
J. Fluid Mech. (2018), vol. 845, pp. 203–225. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.236

203

Internal wave attractors in three-dimensional
geometries: trapping by oblique reflection

G. Pillet1, E. V. Ermanyuk2,3, L. R. M. Maas4, I. N. Sibgatullin5 and
T. Dauxois1,†

1Université de Lyon, ENS de Lyon, UCBL, CNRS,
Laboratoire de Physique, 69342 Lyon, France

2Lavrentyev Institute of Hydrodynamics, av. Lavrentyev 15, Novosibirsk 630090, Russia
3Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia

4Institute for Marine and Atmospheric Research, Utrecht University, 3584 CC Utrecht, The Netherlands
5Lomonosov Moscow State University, Moscow 119991, Russia

(Received 21 November 2017; revised 21 November 2017; accepted 8 March 2018)

We study experimentally the propagation of internal waves in two different three-
dimensional (3D) geometries, with a special emphasis on the refractive focusing due
to the 3D reflection of obliquely incident internal waves on a slope. Both studies
are initiated by ray tracing calculations to determine the appropriate experimental
parameters. First, we consider a 3D geometry, the classical set-up to get simple,
two-dimensional (2D) parallelogram-shaped attractors in which waves are forced
in a direction perpendicular to a sloping bottom. Here, however, the forcing is of
reduced extent in the along-slope, transverse direction. We show how the refractive
focusing mechanism explains the formation of attractors over the whole width of the
tank, even away from the forcing region. Direct numerical simulations confirm the
dynamics, emphasize the role of boundary conditions and reveal the phase shifting
in the transverse direction. Second, we consider a long and narrow tank having an
inclined bottom, to simply reproduce a canal. In this case, the energy is injected
in a direction parallel to the slope. Interestingly, the wave energy ends up forming
2D internal wave attractors in planes that are transverse to the initial propagation
direction. This focusing mechanism prevents indefinite transmission of most of the
internal wave energy along the canal.

Key words: geophysical and geological flows, internal waves, stratified flows

1. Introduction
Internal waves play an important role in ocean circulation. Generated by tides and

winds, they propagate through the oceans and seas, redistributing momentum and
energy before dissipating. The mechanism leading to dissipation and mixing remains
to be clearly established but at least four possible dissipative processes are regularly
invoked and still debated (Kunze & Llewellyn Smith 2004): wave–wave interactions

† Email address for correspondence: Thierry.Dauxois@ens-lyon.fr
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(a) (b) (c)

FIGURE 1. (Colour online) Schematic representation of the possible reflections that can
occur when a linear internal wave beam is propagating in two dimensions. (a) Subcritical
reflection. (b) Critical reflection. (c) Supercritical reflection. At the bouncing point, the St
Andrew’s cross is plotted in grey. The incident and reflected rays are respectively plotted
in green and red.

and transfer to small scales through triadic resonant instability (MacKinnon & Winters
2005; Alford et al. 2007; Dauxois et al. 2018), scattering by mesoscale structures
(Rainville & Pinkel 2006), or by finite-amplitude bathymetry (Peacock et al. 2009),
and reflection on sloping boundaries, especially critical ones (Eriksen 1982; Dauxois
& Young 1999; Nash et al. 2004). In this context, the studies of reflections of internal
waves on topographies are of particular interest since this dissipative mechanism may
contribute to additional mixing of the ocean. In this paper, we will be particularly
interested in three-dimensional (3D) reflection processes.

A usual simplification for the propagation of oceanic internal waves is to consider
a non-rotating and stably stratified fluid with a linear stratification. This is a
reasonable first approximation since the ratio of internal gravity wavelength over the
(internal) Rossby deformation radius is usually small enough at the relevant scales for
beamwise-propagating internal waves and also because we will consider reflections
in closed domains, neglecting propagation over long distances. In this framework,
Archimedes’ principle is quantified by the buoyancy frequency N =

√
(−g/ρ0) dρ/dz,

with g the gravitational constant, ρ0 a constant reference density and ρ(z) the
unperturbed density field. The dispersion relation of internal waves in such a fluid
is given by ω = ±N sin θ , where θ is the angle of the direction of wave energy
propagation with respect to the horizontal. One of the interesting consequences of
this anisotropic dispersion relation is the preservation of the angle of propagation of
an internal wave beam upon reflection at a rigid boundary.

The reflection on planar slopes in two dimensions has been extensively studied since
Phillips (1966) and is now well understood. Depending on the angle of propagation θ
and the angle of the slope α, reflections are divided into three categories. If θ <α, the
reflection is subcritical, and the reflected beam propagates downwards (see figure 1a).
If θ > α, the reflection is supercritical, and the reflected beam propagates upwards
(figure 1c). In the critical case θ = α, following only the linear predictions, the beam
could therefore be expected to propagate both upwards and downwards (figure 1b):
however, the amplitude of a reflected beam would be infinite. The singularity of
this peculiar critical reflection has been healed by taking into account appropriately
transience, nonlinearity and viscous effects (Dauxois & Young 1999; Tabaei, Akylas
& Lamb 2005).

Given these bouncing linear rules, one can easily compute the path of an internal
wave beam in a given geometry. These trajectories are very different from what we
are used to with acoustic or optical waves, nearly always leading to internal wave
attractors. In a given geometry, an internal wave attractor is indeed a path towards
which all internal waves of a given frequency will converge: this is therefore a limit
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cycle although only the linear dispersion relation is used. It has been tested through
ray tracing that this attracting structure exists in various geometries (Maas & Lam
1995; Maas 2005; Hazewinkel, Maas & Dalziel 2011; Brouzet et al. 2016b). Once
the geometry is given, the domain of existence of attractors corresponds to a large
region of the parameter space describing the geometry (Maas et al. 1997; Maas
2005; Brouzet et al. 2017). These arguments underline the possibility that appropriate
conditions to get wave attractors can be encountered in the ocean (Buhler & Muller
2007; Guo & Holmes-Cerfon 2016). If this is the case, wave attractors may play an
important role in the mixing. Indeed, since the internal waves of a given geometry
should converge onto one single path, the energy on this path when not hindered by
viscosity will lead to nonlinear effects and therefore to mixing events (Bourget et al.
2014; Brouzet et al. 2016a, 2017).

