω) the damping rate of the fluid and F0
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is the amplitude of forcing. For a homogeneous fluid, this rate is defined as λh and is
only due to the viscosity of the fluid. For a stratified fluid, λ is the sum of the wave
damping rate λw, due to emission of internal waves, and the viscous damping rate
λh. The constant C can be determined during a static calibration: the plate located
on the right arm of the pendulum (see figure 2) is loaded with different masses m.
This causes a deviation of the equilibrium position of the pendulum. Thus, the two
first terms of the left-hand side of (3.1) are null (static calibration) while the right-
hand side is different from 0 and depends on the masses m and the geometry of the
pendulum. Knowing everything except C, we can measure this constant.

To determine µ and λ, we use the classical concept of impulse response function
analysis (see e.g. Cummins 1962). The idea is to examine the response of the
pendulum to a forcing proportional to exp(iωt). The response function is defined by

R(ω)=
∫
∞

0
x(t′) exp(−iωt′) dt′. (3.2)

Using (3.1) and (3.2), one has the complex quantity

R(ω)=
F0L2

(C− `′m′g)+ iL2λω− (J +m′`′2 +µL2)ω2
. (3.3)

Denoting |R(ω)| its modulus and φ(ω) its phase, this leads to

µ(ω)=
(C− `′m′g)
ω2L2

(
1−
|R(0)|
|R(ω)|

cos φ(ω)
)
−

J +m′`′2

L2
, (3.4)

λ(ω)=
(C− `′m′g)

L2ω

|R(0)|
|R(ω)|

sin φ(ω), (3.5)

where |R(0)| stands for the modulus of the impulse response function for ω =

0 rad s−1. As the system is linear, the normalization of |R(ω)| by |R(0)| allows us
to use this Fourier transform approach at a small arbitrary impulse. For each position
of the counter weights, experiments are repeated three times and three signals x(t)
are recorded. Each measurement appears to be very reproducible. Then, the Fourier
transform of each of the three signals is calculated to obtain three impulse response
functions, defined in (3.2). These three response functions are then averaged: the result
is a complex function and its modulus and phase are computed. They are used to
obtain the functions µ and λ as a function of the frequency ω. The impulse response
function analysis allows us to measure µ and λ for a large range of frequencies
but the measurements are accurate only around the characteristic frequency of the
pendulum, ωc. To increase the precision of the measurements of µ and λ as a
function of the frequency, the different measurements performed at different positions
of the counter weights are multiplied by a weight centred around the characteristic
frequency ωc. Thus, the different experiments are combined using the most reliable
region of each measurement.

Always two series of experiments are performed, one in a homogeneous fluid first
and then one in a stratified fluid. In the case of a homogeneous fluid, µ is supposed
to be independent of the frequency and λ= λh is expected to be proportional to

√
ω

(Stokes 1851; Landau & Lifshitz 1959). The inertial coefficient Cµ is obtained by
averaging µ in the sampled frequency range and using (2.8). The viscous damping is
quantified by a linear fit of λh as a function of

√
ω. For the stratified case, the inertial
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coefficient Cµ as a function of frequency is obtained using (2.8). The wave damping
rate λw is obtained by subtracting λh, previously measured in the homogeneous case,
to λ. Then, the wave damping Cλ and radiated wave power Pw coefficients are
computed using (2.9) and (2.10). Finally, using the medfilt1.m Matlab function, we
applied a median filter to Cµ and Cλ in order to slightly smooth the curves. The
median filter has been performed on intervals of frequency ω of 0.05 rad s−1.

Note that the impulse response function analysis requires that the system is causal.
Indeed, once the waves are emitted, they must not come back to the pendulum.
Nevertheless, as the tank is limited in space, some waves are reflected at the ends of
the tank and come back to the pendulum. Thus, they act as a source of oscillations
and perturb the signal recorded. The wave absorbers, placed at each end of the
tank to prevent the internal waves returning to the pendulum, are not fully efficient
but limit the energy coming back to the pendulum. Note that wave reflections are
more important when the frequency Ω is low, i.e. when the waves propagate almost
horizontally. In the following sections, to help the reader to identify quickly the
range of frequencies where wave reflections are non-negligible in the experiments,
the points showing the inertial, wave damping and radiated wave power coefficients
are empty when reflections are important and filled when reflections are small or
non-existent. The importance of the reflections is determined by using the different
individual records x(t), not shown in this paper.

3.3. Set-up and data processing validation
A similar set-up and data processing method have been used in the previous works by
Ermanyuk (2000, 2002) and Ermanyuk & Gavrilov (2002a,b, 2003). However, as the
set-up and the method are similar but not strictly identical, we wanted to test them
using previously published results. In order to do that, the first experiments have been
performed using a cylinder with a square cross-section oscillating in a stratified fluid
of large depth. Such experiments have already been reported by Ermanyuk & Gavrilov
(2002b). In appendix A, we compare our results and the ones obtained in Ermanyuk
& Gavrilov (2002b), showing a good agreement between the two sets of data. We also
correct a small error in calculations present in Ermanyuk & Gavrilov (2002b). In the
reminder of the manuscript, the set-up is used to address the effects of finite depth
on tidal conversion.

4. Circular cylinder
In this section, we discuss the finite depth effects on inertial and wave damping

coefficients for a cylinder with a circular cross-section oscillating horizontally in a
stratified fluid. The different characteristics of this shape are given in table 1 while
the experimental parameters for the series of experiments can be found in table 2.
As mentioned in the introduction, the results from Ermanyuk & Gavrilov (2002a) at
H/b from 4.32 to 1.65 show for Ω > 0.2 a qualitative agreement with the theoretical
behaviour predicted for subcritical obstacles (Llewellyn Smith & Young 2002) rather
than for the supercritical ones (Llewellyn Smith & Young 2003). The complementary
set of data obtained at H/b from 3.2 to 1.2 is described in this section. This data
set extends the results to lower values of H/b. In addition, in this new data set the
diameter of the cylinder is b=5 cm instead of the value b=3.7 cm used in Ermanyuk
& Gavrilov (2002a). This decreases the role of the viscous boundary layers on the
results. Also, the free surface in the new set of experiments is replaced by a rigid
lid, what ensures the identical conditions at the upper and lower boundaries of the
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Series H (cm) H/b Cµ λh/
√
ω (kg s−1/2) Symbols

1 16 3.2 1.39± 0.05 0.07± 0.01 Green diamonds
2 10 2 1.75± 0.08 0.10± 0.01 Blue pentagrams
3 7.5 1.5 2.46± 0.15 0.17± 0.01 Red squares
4 6 1.2 5.12± 0.20 0.67± 0.02 Black circles

TABLE 2. Parameters for the four series of experiments at finite depth and using the
cylinder with a circular cross-section. The inertial coefficient Cµ and the viscous damping
rate λh are measured in the homogeneous case. The symbols in the last column are used
in figures 3–5.

fluid domain and also a sufficient length of the fluid domain to minimize the role of
the internal wave reflections at the end walls. In Ermanyuk & Gavrilov (2002a), the
presence of free surface forced the authors to limit the length of the test tank in order
to avoid the excitation of the surface seiche within the frequency domain of interest.
This caused a limitation at small frequencies in the measurements. By adding a rigid
lid and performing experiments with smaller H/b, we expect to reduce this limitation
in frequency. Therefore, this study is focused on small frequencies where the cylinder
is essentially in the supercritical regime and where enhancement of tidal conversion
is expected.

4.1. Homogeneous fluid
The solution for the added mass coefficient of an elliptic cylinder submerged at mid-
depth of a horizontal channel of homogeneous fluid has been obtained by Clarke
(2001)

k∗(q, ξ)= 2
ln
[

sec
(

πq
2

1
1− ξ

)]
(

πq
2

1
1− ξ

)2 , (4.1)

where the parameter ξ = ξ(p, q) is to be determined from the following equation

2ξ
πq

ln
[

sec
(

πq
2

1
1− ξ

)
+ tan

(
πq
2

1
1− ξ

)]
=

1
p
. (4.2)

In our case, the cross-section of the cylinder is circular so that p = 1. Using (4.1)
and (4.2), it is thus possible to compute the inertial coefficients in a homogeneous
fluid as a function of H/b. Table 3 gives the measured and predicted inertial
coefficients Cµ for our four series of experiments and the five ones available in
Ermanyuk (2000) and in Ermanyuk & Gavrilov (2002a). First, one can see that all
the data sets are in a good agreement. Second, the prediction of Clarke (2001) works
well for high values of H/b and remains reasonably accurate when H/b decreases.
Note that the numerical calculations of Sturova (2001) lead to values close to the
ones predicted by (4.1) and (4.2). Note also that the affine similitude theory cannot
be used for predicting the added mass coefficients in the stratified case for Ω < 1
because the prediction of Clarke (2001) is not an analytical function. For Ω > 1, the
prediction for the inertial coefficient are shown in figure 4 using dashed-dotted lines,
with different colours corresponding to different fluid depths (see table 2).
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10–1

10–2

100

0.1 0.2 0.3 0.4 0.5 1.0 2.0

FIGURE 3. (Colour online) Homogeneous case: viscous damping rate λh as a function of
frequency ω for the four series of experiments performed with our pendulum set-up in
log–log scale. H/b is equal to 1.2 (black circles), 1.5 (red squares), 2 (blue pentagrams)
and 3.2 (green diamonds). The solid black line shows the power law λh ∝

√
ω.

H/b Reported in Cµ measured Cµ predicted (Clarke 2001)

7.57 Ermanyuk (2000) 1.05± 0.05 1.029
4.32 Ermanyuk & Gavrilov (2002a) 1.12± 0.05 1.093
3.24 Ermanyuk & Gavrilov (2002a) 1.24± 0.05 1.173
3.2 Present paper 1.39± 0.05 1.178

2.19 Ermanyuk & Gavrilov (2002a) 1.54± 0.05 1.438
2 Present paper 1.75± 0.08 1.558

1.65 Ermanyuk & Gavrilov (2002a) 2.25± 0.09 1.999
1.5 Present paper 2.46± 0.15 2.418
1.2 Present paper 5.12± 0.20 5.825

TABLE 3. Measured (third column) and predicted (fourth column) inertial coefficients Cµ

in a homogeneous fluid for the different H/b ratios shown in the first column.