Internal wave attractors have been extensively studied theoretically (Maas &
Lam 1995; Ogilvie 2005; Lam & Maas 2008), numerically (Rieutord, Georgeot &
Valdettaro 2001; Grisouard, Staquet & Pairaud 2008) and experimentally (Hazewinkel
et al. 2008, 2010) in two dimensions, but no clear evidence of attractors has been
found in the ocean yet (Manders, Maas & Gerkema 2004). Internal wave attractors
in 3D geometries have been much less studied (Manders & Maas 2003; Drijfhout
& Maas 2007; Hazewinkel et al. 2011). The aim of this article is precisely to study
these attractors in 3D geometries. In this paper, we will focus only on the simplest
attractors, for which the path formed by the attractor is a quadrilateral having one
single reflection at the surface and one at the sidewall, a (1,1)-attractor. For the
sake of simplicity, in the remainder of the paper, we will not repeat that we discuss
(1,1)-attractors only and simply refer to them as ‘attractors’. To simplify further,
we will conduct our study through two geometries which slightly vary from the
two-dimensional (2D) case.

(i) The 2D attractor-like set-up. This geometry is one of the simplest to obtain 2D
attractors and has been extensively investigated. It consists of a right trapezium
prism with given height H, length L and width W, and a single sloping wall of
tunable inclination. Usually, the precise width has no influence and the geometry
is considered to be quasi-2D. In this paper, we not only take a large value of
W, to be in a fully 3D case, but also we will apply the forcing over a limited
stretch in the transverse direction only, potentially leading to 3D effects.

(ii) The canal-like set-up. A long but narrow tank is taken to mimic a canal while
a sloping bottom is used to simply represent the most essential feature of the
topography. Again here, the slope angle α with the horizontal can be tuned. The
waves are forced by the generator in the along-canal lateral direction, parallel
to the slope. Moreover, forcing always takes place over a limited stretch of the
tank’s width only.

With these two experimental set-ups, we will be able to study carefully the
robustness of internal wave attractors when a third dimension cannot be overlooked.
In § 2, we first discuss the reflection and the refractive focusing that appear in three
dimensions. In § 3, we present the results of the quasi-2D set-up, first with simple
ray tracing, and then both experimentally as well as numerically. In § 4, we introduce
the experiment with the canal-like geometry where the refractive focusing leads to
counter-intuitive and striking wave trapping in the transverse plane. Likewise, we
start with ray tracing predictions before discussing the experimental results. Finally,
in § 5, we conclude and draw some perspectives.
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(a) (b)

FIGURE 2. (Colour online) Perspective view (a) and top view (b) of the reflection of
an internal wave beam off an inclined slope z= f (x, y). The bottom, inclined at angle α
with respect to the horizontal xy-plane, is represented by the inclined grey rectangle, and
its upslope-directed gradient is given by the horizontal vector ∇f= ( fx, fy, 0). The internal
wave beam propagates along a cone whose inclination, θ , is set by the ratio of wave and
stability frequencies. The incident (in green) and reflected (in red) beams make angles
φi and φr relative to the downslope direction, respectively (beams are solid when visible
while dashed if not).

2. Propagation and focusing in three dimensions

In 3D geometries, the propagation and reflection laws are more complex than in two
dimensions. The St Andrew’s cross, generally used for describing 2D propagation, is
transformed into a double cone whose aperture is given by the angle of propagation
π/2− θ . An internal wave is then constrained to propagate on the cone. But of course,
besides θ , another angle φ is needed to describe the position of the ray on the cone
(see figure 2).

When reflection off a boundary occurs, the reflected ray must stay on the cone, but
the horizontal propagation direction of the incident ray, φi, measured relative to the
downslope direction, changes. The horizontal propagation direction of the reflected
wave ray, φr, can be calculated given that of the incident wave ray, angle φi. This
occurs according to the following law of refraction,

sin φr =
(s2
− 1) sin φi

2s cos φi + s2 + 1
, (2.1)

derived for a single reflection by Phillips (1963), and reformulated and applied
iteratively by Maas (2005). Here, s(x, y, z)= tan α/tan θ represents the local slope of
the topography, tan α, normalized by the characteristic slope, tan θ , while the bottom
is z = f (x, y), whose slope is given by tan α = [ f 2

x + f 2
y ]

1/2 and subscripts denote
differentiation. This formula is obtained by taking into account the dispersion relation
of internal waves and the impermeability condition when internal waves reflect from
bottom, surface, sidewall or slope. An example of a ‘supercritical’ 3D reflection is
sketched in figure 2.

This law of reflection gives birth to a whole class of behaviour absent in 2D
geometries. After bounces on vertical and horizontal walls, the ray may come back
on the inclined slope, but this time with a new incident angle φ′i = π+ φr measured
with respect to the upslope direction. In some cases, this new angle is smaller than
the incident one, φi, meaning that the angle of propagation will converge to 0◦ after
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numerous bounces from surface and sloping bottom. This is the refractive focusing
pointed out by Maas (2005). Given the definition of the angle φ, it means that upon
multiple surface and subsequent slope reflections the ray will eventually propagate
perpendicular to the slope considered.