Figure 3 shows the viscous damping rates λh for the four series of experiments
performed with the present pendulum set-up as a function of the frequency ω, in
log–log scale. One can see that for frequencies higher than ω = 0.5 rad s−1, the
viscous damping rate λh agrees reasonably well with the square root of the frequency
ω (Stokes 1851; Landau & Lifshitz 1959). Below ω= 0.5 rad s−1, the signal is noisy
except for the smallest value of H/b (black filled circles). The different values of the
coefficients λh/

√
ω are reported in table 2.

4.2. Stratified fluid
Figure 4 shows the inertial coefficients Cµ for the four series of experiments. The
prediction made by Hurley (1997) for a fluid of infinite depth is represented by
the solid black line and the predictions from the affine similitude theory for finite
depth are shown using the dashed-dotted lines. Note that for Ω < 1, the predicted
inertial coefficient is identically zero for a fluid of infinite depth. In figure 4, one can
see that the different inertial coefficients reach some asymptotic values for Ω > 1,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

th
èq

ue
 D

id
er

ot
 d

e 
Ly

on
, o

n 
18

 O
ct

 2
01

7 
at

 1
2:

49
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.616
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


114 C. Brouzet, E. V. Ermanyuk, M. Moulin, G. Pillet and T. Dauxois

5

6

7

1

2

3

4

0 0.5 1.0 1.5 2.0

FIGURE 4. (Colour online) Stratified case: inertial coefficient Cµ as a function of the
dimensionless frequency Ω for the four different series of experiments at different depths.
H/b is equal to 1.2 (black circles), 1.5 (red squares), 2 (blue pentagrams) and 3.2 (green
diamonds). The frequency range where wave reflections are important corresponds to
the range where the symbols are empty. The horizontal dashed lines correspond to the
inertial coefficient measured in a homogeneous fluid for the different depths. The solid
black line corresponds to the theoretical prediction at infinite depth (Hurley 1997) and
the dash-dotted lines represent the prediction made using the affine similitude theory, for
Ω > 1. The colour code for lines is identical to the one for the symbols.

except for the smallest H/b ratio (black circles). These asymptotic values are close
to the values measured in a homogeneous fluid, indicated by dashed lines. This is
consistent with the prediction that, at high frequencies, the inertial coefficients are
not different from the ones of the homogeneous case. The measurements are also
in a relatively good agreement with the prediction of the affine similitude theory,
except for Ω close to 1 where α tends to 0. Even at Ω > 1 the solution does not
work well for vertically squeezed geometries, and therefore cannot be effectively
used when b/a= p is O(1) and H/b→ 1. One can note that as H/b decreases, the
inertial coefficient increases. Thus, the deeper, the smaller the inertial coefficient, at
any frequency. This is consistent with the measurements performed by Ermanyuk &
Gavrilov (2002a). At low frequency, the results are perturbed (see empty symbols)
by wave reflections. Note that the range of frequency where the signal is noisy is
reduced when one decreases the depth. Indeed, a small depth imposes to almost all
waves to be reflected a given number of times at the top and bottom of the tank
before reaching the ends of the tank. These multiple reflections induce a significant
decay of waves.

Figure 5 shows the wave damping Cλ and radiated wave power Pw coefficients for
the four series of experiments. The symbols used are the same as in figure 4 and
are described in table 2. The prediction for a fluid of infinite depth (Hurley 1997) is
plotted as a solid black line, on both panels. For Ω > 1, one can see that no wave
is emitted and Cλ vanishes for all the four cases. In the studied range of H/b, the
efficiency of wave radiation in the frequency range 0.5<Ω<1 drops systematically as
the depth of fluid decreases. This behaviour is in qualitative agreement with Llewellyn
Smith & Young (2002) for a subcritical obstacle in a fluid of limited depth, and also
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FIGURE 5. (Colour online) Stratified case: wave damping coefficient Cλ (a) and radiated
wave power Pw (b) as a function of the dimensionless frequency Ω for the four different
series of experiments at different depths. As in figure 4, H/b is equal to 1.2 (black
circles), 1.5 (red squares), 2 (blue pentagrams) and 3.2 (green diamonds). The frequency
range where wave reflections are important corresponds to the range where the symbols
are empty. The solid black line corresponds to the theoretical prediction at infinite depth
(Hurley 1997).

with Gorodtsov & Teodorovich (1986) and Ermanyuk & Gavrilov (2002a). However,
at lower frequency, the opposite trend can be also observed (Llewellyn Smith & Young
2003): there is an enhancement of wave radiation at H/b= 1.2 and 1.5 at Ω→ 0 as
expected for a supercritical obstacle, although it has a small magnitude in the case of
a circular cylinder.

For a vertical plate, a fully supercritical case, one can expect that the force
coefficients of a vertical plate are enhanced at H/b→ 1 for all frequencies Ω . This
issue is addressed in the next section.