Internal wave trapping at a finite distance from the emission point, in a plane
transverse to the direction into which these waves are launched, may seem paradoxical.
Upon a focusing reflection, wavelength and group speed of a reflecting internal wave
decrease. Hence, when the internal wave refracts towards the transverse direction, its
energy propagation slows down and, in the ideal fluid description, comes to a halt
when that wavelength vanishes. This does not imply, however, that the (oscillatory)
fluid motion is confined in the down-canal direction; it is merely reoriented upslope.
Moreover, when the internal wave scale decreases due to (repeated) geometric
focusing, at some point focusing is physically controlled by viscous and/or nonlinear
processes.

The ray advancing into the fluid domain, first propagating completely parallel to
the slope, when being diverted upslope, will seemingly slow down. This is because
the velocity parallel to the ray will increase in magnitude in cross-slope direction, but
not in down-canal direction. Hence, the computation of subsequent reflections will be
more and more dominated by these increasing cross-canal speeds until, when the ratio
to the down-canal velocity approaches infinity, the ray comes to a complete standstill
in the down-canal direction.

3. The two-dimensional attractor-like geometry
3.1. Ray tracing prediction

In order to have an idea of the path of the internal waves in a 3D geometry, one
can simply rely on ray tracing. In a linearly stratified fluid, internal waves propagate
along straight lines. Given the coordinates of the point from which the wave ray
is sent to the slope, and the initial values for angles (φ0, θ ), one can compute the
location of the bottom reflection and the local bottom slope, s. Then, using (2.1),
one can determine angle φr of the reflected beam. This allows computation of the
location of the next surface reflection, and subsequent horizontal propagation direction,
φ′0 = φr +π. Iterating this process several times, one obtains the path an internal ray
beam follows, as shown, for example, by Rabitti & Maas (2013, 2014). They mainly
focused on spherical and spherical shell geometries but a simple canal in a rotating
fluid has also been studied experimentally and by ray tracing (Manders & Maas 2004).
In each case, they found that, for a given range of parameters, the internal ray, thanks
to the focusing effect described in the previous section, ends up forming an attractor
which is confined to a plane and thus identical to 2D attractors.

Brouzet et al. (2016a,b) have studied 2D attractors in a trapezoidal geometry,
which are easy to set up experimentally. The tank used in these studies was 350 mm
high, 600 mm long and quite narrow, only 170 mm wide. More importantly, the wave
generator was, on purpose, almost as wide as the tank’s width. The two-dimensionality
of the attractors in such a geometry was checked carefully by Brouzet et al. (2016b).
Our first goal is thus to see what happens to this attractor in a tank that is much
wider (W = 800 mm) than the width of the forcing device (150 mm), changing it
into a genuine 3D problem. Indeed, we re-used the same generator as for the 2D
case. The slope with a tunable angle α is placed along the whole width of the tank
(as in the 2D set-up).

We performed ray tracing in this geometry. For rays sent exactly along the cross-
slope x-direction, i.e. φ0= 0◦, we recover exactly the 2D case: as expected, attractors
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FIGURE 3. (Colour online) The 2D attractor-like geometry: perspective (a) and top (b)
views. The slope is represented by the inclined blue rectangle, while the generator is
sketched by the thick vertical rectangle in the x = 0 plane, stretching from y = −70 to
y= 70. In both panels, dimensions are in mm. The successive reflections of three different
incident rays are then represented with different colours: rays sent with φ0 = 0◦ in green,
φ0 = 7◦ in red and φ0 =−5◦ in magenta. The three rays start at the same initial position,
given by y0 =W/2 and z0 =H/2. For clarity of the demonstration, we choose the set of
input values to ensure that focusing is slow and more visible in the graphic representation.
Similar calculations for the experimental set of parameters would yield faster focusing.

are created in xz-planes, with y-values identical to those of the initial rays. This is
shown in figure 3(a), in which the green ray represents a wave sent with φ0= 0◦: the
ray path sticks to a transverse plane.

Now if we change the φ0-value, meaning we send rays with a small angle with
respect to the x-axis, the red ray path in figure 3(a) shows that the trajectory is not
2D any more. The ray path is clearly 3D, but, due to the focusing effect described
in § 2, the component of the ray along the width is reduced at every bounce against
the slope and we end up with a trajectory confined to a transverse xz-plane. The final
y-values of these planes depend in a non-trivial way on the initial position of the ray
beam, but also on the initial angle φ0.

Figure 3(b) shows the tank from above so that we can clearly see if the propagation
is bounded in a xz-plane or not. By contrast, this representation does not allow us to
see that the paths in the xz-planes are attractors.

Introducing the experimental parameters in the ray tracing programme, we found
that an angular spread of only φ0 = 0◦ ± 5◦ is sufficient to get attractors created
everywhere transversely throughout the tank. Moreover, as the geometry is transversely
invariant (only the forcing is not), and the frequency given, the final attractors are all
identical, but in different transverse xz-planes.

In the experimental set-up, even if the waves are forced theoretically with φ0= 0◦, a
diffraction-like phenomenon can be expected for the angle φ0, as obtained previously
when this generator was used in a tank significantly wider than the generator
(Gostiaux et al. 2007; Bordes 2012). So we expect to see experimentally attractors
along the whole tank width, while the forcing only occurs at its centre.
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(a) (b)

FIGURE 4. (Colour online) The 2D attractor-like geometry: perspective (a) and top (b)
views of the experimental set-up. The retractable slope and the wave generator are visible.
The parameters used for our experiment are H= 320 mm, L= 570 mm, W= 800 mm and
α = 57◦.

3.2. Experiments
3.2.1. Material and methods

The tank used for this first experiment is sketched in figure 4. Its size is
1200 mm × 800 mm × 400 mm. The length, L, at the top of the tank in between
slope and wavemaker and the slope inclination α are tunable. The tank is filled with
a uniformly stratified fluid using the double-bucket technique (Oster & Yamamoto
1963) with salt used as a stratifying agent. The density profile is measured with
a conductivity probe attached to a vertical traverse mechanism. The value of the
buoyancy frequency is then evaluated from the measured density profile. The typical
value is N = 0.95± 0.05 rad s−1.