5. Vertical plate
In this section, we present inertial and wave damping coefficients of a vertical

plate oscillating horizontally in a stratified fluid of limited depth. To our knowledge,
no finite depth experiment with such a shape has been performed before. However,
it is worthwhile to note that Peacock, Echeverri & Balmforth (2008) have reported
experiments with a knife edge in the infinite depth limit, without measuring the
inertial and radiated wave power coefficients. The characteristics of the plate are
given in table 1. Its vertical size is equal to b = 10 cm and it has a thickness of
a= 0.3 cm. Thus, b� a and p is large (order 30). The cross-section of this vertical
flat plate can also be seen as an ellipse with a very small horizontal scale a.

Two series of experiments have been performed, with two different depths,
corresponding to H/b= 2.2 and H/b= 1.3. These H/b ratios have been chosen to be
small, in order to observe a similar enhancement of the wave damping coefficient at
small depth and frequency as the one revealed in § 4 for the cylinder with a circular
cross-section. Table 4 gives the different parameters for the two series of experiments.

5.1. Theoretical predictions
The added mass of a flat plate oscillating in a homogeneous fluid of infinite depth
(H → ∞ and q = b/H → 0) is mA = ρ0πb2/4 (see for example Brennen 1982).
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Series H (cm) H/b Cµ Cµ predicted λh/
√
ω (kg s−1/2) Symbols

1 22 2.2 1.24± 0.1 1.10 0.24± 0.03 Blue pentagrams
2 13 1.3 1.79± 0.07 1.42 0.39± 0.03 Red squares

TABLE 4. Parameters for the two series of experiments at finite depth and using the
vertical flat plate as the cylinder. The inertial coefficient Cµ and the viscous damping rate
λh are measured in the homogeneous case. The prediction for the inertial coefficient in the
homogeneous case is obtained from (5.4). The symbols mentioned in the last column are
used in figures 6 and 7.

Therefore, the function given in (2.5) is f∗(∞, 0)≡ 1. Thus, using the affine similitude
theory, the inertial and wave damping coefficients in a linearly stratified fluid of
infinite depth coincide with the solution found by Hurley (1997), also valid for the
cylinder having a circular cross-section (see § 4). Consequently, the non-dimensional
wave power radiated by the flat plate in a uniformly stratified fluid of infinite extent
amounts to

PW(Ω, q= 0)= 1
2Ω

2(1−Ω2)1/2. (5.1)

Note that the same result is true at finite p= b/a since the added mass of an elliptic
cylinder in the fluid of infinite extent depends only on its vertical size and does not
depend on its elongation. This is in full qualitative agreement with Bell (1975).

Following Lockwood-Taylor (1930), the added mass coefficient of a vertical flat
plate of height b oscillating in a homogeneous fluid of finite depth H is

k∗ = f∗(∞, q)= 2×
(

2
πq

)2

ln
[
sec
(πq

2

)]
. (5.2)

Thus, when Ω < 1, the wave power radiated by the flat plate in a uniformly stratified
fluid of limited depth is

PW(Ω, q)= 1
2Ω

2(1−Ω2)1/2E(q), (5.3)

where we introduce the enhancement factor

E(q)=
PW(Ω, q)

PW(Ω, q= 0)
=

f∗(∞, q)
f∗(∞, 0)

= f∗(∞, q). (5.4)

Thus, the inertial and wave damping coefficients of a vertical plate oscillating
horizontally in a fluid on finite depth are expected to be equal to the ones for a
fluid of infinite depth multiplied by the enhancement factor E . The above expression
for the enhancement factor is equivalent to the result given by a more complicated
formula in Llewellyn Smith & Young (2003) (see equations (4.7) and (4.9) of this
reference), with rotation neglected and taking into account a factor 2 since they
consider only the upper half of the geometry. Explicitly, it means that

2
π

[
1− tan2

(πq
2

)]1/2
∫ tan(πq/2)

0

ξ arctan(ξ) dξ[
tan2

(πq
2

)
− ξ 2

]1/2
(1− ξ 2)

= ln
[
sec
(πq

2

)]
. (5.5)
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It is worth to note that the wave power given in Llewellyn Smith & Young (2003) is
in the low-frequency limit Ω→ 0, where the dimensionless wave damping coefficient
is given by

Cλ(Ω→ 0)= E(q). (5.6)

When H→∞, we have q→0 and E→1. However, for smaller depths (or larger q), E
becomes greater than 1, which highlights a more important wave damping coefficient
at finite depth than at infinite depth, in the low frequency limit relevant for the
supercritical regime. Note also that the enhancement factor is the same both for the
inertial coefficient Cµ at Ω→∞ and for the wave damping coefficient Cλ at Ω→ 0.
Following this theory, the inertial coefficient predictions are presented in figure 6,
using solid lines while in figure 7(a), we show the theoretical prediction for the wave
damping coefficient.