The forcing is created by the internal wave generator developed by Gostiaux et al.
(2007), studied by Mercier et al. (2010) and later improved by Bordes (2012). It
consists of a stack of 47 plates to which we can change the amplitude and phase
of oscillations, that are linked by an Archimedes’ screw. Thus, the time-dependent
vertical profile of the generator can be tuned to create different profiles. For this
experiment, we force with the first vertical mode of internal waves. The profile is
thus given by

ζ (z, t)= a sin(ωt) cos(πz/H), (3.1)

where a is the amplitude of motion of the cams and ω is the frequency of the forcing.
Since we are interested in 3D effects, we cannot use the synthetic schlieren method

(Dalziel, Hughes & Sutherland 2000) often used for internal wave measurements when
the fluid displacements are 2D to a good approximation. Consequently, here, internal
wave beams are visualized using the particle image velocimetry (PIV) technique
(Tropea, Yarin & Foss 1973). We record the displacement of particles illuminated
by a laser sheet. The particles are silver-coated spheres of size 10 µm and density
1400 kg m−3. The sedimentation velocity is found to be very low compared to the
other velocities at play: it will have no consequences. Using a cross-correlation
technique (Fincham & Delerce 2000), we can finally deduce the velocity field in
the tank from these images. The mesh of measurements is found to be sufficient to
resolve the small-scale details of the wave field.

In a second treatment, the Hilbert transform is used to reduce noise. This method,
first applied to internal waves by Mercier, Garnier & Dauxois (2008), is now widely
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used in the internal wave community. The method consists of three steps. First, a
temporal Fourier transform is performed on the signal. Second, a temporal filter is
applied. Finally, an inverse Fourier transform makes it possible to obtain the filtered
field. Generally, the filter is centred around the forcing frequency f = 2π/ω but
it can be used in the case of triadic resonance and/or wave turbulence to study
simultaneously several waves of different frequencies (Bourget et al. 2013; Brouzet
et al. 2016a). Another common use of the Hilbert transform is to filter the signal
spatially. For instance, one can separate waves propagating towards positive x-values
from waves propagating towards negative x-values. Both spatial and temporal filtering
can be simultaneously applied, as will be done in the remainder of this article.

For this experiment, a laser sheet, created above the tank, illuminates a xz-plane
along the tank. The laser sheet can be easily translated to obtain different slices
of the tank, for different y-values. A computer-controlled video AVT (Allied
Vision Technologie) Pike camera with charge-coupled device (CCD) matrix of
1382× 1034 pixels is used for video recording. The camera is located at a distance
1600 mm from the tank and operates at a constant frame rate of 2 Hz, which is
sufficient to resolve the significant frequencies of the signal (typically of the order
of 0.1 Hz) and large enough so that the particles stay within the laser sheet between
two images.

3.2.2. Experimental results
We performed experiments for the 2D attractor-like geometry with a mode-1

forcing (3.1) with a = 5 mm. For the longitudinal geometry, we have chosen the
same parameters as used by Brouzet et al. (2016a). However, the forcing applies
only on 150 mm out of 800 mm. We therefore expect to see the same attractors in
the middle of the tank (where the forcing occurs) and, according to the ray tracing
prediction, away from the forcing region as well.

Let us consider first the steady state. Once the generator is started, one waits long
enough (typically 100 periods) to reach the steady state of the attractor. We then
record the displacements of the particles in different xz-slices, from the centre of the
tank to one edge (y varying from 0 to 400 mm). Figure 5 shows the velocity field
obtained after Hilbert filtering at the forcing frequency ω.

One can see in figure 5 that, even if the forcing is only centred on a small part
of the tank, the velocity field is almost the same everywhere throughout the tank,
showing a nice attractor velocity field. We checked the presence of attractors on both
sides of the tank. Because of light absorption, the signal is better when the slice is
close to the camera; this is why we only show here the slices for positive values of y.

Figure 5 shows the existence of attractors everywhere in the tank, but does not
exhibit the appropriate mechanism for the transverse spreading. One could first argue
that attractors away from the forcing can only be due to viscous diffusion from the
centre of the tank towards the sidewalls. If so, we would see an important time
dependence of the appearance of attractors with distance from the centre of the tank.
An order-of-magnitude estimate of viscous spreading of the attractor is given by
y=
√
νt. For the viscosity of water ν ' 10−6 m2 s−1 and a distance from the centre

y= 300 mm, one obtains an estimate of the propagation time of the central velocity
field of T ' 105 s, or, approximately T = 104T0.

We hence performed a second series of measurements, focusing on the transitory
regime of the attractors in each slice to see if such a large shift is observed between
the time to reach the attractor steady state. For each slice, we started the camera
acquisition and the generator at the same time. Before analysing, we perform an
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FIGURE 5. (Colour online) Filtered norm velocity for different y-positions indicated above
each panel. As an example, for panel (e), the ray tracing prediction is plotted with a
solid black line, using the experimental parameters: L = 360 mm, W = 800 mm, H =
320 mm, α = 57◦, N = 1.14 rad s−1 and ω= 0.515 rad s−1.

empirical mode decomposition (EMD) on the signal. This method, described in Huang
et al. (1998) and Rilling & Flandrin (2009), allows one to decompose the signal in
the sum of all the important frequency contributions. In the present experiment,
since we are interested only in the transitory regime, it allows us to get rid of
high frequencies. In this experiment, strong oscillations at the forcing frequency are
indeed present. As explained in Brouzet et al. (2017), these oscillations are due to
the propagating or standing nature of the waves and are not of interest here, since
they do not modify the time scale of the transitory regime. We then looked at the
sum of the squared longitudinal velocity amplitudes, v2

x + v
2
z . Figure 6 presents its

time series for every slice. We can clearly see that the steady state is reached after
approximately the same transient time for each slice, hence invalidating the intuitive
mechanism of attractor spreading along the width of the tank by viscous diffusion.
The rapid propagation of wave energy through the tank and its relative homogeneity
in the steady state both strongly support spreading by wave propagation followed by
refractive trapping.