It is also possible to use the prediction of Clarke (2001) by considering that the
vertical plate has a shape close to a very elongated ellipse. As the thickness of the
plate is very small, we have to take into account the viscous boundary layers, whose
thickness δ can be of the same order of magnitude as that of the plate. It is given by

δ(ω)=

√
2ν
ω
, (5.7)

where ω is the frequency of the oscillations and ν the kinematic viscosity of the fluid.
For frequencies of the order of 1 rad s−1, one gets δ≈ 0.2 cm, which is close to the
thickness of the plate. The theoretical curves for the inertial coefficient obtained using
this method are represented in figure 6 for Ω > 1 by dashed dotted lines. One can
clearly see that the anticipated effect of the finite thickness of the vertical flat plate is
low even if we add the ‘virtual’ boundary layer thickness on two sides of the plate 2δ
to the actual thickness of the plate a. As in § 4, note that it does not seem possible
to continue (4.1) and (4.2) to Ω < 1 since the solution is not given by an explicit
function.

5.2. Experimental results
Table 4 summarizes the results obtained in a homogeneous fluid for the vertical
plate at two different depths. Similar to the case of a circular cylinder, the inertial
coefficient Cµ and viscous damping rate λh increase as the depth decreases. The
measured values of the inertial coefficient are typically 10 %–20 % larger than the
predicted ones.

Figure 6 shows the inertial coefficient Cµ as a function of Ω for the vertical
flat plate oscillating horizontally in a stratified fluid of limited depth. The symbols
used here are described in table 4. For H/b = 2.2 (blue pentagrams) and Ω > 1,
the experimental and the two theoretical curves are close to each other, particularly
for large frequencies. For H/b= 1.3, experimental points fall significantly above the
theoretical curves. However, for both fluid depths, the inertial coefficient does not
vanish for Ω < 1, contrary to the prediction. The inertial coefficient as a function
of the frequency shows a very similar behaviour to the one for the circular cylinder
(see figure 4). Note that, as in § 4, data are less reliable at small frequency due to
the wave reflections. This is highlighted by empty symbols.

Figure 7 shows the wave damping Cλ and radiated wave power Pw coefficients as
a function of Ω for the vertical flat plate. The symbols are the same as the ones
used in figure 6 and are described in table 4. The enhancement factor given in (5.4)
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FIGURE 6. (Colour online) Stratified case: inertial coefficient Cµ as a function of the
dimensionless frequency Ω for the vertical flat plate at two different fluid depths. H/b is
equal to 2.2 (blue stars) and 1.3 (red squares). The frequency range where wave reflections
are important corresponds to the range where the symbols are empty. The horizontal
dashed lines correspond to the inertial coefficient measured in a homogeneous fluid for
the two depths while the solid lines correspond to the theoretical prediction for a vertical
plate and the dashed dotted lines to the theoretical prediction for a very thin ellipse. The
colours are the same as the ones for the symbols. The black line represents the solution
of Hurley (1997) in a fluid of infinite depth.
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FIGURE 7. (Colour online) Stratified case: wave damping coefficient Cλ (a) and radiated
power Pw (b) as a function of the dimensionless frequency Ω for the vertical flat plate at
two different depths. As in figure 6, H/b is equal to 2.2 (blue stars) and 1.3 (red squares).
The frequency range where wave reflections are important corresponds to the range where
the symbols are empty. The solid black line corresponds to the theoretical prediction
at infinite depth made by Hurley (1997) while the two coloured lines are obtained by
multiplying this prediction by the enhancement factor corresponding to the two different
series of experiments, according to (5.2).

predicts that the wave damping coefficient and the radiated wave power at finite
depth (coloured curves) are larger than the ones at infinite depth (solid black line),
for all Ω < 1. This is obviously not the case here because both curves are below the
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prediction made by Hurley (1997) for a fluid of infinite depth. Thus the cases of a flat
plate and a circular cylinder show a similar behaviour (compare figures 5 and 7) even
if the two bodies have different criticality. One can expect a wave damping coefficient
larger than 1 at H/b→ 1 and Ω → 0, as predicted by Llewellyn Smith & Young
(2003) and seen in § 4. This is not the case here, despite a small ratio H/b= 1.3. It
is difficult experimentally to go beyond and decrease this ratio. In the studied range
of parameters we observed no enhancement for the wave damping coefficient of a
flat plate at Ω < 1, despite the supercritical situation. The enhancement is however
fully present for the inertial coefficient at Ω > 1.

As a plausible explanation, we may attribute the apparent absence of enhancement
in wave damping coefficient in our experiments to the scale effect. Indeed the
ideal-fluid theory (see figure 1 in Llewellyn Smith & Young 2003) considers the flow
scheme with infinitely thin beams emanating from the tip of the vertical plate. The
upward-emitted beams are reflected at the horizontal boundary and pass parallel and
at small distance 2δ cos θ from the downward-emitted beams, where δ is the height
of the gap between the tip of the plate and the horizontal boundary. At laboratory
scale the width of each beam in a viscous fluid is finite. This width can exceed the
inter-beam distance 2δ cos θ as H/b→ 1. Therefore the beams can overlap, leaving a
possibility of destructive interactions. A possible consequence for large-scale objects
remains unclear since the width of beams at natural scale can be governed by
turbulent viscosity (see for example Cole et al. 2009).

6. Flat-top hill: topography lacking tidal conversion
In this last section, we present experiments performed with an object having a

specific shape. This object has been designed thanks to Leo Maas in order to show
experimentally that, at finite depth and for a given frequency, the tidal conversion
vanishes. Using an integral equation method to compute the tidal conversion of
a triangular ridge in a stratified fluid of finite depth, Pétrélis et al. (2006) have
previously reported an example of a topography lacking tidal conversion. Then, Maas
(2011) has shown that a whole family of such topographies exists. More recently,
a series of experiments have been reported showing such a lack of tidal conversion
(Maas et al. 2015). However, the radiated wave power has never been measured
experimentally. Here, we show a significant decay of the wave power for a ‘perfect
tuning’ of geometry, depth and frequency, and how it is affected by detuning.

6.1. The shape of the object and theoretical prediction
Figure 8(a) shows the shape of the object in the x–z plane. Its height b is equal
to 8 cm and it has a horizontal length a of 20 cm. The object is invariant in the
y-direction. As the shape is symmetric with respect to the x and z axes, it is composed
of one specific curve shown in figure 8(b). The curve has a flat part for x< 2.26 cm,
with the limit marked by a blue circle. Then there is a decay with an inflection
point, marked using a blue dot. At this inflection point, the slope has an angle of
36.6◦ which corresponds to frequency of Ωs = 0.596 for internal waves. This slope
is shown by a blue dashed line in figure 8(b). The inflection point has, by definition,
the steepest slope of the curve. Another blue circle shows the end of the curve, close
to x= 10 cm. The two blue circles and the blue dot are shown on each side of the
shape in figure 8(a).

Maas (2011) predicted that such a shape can exhibit a lack of tidal conversion for
given frequency and depth. Indeed, if the depth is fixed, there can exist a specific
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FIGURE 8. (Colour online) (a) Shape of the object in the x–z plane (solid thick black
line). The object is symmetric with respect to the x and z axes shown by the black dashed
dotted lines inside. For this example, the cylinder is placed in the stratification of depth
H= 16 cm, limited by the two horizontal dashed blue lines. The red lines connect the two
sides of the cylinder. (b) Zoom in on the upper right quarter of the object. The inflection
point is marked by the blue point. The slope of the shape at this point is shown by the
dashed blue line. The two blue circles show the portion of the shape which is not constant.

frequency Ω` such that the two sides of the shape are connected by rays after a
reflection at the surface or at the bottom. This is illustrated in figure 8(a) by the red
lines showing internal wave rays and the dashed blue lines representing the surface
and the bottom of the tank. With this geometry and at this specific frequency, the
internal wave beams emitted by the pendulum are annihilated by pairs, after reflection
on the surface or at the bottom of the tank, leading to a lack of tidal conversion.
When the fluid depth H varies, the frequency corresponding to the lack of tidal
conversion Ω` also changes. Figure 9 shows the height of the fluid H as a function
of the frequency Ω`. This frequency is much smaller than 1 for small depth. When
H→∞, the dimensionless frequency Ω` shifts towards 1, i.e. the limit of the wave
emission frequency range. Note that this is valid only for the frequency higher than
Ωs, i.e. when the shape is subcritical. Indeed, one can easily understand that for
Ω < Ωs, some internal wave rays should go through the object to connect the two
sides of the shape. Thus, we should not observe a lack of wave emission for very
small depths, for H below 13 cm.

In the next section, we discuss four series of experiments performed at H = 95,
20.3, 16 and 12 cm. These experiments are shown in figure 9 by the black circle, the
red square, the blue diamond and the green pentagram, respectively. The prediction
gives Ω` equal to 0.99, 0.8, 0.7 and 0.55. Thus, we have explored the two different
regions (subcritical and supercritical) in figure 9, separated by the dashed line at
Ω = Ωs. Before performing these four series of experiments, the cylinder with this
flat-top hill cross-section has been calibrated in the air. The main characteristics are
presented in table 1. Note that due to the very specific shape of the body, there is
no theoretical prediction for the inertial and wave damping coefficients.

6.2. Experimental results
The inertial coefficient and viscous damping rate have been measured first in a
homogeneous fluid using the impulse response function analysis. As expected, the
inertial coefficient has been found constant for all frequencies and the viscous
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FIGURE 9. (Colour online) Correspondence between the height of the fluid H and the
frequency where the topography lacks tidal conversion Ω`. The vertical dashed line shows
the frequency Ωs = 0.596. The four symbols represent the four different fluid depths
reported in this paper.

Series H (cm) H/b Cµ λh/
√
ω (kg s−1/2) Symbols

1 95 11.88 0.78± 0.10 0.12± 0.01 Black circles
2 20.3 2.54 1.79± 0.10 0.20± 0.01 Red squares
3 16 2 2.26± 0.20 0.28± 0.01 Blue diamonds
4 12 1.5 4.38± 0.30 0.66± 0.01 Green pentagrams

TABLE 5. Parameters for the four series of experiments with the flat-top hill cross-section.
The inertial coefficient Cµ and the viscous damping rate λh are measured in the
homogeneous case. The symbols in the last column are used in figures 10 and 11.

damping rate depends on the square root of the frequency. The results for the
different fluid depths are shown in table 5.