3.3. Numerical simulations
To have a complementary view of the above results, we have performed direct
numerical simulations. We used a well-tested spectral element approach, a version
of the Nek5000 code (Fischer 1997; Fischer & Mullen 2001). Using this code, 3D
numerical modelling of a quasi-2D laboratory set-up, described in Brouzet et al.
(2016b), showed excellent correspondence to the experiments (see also Brouzet et al.
2016a). Results of direct numerical simulations of the present problem are found
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FIGURE 6. (Colour online) Time evolution of the squared longitudinal velocity amplitude
for different transverse slices of the tank. A different colour is used for the 14 different
y-slices varying from 0 to 350 mm. (a) Perspective view. (b) Side view. The oscillations
at the forcing frequency have been removed using EMD.
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0.024
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FIGURE 7. (Colour online) Perspective views of the attractors with the contours of the
vertical velocity at t = 16 s (a) and t = 2504.5 s (b). The simulation results correspond
to the following parameters: L = 456 mm, W = 800 mm, H = 308 mm, α = 60◦, N =
0.948 rad s−1 and ω= 0.589 rad s−1. The generator, sketched by the vertical lines at the
back of the figure, had an amplitude a= 0.6 mm. The dashed lines drawn on the sides
of the domain correspond to the theoretical skeleton of the wave attractor predicted by
the ray tracing. The horizontal solid line connecting the middles of the first rays on the
opposite lateral sides shows the location of the transverse cut for which we show below
the transverse distribution of the cross-correlations and amplitudes of the wave motion.

to be similar to the experimental results. The initial stage of the transient process
of the wave field formation is depicted in figure 7(a) with the help of contours of
the vertical component of velocity. The amplitude of the wavemaker was chosen to
be sufficiently small to ensure the attractor is in the linear regime. Only half of the
domain is shown in spanwise direction and, to visualize the internal flow structure,
we have cut off the near-wall region y > 390 mm. The ratio of the wavemaker
width to the whole width of the tank is the same as in the experiments. As could
be expected, the wave perturbations propagate from the wavemaker over a wide
range of azimuthal directions. The dashed lines drawn on the sides of the domain
correspond to the theoretical skeleton of the wave attractor predicted by the ray
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FIGURE 8. (Colour online) Correlation 〈vz(0, t)vz(y, t)〉/〈vz(0, t)2〉 (solid red line) and
normalized velocity vz(y)/max(vz) (dashed blue line) as functions of the transverse
coordinate y for the same parameters as in figure 7.

tracing. The horizontal solid line connecting the middles of the first rays on the
opposite lateral sides shows the location of the transverse cut for which we show
below the transverse distribution of the cross-correlations and amplitudes of the wave
motion. Below, this line is referred to as the ‘probe line’. Figure 7(b) presents the
isosurfaces of the vertical component of velocity after 235 periods of the wavemaker
oscillations. Note that we use the same colour bar in both panels of figure 7. It is
clearly seen that the isosurfaces form a structure that is close to a 2D one. At the
same time, noticeable deviations from a purely 2D structure are visible: interestingly,
the velocity may increase in transverse direction towards the lateral sidewall.

Figure 8 shows the correlation 〈vz(0, t)vz(y, t)〉/〈vz(0, t)2〉 between the vertical
velocity at the beginning of the probe line (located at the central vertical plane y= 0,
coming through the middle of the wavemaker) and the vertical velocity at a different
transverse location y at the same line. Time averaging has been performed over
102 periods of the forcing oscillation. The value of the correlation decreases with
the transverse coordinate. The dashed line shows the transverse distribution of the
velocity amplitude vz(y)/max(vz) along the same line, normalized by the maximum
velocity at the probe line. These pictures as well as the analysis of 3D isosurfaces
reveal that the velocity amplitude has a non-monotonic dependence on the transverse
coordinate. It reaches the maximum close to the lateral wall before falling down to
zero due to the no-slip boundary condition. The behaviour of the correlation coupled
with the behaviour of the velocity amplitude allows us to conclude that there is also
a phase shift between the wave motions at different transverse locations.

To isolate the effect of the wall friction on the lateral wall, we present in figure 9
the results of similar calculations performed for a stress-free boundary condition at the
lateral wall. By comparing the results of simulations with the no-slip (figures 7 and 8)
and stress-free boundary conditions (figure 9) at the lateral wall, we note that the
latter case exhibits a more regular and smooth dependence of the calculated quantities
on the transverse coordinate: in particular, there is no localized sharp maximum of
the velocity amplitude close to the free-slip lateral wall. The shapes of the sharp
maxima observed in calculations with the no-slip condition at the lateral wall (see
figure 8) are reminiscent of the ‘cat ear’ velocity profiles calculated in Brouzet et al.
(2016b) where such features were attributed to the effect of localized recirculating
flows. Applying standard boundary layer theory as in Beckebanze et al. (2018) should
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FIGURE 9. (Colour online) Same as figure 8 with stress-free, instead of no-slip, boundary
conditions at lateral walls.

provide an elaborate description of the viscous dissipation in the interior shear layer,
as well as at the rigid boundaries. Modification of the geometry and viscosity in
calculations produce a variety of different amplitude and phase distributions, which
will be described in a separate paper.