Figure 10 shows the inertial coefficients Cµ, for the four series of experiments. The
different symbols are indicated in table 5. As for the cylinder with a circular cross-
section and the vertical flat plate (see §§ 4 and 5), the inertial coefficient at smaller
fluid depth is larger. Moreover, for large frequency, the inertial coefficients reach the
asymptotic values found in the homogeneous fluid. These values are represented by
horizontal dashed lines in figure 10.

Figure 11 shows the wave damping and radiated wave power coefficients, for the
four series of experiments. The different symbols are indicated in table 5. One can
see a significant local minimum in these coefficients, at Ω = 0.8 for H= 20.3 cm (red
squares) and at Ω = 0.7 for H = 16 cm (blue diamonds), while it is not the case for
H= 95 cm (black circles) and H= 12 cm (green pentagrams). This is fully consistent
with the theoretical prediction, given in figure 9. No minimum is seen for the infinite
depth experiment, because the predicted frequency lacking of tidal conversion Ω` is
too close to 1. Moreover, for the supercritical topography (Ω <Ωs), there is no local
minimum of tidal conversion. Note that the wave reflection at the end of the tank
affects the signal only for Ω smaller than 0.3 so that the data in the frequency range
of interest are fully reliable. Since the data corresponding Ω < 0.3 are not reliable,
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FIGURE 10. (Colour online) Stratified case: inertial coefficient Cµ as a function of the
dimensionless frequency Ω for the four different series of experiments at different depths.
The symbols are indicated in table 5. The frequency range where wave reflections are
important corresponds to the range where the symbols are empty. The horizontal dashed
lines correspond to the inertial coefficient measured in a homogeneous fluid for the
different depths. The colours are the same as the ones used for the symbols.
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FIGURE 11. (Colour online) Stratified case: wave damping coefficient Cλ (a) and radiated
wave power Pw (b) as a function of the dimensionless frequency Ω for the four different
series of experiments at different depths. The symbols are indicated in table 5. The
frequency range where wave reflections are important corresponds to the range where the
symbols are empty. The two vertical dashed lines show the prediction for Ω` for the two
series of experiments at intermediate depths, using figure 9.

we cannot make any conclusion concerning the enhancement of tidal conversion at
Ω→ 0 for this type of topography.

7. Conclusions

In this paper, we examined the effects of finite depth on tidal conversion using the
concept of added mass and three different bodies oscillating in a uniformly stratified
fluid.
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First, we validate our set-up using the case of a square-shaped cylinder with a
vertically oriented diagonal in a stratified fluid of infinite depth. In the context of
baroclinic tidal conversion, this case mimics an isolated bottom topography with a
triangular cross-section. We correct a small error present in calculations of Ermanyuk
& Gavrilov (2002b), and perform a series of experiments with a larger cylinder than
the one used in Ermanyuk & Gavrilov (2002b), observing reasonable agreement
between the results.

Second, we investigate the effect of limited depth on the force coefficient and
radiated wave power for a circular cylinder and a vertical flat plate. This study is
motivated by the possibility of enhancement (Llewellyn Smith & Young 2003; Pétrélis
et al. 2006) or reduction (Llewellyn Smith & Young 2002) of tidal conversion for
super- and subcritical topographies. In this context, the interest of circular geometry
is that it always has a sub- and supercritical parts at any frequency Ω < 1, while the
vertical flat plate corresponds to the ultimate case of supercritical topography. For
the circular cylinder we have extended the previous data set Ermanyuk & Gavrilov
(2002b) to low values of depth-to-diameter ratio H/b = 1.5 and 1.2. In a narrow
range of frequency at Ω→ 0, we observe a weak enhancement of tidal conversion:
for H/b= 1.2 it increases by approximately 15 % compared to the value in the fluid
of infinite extent. However, the main trend observed for 0.3 < Ω < 1 exhibits the
reduction of tidal conversion compared to the case of infinite fluid. For the vertical
plate, we re-derive the expression for the enhancement factor due to limited depth
and find a simple formula which is in full agreement with an integral expression from
Llewellyn Smith & Young (2003). However, our measurements of the wave damping
coefficient and radiated wave power performed at H/b = 2.2 and 1.3 have not
demonstrated any convincing evidence of enhancement of tidal conversion although
the expected effect far exceeds the uncertainty of measurements. On the contrary,
the enhancement is present for the inertial coefficient of the oscillating flat plate,
especially at large oscillation frequency dynamically corresponding to unstratified
fluid. However, as the oscillation frequency decreases the inertial coefficient exceeds
the theoretical prediction, most notably at 0 < Ω < 1 where it is expected to be
identically zero regardless to the value of H/b. The absence of the enhancement of
tidal conversion at the laboratory scale can be attributed to the final width of wave
beams, which can overlap and interfere destructively in contrast to infinitely thin
beams assumed in ideal-fluid theory (Llewellyn Smith & Young 2003).