4. The canal-like geometry
4.1. Ray tracing prediction

The second experimental set-up is of particular interest since it echoes some in situ
measurements. While internal waves have been measured close to the mouth of the
Laurentian Channel, eastern Canada, they appear to be of very low intensity (Wang,
Ingram & Mysak 1991). This is surprising as internal wave dissipation in the ocean
is known to be small, normally allowing internal waves to propagate thousands of
kilometres before vanishing (Alford 2003). Here this occurs even though internal tides
are known to be generated at the land-locked head of the Channel (Cyr, Bourgault
& Galbraith 2015). A possible explanation for this phenomenon could precisely be
the refractive focusing mechanism investigated here, especially if tidal energy could
now form attractors, as in figure 4, that are trapped on transverse planes. This is why
we will study a model geometry of this physical situation, looking for the potential
presence of these attractors.

Figure 10 presents such a set-up for which an internal ray beam path leads to an
attractor in a plane transverse to the along-slope, down-canal direction into which rays
are initially launched. A sloping bottom is inserted in a parallelepiped tank. It makes
an angle α with the horizontal. Starting from an initial point on the wall x = 0, an
internal wave beam of a given frequency ω launched with an angle φ0 = 90◦ will
reflect several times on the different walls, as shown in figure 10. At each bounce off
the inclined slope, the value of φ changes and converges to 0◦, i.e. onto a yz-plane,
transverse to the initial direction, which we call the focusing plane. In the remainder
of this paper, we will index these focusing planes by their asymptotic x-value, which
we call x∞. Moreover, as the transverse geometry of the canal has one inclined slope,
it can lead to an attractor (Maas 2005). One finds that, for a large range of angles
α, frequency ratios ω/N and ray launching positions, attractors can be created. In
nearly all these cases, the ray will eventually not propagate downstream any longer
(for exceptional ‘whispering gallery’ type waves that escape trapping, see Maas (2005)
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FIGURE 10. (Colour online) Trajectory of a single internal wave beam propagating in
the canal-like geometry filled with a linearly stratified fluid. The beam is sent downwards
(in the negative z-direction) from the plane x = 0 with φ0 = 90◦ (i.e. into the positive,
along-tank x-direction). Dimensions are in mm.

500 1000100
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0
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FIGURE 11. (Colour online) Final steady paths launched from different positions in the
x = 0 plane, represented by the different ∗ symbols. The rays are launched downwards
with φ0 = 90◦. The colour is the same for the initial point and the corresponding steady
path. Dimensions are in mm.

and Drijfhout & Maas (2007)). Consequently, one can identify a zone of propagation
of the internal wave ray, followed by a zone of trapping, and finally a zone without
any internal waves.

A careful analysis shows that, for given values of α and θ , the focusing plane
depends on the initial angle φ0 with which the ray is launched and on its initial
position (x0, y0, z0). To give an idea of the initial position dependence of x∞, figure 11
presents the different steady paths created from several initial positions, all located in
the same x= 0 transverse plane. The initial positions are represented by the ∗ symbols
while the steady paths correspond to the coloured lines. One can see that every point
leads to a different attractor, each of them lying in a different transverse plane.
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FIGURE 12. (Colour online) For every initial point (y0, z0), the x-position of the focusing
plane is plotted. The parameters for this computation are α = 23◦, θ = 32◦, H =
360 mm, L= 1000 mm and W = 410 mm. The rays are launched downwards with φ0 =

90◦. The solid black (respectively, dotted white) contour represents the region where the
plane wave (respectively, mode 1) profile is forced. The blue triangle corresponds to the
uninteresting region below the slope.

In order to have an idea of where to expect the attractors, one can compute, for a
given set of parameters (α, θ , φ), the position map of the focusing plane as a function
of y0 and z0. This map presented in figure 12 is computed for a set of parameters
used in the experiment described below. It emphasizes that, depending on the region
of forcing, attractors can be created close to or far away from the generator. Please
note already that, in the experiments, forcing of the fluid will be applied over an initial
bounded (y0, z0)-region. In doing so, one can thus expect to find attractors only in a
given region of space.

4.2. Experiments
The aim is to reproduce this refractive focusing predicted by ray tracing, using a tank
of 1200 mm × 410 mm × 400 mm. The tank is filled up to 360 mm above the flat
bottom and, due to the generator’s thickness, the slope is only 1000 mm long. We
chose the origin, x = 0, at the edge of the wavemaker. Indeed, when experimentally
studying narrow attractors, branches are not often easily distinguishable spatially.
Another constraint is having a propagation angle sufficiently different from the slope
angle, so that the first attractor branch will not be affected by viscous effects along
the slope. These experimental difficulties greatly restrict the parameter space, leaving
us few possibilities to obtain reliable data. The present set-up takes care of this issue
by considering a tank that is less wide than the previous one, shown in figure 4. The
transverse geometry is taken square-shaped, except for an additional slope of angle
α = 23◦ that is put at the bottom of the tank (see figure 13). Thus one may expect
to create approximately square-shaped attractors that are easier to observe and to
analyse.

For this geometry, two types of forcing were used.

(i) A mode 1 profile ζ (z, t) = a sin(ωt) cos(πz/H), limited to the dashed white
region in figure 12 as previously, where H is the total height of the fluid, a
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FIGURE 13. (Colour online) The canal-like geometry: perspective (a) and side (b) views
of the experimental set-up. The slope and the wave generator are visible. The parameters
used for the experiment are H = 360 mm, L= 1000 mm, W = 410 mm and α = 23◦.

the amplitude of motion of the cams and ω the frequency of the forcing. This
modal type of forcing can be interpreted as sending of internal wave beams in
both upward as well as downward directions. Corresponding results are shown in
figures 14 and 15.

(ii) A plane-wave profile ζ (z, t)= a sin(ωt+ 2πz/λ), limited to the black rectangular
region in figure 12 in which the wavelength λ and the numbers of wavelengths
can be chosen. We choose to force the fluid with only one wavelength. The
upward phase propagation, adopted here, implies that an inclined, downward-
directed internal wave beam is generated. Corresponding results are shown in
figure 16.

For this experiment, a laser sheet is created above the tank that illuminates a
transverse yz-section of the tank. The laser sheet can be translated to obtain different
vertical slices of the tank. As before, we use the PIV method to obtain the velocity
field. As previously, a Hilbert filtering is eventually used to filter the velocity field
and to get rid of the noise.

In order to quantify the presence of the attractors and then conclude on the
focusing effect predicted, we first force the fluid with a mode 1 with a = 0.5 mm,
the generator being put at the middle of the tank width. As we can see in figure 12,
with this forcing applied to the region inside the dashed white rectangle, a large
band of 150 mm × 300 mm in (y0, z0) is excited. One can thus expect that such a
forcing will create attractors approximately everywhere in the tank. Experimentally,
we do find attractor-like velocity fields over the whole length of the tank. Figure 14
presents an example of the velocity field obtained for a slice where the amplitude
is large: one clearly sees an attractor. The ray tracing prediction, calculated for the
same parameters, has been superimposed on the experimental image, emphasizing the
very good agreement.

To be quantitative and exhibit an experimental proof of the focusing of the energy in
a transverse plane, we look at the wave propagation angles precisely in this transverse
plane. Indeed, PIV in a transverse laser sheet only measures the projection of the real
velocity field in the laser sheet since the velocity perpendicular to the sheet (here, vx,
the velocity along x) is not observed. If vx is small compared to the velocities in the
other directions, then the propagation angle should follow the dispersion relation of
internal waves ω=±N sin θ .

In order to obtain the angles of propagation of the projected velocity field, we
proceed in several steps that were already proposed in Brouzet et al. (2016a).
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FIGURE 14. (Colour online) Filtered velocity field amplitude (v2
y + v

2
z )

1/2 at the slice
x = 700 mm. The ray tracing prediction is superimposed. The experimental parameters
are ω= 0.51 rad s−1, N = 1.0 rad s−1 and those of figure 13.

0

1

2

90–90–180 0 180

FIGURE 15. (Colour online) Angular repartition of the energy density E(θ⊥) for the
filtered velocity field of the figure 14. The four black vertical lines represent the four
θ values given by the dispersion relation determined by the forcing frequency.

First, we filter the velocity field in ω using the Hilbert transform. Second, we
perform the Fourier transform on vy and vz, obtaining then the energy as a function
of ky and kz, two components of the wavevectors. We then interpolate E(ky, kz) as
a function of the perpendicular wavenumber k⊥ = (k2

y + k2
z )

1/2 and of the projected
angle of propagation θ⊥ = arcsin(kz/k⊥) to obtain E(k⊥, θ⊥). Integrating finally over
all values of k⊥, we get the energy density E(θ⊥).

When applying this treatment to the velocity field shown in figure 14, we obtain the
E(θ) repartition shown in figure 15. The four black vertical lines represent the four
θ -values compatible with the dispersion relation considering the experimental forcing
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FIGURE 16. (Colour online) Filtered velocity amplitude (v2
y + v

2
z )

1/2 for different slices of
the tank. The experimental parameters are ω= 0.45 rad s−1, N = 0.89 rad s−1 and those
of figure 13. For x= 250 mm, the ray tracing prediction is superimposed.

frequency ω. One can see that the four peaks, representing the four branches of the
attractor, fall on the four peaks theoretically expected. So, as predicted by ray tracing,
the focusing effect is taking place here.

To highlight the effect of energy trapping, due to this focusing enhanced in the
ray tracing calculations, we now rely on a forcing with a plane wave. The goal is
to create an attractor only in a given region of the canal to see, first, propagating
energy near the generator, then attractors in the middle of the tank, and finally very
low wave propagation beyond, due to the trapping of the waves. We choose a rather
large wavelength, λ=75 mm, to limit the damping, but only one wavelength, to create
attractors in a limited region only. The forcing amplitude is a= 0.5 mm. The region
of the forcing is shown in figure 12 by the region inside the black solid contour.

Figure 16 shows nicely the successful experiment. At the beginning (x =
50–100 mm), one can see a shapeless velocity field; further downstream (x =
150–300 mm), the attractor is created and especially visible in the two most energetic
branches; beyond the focusing zone, the energy is very low. Although the ray tracing
predicted the attractor region around x= 400 mm, it appears to be located closer to
x = 250 mm. The difference can be explained by the strong sensitivity of figure 12
on the parameters of the experiment.

Similarly to what has been performed for the reference case presented in figure 15,
to get a more quantitative picture and show the energy focusing in a small region
of the canal, it is useful to plot the position of the peaks of E(θ⊥) obtained for
different slices. In this case, the procedure needs some care. For the first slices, waves
propagate mainly through the observation planes. The velocity field produced by PIV
is therefore not representative of the real 3D velocity field, hence the peaks are not
clearly defined. One first step is to filter the velocity field in the k⊥ space. Using the
Hilbert method again, one can filter the velocity field for (ky, kz > 0), (kz < 0 < ky),
(ky < 0 < kz) and (ky, kz < 0), giving separately the four branches of the attractor.
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0
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90–90–180 0 180 90–90–180 0 180 90–90–180 0 180

(a) (b) (c)

FIGURE 17. (Colour online) Angular repartition of energy for branch 3 corresponding to
(ky > 0, kz > 0) for three slices: x= 50 mm (a), x= 250 mm (b) and x= 450 mm (c).

This procedure has proven its utility for the four branches of the St Andrew’s cross
(Mercier et al. 2008) or for 2D attractors (Brouzet et al. 2017). For each branch, one
can moreover plot the angular repartition of the energy.