Finally, we measured for the first time the force coefficients and the radiated wave
power of an object with a specific cross-section, inspired by Maas (2011). We show
that it exhibits a lack of tidal conversion for a specific frequency Ω`, as expected.
This frequency depends on the depth of the fluid and the results are consistent with
the theoretical prediction. Below a certain depth-to-height ratio H/b a local minimum
of the radiated wave power cannot be observed. The findings presented in this article
can have some important consequences in the oceanographic context due to a large
variety of realistic sub- and supercritical bottom topographies, including those lacking
tidal conversion (Maas 2011).
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FIGURE 12. (Colour online) Stratified case: wave damping Cλ (a) and radiated wave
power Pw (b) coefficients as a function of the dimensionless frequency Ω , for the cylinder
with a square cross-section. The black diamonds are from Ermanyuk & Gavrilov (2002b)
while the red circles have been obtained with our experiments. The frequency range where
wave reflections are important corresponds to the range where the red circles are empty.
The theoretical prediction (A 1) is plotted as a black line, while the vertical dashed line
shows the critical frequency Ω =

√
2/2.

Appendix A. Square cylinder
This appendix presents the experiments performed in a fluid of large depth with a

cylinder having a square cross-section. Such experiments have already been performed
by Ermanyuk & Gavrilov (2002b). Below we cross-compare the two data sets to
validate the methodology of the present work and to correct an error present in
Ermanyuk & Gavrilov (2002b).

The sides of the square used in the present paper are 10 cm long. The cylinder
is fixed to the pendulum in order to have the diagonals of the square vertical or
horizontal, leading to a= b≈ 14.4 cm. The fluid depth H is equal to 95 cm. Thus, we
are in a good approximation in a fluid of infinite depth, with H/b≈ 6.6. Experiments
(Ermanyuk & Gavrilov 2002b) have been performed with a smaller cylinder, at
a= b= 5.2 cm and H= 36 cm. The characteristic parameters of the cylinder used in
the present work are given in table 1, located in the main body of the paper.

For a diamond-shaped cylinder the added mass in a homogeneous fluid of infinite
depth is (Korotkin 2010)

F∗(p)=
Γ (1.5− arctan(1/p)/π)Γ (arctan(1/p)/π)

Γ (0.5+ arctan(1/p)/π)Γ (1− arctan(1/p)/π)
− 1, (A 1)

where Γ is the Euler function and p = b/a, i.e. the ratio between the vertical and
the horizontal diagonals of the diamond. The Euler function is defined for any
complex number z with a positive part as Γ (z)=

∫
∞

0 xz−1 exp(−x) dx. For the square
cross-section in our set-up, p = 1 which leads to F∗(p = 1) ≈ 1.19 and Cµ

≈ 0.758.
Plugging (A 1) into (2.6) and (2.7) and using the complex Euler function for Ω < 1,
one can compute the solution for the square-shaped cylinder in a uniformly stratified
fluid of infinite extent. For brevity, we discuss only the results for wave damping
Cλ and radiated wave power Pw (see figure 12), which are the quantities directly
relevant to tidal conversion. It is worthwhile to note that, due to an unnoticed bug in
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the software which returned different quantities for
√
−1 and (−1)1/2, an error has

been made by Ermanyuk & Gavrilov (2002b) in calculations at Ω < 1. In the present
paper this error is corrected.

For Ω> 1, the wave damping Cλ and radiated power Pw coefficients are expected to
be identically null due to absence of wave emission. For Ω < 1, the solution predicts
a sudden drop of the wave damping coefficient and the non-dimensional wave power
at the frequency corresponding to the transition from supercritical to subcritical case,
at Ω =

√
2/2. The limit Cλ→ 1 at Ω→ 0 is the same as for a circular cylinder or

a vertical flat plate (see §§ 4 and 5), asserting that in the fluid of infinite extent this
quantity is defined by the height of the obstacle and does not depend on geometry.

The black empty diamonds in figure 12 are extracted from Ermanyuk & Gavrilov
(2002b) while the red circles are points obtained with the present experimental
set-up. For Ω > 1, the wave damping coefficient and the radiated power are close to
zero within the experimental accuracy. The overall agreement between Ermanyuk &
Gavrilov (2002b) and the present results at Ω < 1 is reasonably good. Both results
follow the theoretical prediction in the range 0.4 < Ω < 1. The new set of data
visualizes the singularity at Ω =

√
2/2≈ 0.7 while for the data set from Ermanyuk &

Gavrilov (2002b), the singularity is smoothed out. We believe that this effect occurs
because of a higher relative boundary layer thickness at a smaller cylinder, acting as
a ‘coating’ for the sharp-angled shape of the cross-section. Indeed, the size of the
cylinder in Ermanyuk & Gavrilov (2002b) is 2.7 times smaller than in the present
experiments. For the new set of data the wave damping coefficient exhibits increasing
departure from the theoretical prediction as Ω falls below 0.4 (see data marked by
empty red circles in figure 12a). This is related to wave reflections from the ends of
the test tank, which are more persistent at lower Ω and larger scale of the oscillating
object.
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