We thus study the positions of the peaks and their shape along the longitudinal
x-direction. For instance, figure 17 presents the angular repartition of the energy for
ky > 0 and kz > 0, i.e. in branch 3, counting anticlockwise from the attractor’s slope
reflection, three different slices corresponding to three different x-positions. At the
beginning and therefore close to the injection (x= 50 mm, figure 17a), the energy is
not focused on a single peak, and not even centred on the expected angle, represented
by the solid vertical line: the wave is still propagating transversely to the observation
slice. Further downstream in the canal (x= 250 mm, figure 17b), the energy is almost
centred along one single peak and its position corresponds to the angle given by
the dispersion relation: focusing has occurred and the waves are almost trapped in
the observation slice. Even further downstream (x= 450 mm, figure 17c), the waves
are still almost in the transverse plane, but the energy has significantly decreased, as
the trapping occurred upstream. Of course, damping also plays a role to explain this
decrease. That is why, to emphasize the focusing, one may track the position of each
of the four peaks, for all slices. However, as emphasized by the previous example, the
peak position is not always the relevant quantity. The ratio of the peak amplitude to
the total transverse slice energy

R=
max(E(θ⊥))∫

slice
(v2

y + v
2
z ) dy dz

(4.1)

is a more appropriate indicator. If this quantity is relatively large, it indicates that
the energy is well focused around the main peak and therefore looking at the peak
position makes sense. On the contrary, if this quantity is low, one cannot clearly define
a single direction of propagation in this region of the k-space and at this slice. The
ratio (4.1) can be calculated for all four branches of the attractor, but we chose to
focus only on the two most energetic ones, obtained by filtering k⊥ for branch 2
(ky, kz < 0) and for branch 1 (kz < 0< ky). Figure 18 presents the value of R for these
two branches, for all slices.

Taking the most energetic branch (figure 18b), one can define a zone of confidence
by the region for which R > max(R)/2. This region, emphasized with the vertical
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FIGURE 18. (Colour online) Ratio R of the peak amplitude divided by the total energy of
a slice. (a,b) Correspond to the two most energetic branches of the attractor, branch 2 (a)
and branch 1 (b). The dashed lines represent the zone where R>max(R)/2 for (b).
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FIGURE 19. (Colour online) Peak position for all slices, for the two most energetic
branches. The vertical dashed lines delimit the region in which the energy is significantly
focused on a single θ -value, so where looking at the peak position makes sense. The
horizontal black line shows the expected value of the propagation angle.

dashed lines in figure 18, is approximately located between x = 130 mm and x =
320 mm.

This quantity is not a proof of the focusing in itself but gives a good indication
at which x-position along the canal it is relevant to study the peak positions in the
(E, θ) diagram. For these two branches, one can rely on the E(θ⊥) peak position
values if the slice is taken between the dashed lines. In this area, one can expect
a good estimate of the transverse angle of propagation θ⊥. In figure 19, the peak
position is plotted for all the slices, for the two branches. We add moreover in each
plot a horizontal line representing the expected propagation angle and two vertical
dotted lines to show the confidence zone. For x-values in this zone, one can see
that the propagation angles correspond to the expected ones, confirming that, in these
slices, the propagation is almost totally transverse: trapping occurred because of the
focusing effect.

The ratio R combined with the peak position for many yz-slices allows us to
conclude that there is indeed a region between approximately x = 150 mm and
x = 300 mm where propagation of most of the energy is totally transverse. As
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predicted by ray tracing, the refractive focusing mechanism is now experimentally
confirmed.

5. Conclusion
We studied experimentally two simple 3D geometries. The first one is slightly

different from a classical 2D study case for (1,1)-attractors. The difference lays in
the forcing, which is non-uniform, since we are forcing only over a 150 mm wide
lateral interval in a 800 mm wide tank. The ray tracing in this geometry shows
that, if the rays are sent with a small angle with respect to the bottom-normal
direction, they spread everywhere throughout the tank, before ending up in a plane
oriented normal to the sloping bottom, always forming attractors. This prediction
was then confirmed experimentally. We showed first that the attractor velocity field
is nearly identical everywhere in the tank even though forcing only occurs in the
middle of the tank. In a subsequent experiment, we showed that attractors are created
approximately everywhere almost simultaneously. Moreover, the energy was roughly
uniformly spread throughout the tank, giving two strong arguments in favour of the
proposed mechanism of generation by refractive trapping. Complementary numerical
experiments also confirmed the results, revealed a phase shifting in the transverse
direction and provided in addition a very interesting confirmation of the role of
boundary conditions. In particular, they emphasize the stronger localized response
near lateral walls when using a no-slip instead of stress-free boundary condition.

In the second experiment, the geometry of the tank is closer to a canal having
a sloping bottom. The forcing is applied in the along-slope, longitudinal direction
of the canal. The ray tracing and the experimental data showed unambiguously that
the propagation ends up transversely to the canal. Experimentally, we proved the
refractive focusing by looking at the angular repartition of the energy. We showed,
indeed, that, once focused, waves propagate at the angles expected by the dispersion
relation. We also showed that this focusing can significantly reduce the energy at
the end of the canal, since waves are rapidly trapped in transverse planes. This may
provide a tentative explanation for in situ measurements of the Laurentian Channel,
which show measurements of unexpectedly low internal wave energy far away from
the channel head, as yet unexplained (Wang et al. 1991). Subsequent observations,
along one side of this Channel, do show evidence of internal tides. These appear to
be forced at the nearby located transverse sill at the head of the Laurentian Channel,
and while initially expected to propagate down-channel, they appear to be responsible
for observed transverse internal tidal motions (Cyr et al. 2015), such as expected
from the refractive trapping mechanism.

This work shows the importance of the refractive focusing effect when considering
3D reflection of internal gravity waves. In both cases studied in this paper, the
structure eventually created in the transverse planes is a 2D-like attractor. The
parameter space diagrams suggest that attractors are indeed generic for these
geometries. It is likely that there is a direct link between the focusing and the
existence of attractors. Work along this line is in progress.
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