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We describe the dynamics of breather modes in DNA in terms of a recent lattice model with an additional interaction in order
to take into account the helicoidal structure of the molecule. It is shown that, despite its simplicity, this model exhibits breatherlike
modes which can match experimentally observed bubbles propagating along the helix. Numerical simulations of their propagation
show these excitations to be long-lived and suggest that they are physically relevant for DNA.

1. Introduction

Biological macromolecules undergo a complex dy-
namics and the knowledge of their motions provides
insight into biological phenomena [ 1]. Recently, at-
tention has been focused on the dynamics of large-
amplitude localized excitations in DNA [2-6], in
which the double helix fluctuates between an open
state and its equilibrium structure. These oscillatory
states, also called breathing modes [7] or fluctua-
tional openings, are expected to be the precursor
states for the local denaturation observed during
DNA transcription or thermal denaturation. In these
studies, the molecule is modeled by two parallel
chains of nucleotides, linked by nearest-neighbor
harmonic interactions along the chains and the
strands are coupled to each other by Morse poten-
tials which represent the bonding inside one base pair.
Such a model does not include the helical geometry
of the molecule.

But one of the consequences of the helical struc-
ture is that nucleotides which are far apart in the one-
dimensional model can be close enough in the three-
dimensional structure to be connected by hydrogen-
bonded water filaments. These strong water fila-
ments have been suggested by indirect experiments
[8] and results of Monte Carlo simulations [9]. They
connect a phosphate group P,, at one side of the ma-

jor groove with an another phosphate group P,,. , at
the opposite side. Therefore, in order to take into ac-
count the presence of this dynamically stable fila-
ment, the model must include a coupling between
the nth nucleotide on one strand and the (n+#4)th
one on the other (h=4 according to the experi-
ments). Such an extension was carried out by Gaeta
[10], but he considered only its consequences on the
dispersion curves of the small-amplitude excitations
of the molecule. We consider here the nonlinear ex-
citations in the extended model and show how the
additional coupling increases the ability of the mol-
ecule to bear rather broad and sufficiently large-am-
plitude breatherlike modes, which propagate easily
along the molecule.

2. Model

In our model we consider a simplified geometry
for the DNA chain, in which we have neglected the
asymmetry of the molecule and we represent each
strand by a set of point masses which correspond to
the nucleotides. The characteristics of the model are
the following:

(i) Like Peyrard and Bishop {2], we only take into
account transversal motions. The displacement from
equilibrium of the nth nucleotide is denoted u,, (v,)
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for the chain C, (C,). The longitudinal displace-
ments are not considered because their typical am-
plitudes are significantly smaller than the ampli-
tudes of the transversal ones [11].

(ii) Two neighboring nucleotides of the same
strand are connected by a harmonic potential be-
cause we assume that the displacements due to the
bubbles change only gradually from one site to the
next. On the other hand, the bonds connecting the
two bases belonging to different strands are ex-
tremely stretched when the double helix opens lo-
cally: their nonlinearity must not be ignored. We use
a Morse potential to represent not only the hydrogen
bonds but the repulsive interactions of the phos-
phate and the surrounding solvent action as well.

(ii1) Finally, we add to the model introduced by
Peyrard and Bishop, a harmonic coupling which takes
account of the helical geometry discussed above. It
connects the nth mass on the chain C, to both the
(n+h)th and (n—h)th masses on chain C,.

Therefore the Hamiltonian is written as

H= Y (3m(u;+07) + k[ (u,—u,-1)?

+(v,,—vn_,)z]+D{exp[—a(u,,—v,,)]—1}2
+%K[(un_'vn+h)2+(un_vn—h)zl)’ (1)

where the four terms are respectively the kinetic en-
ergy of the transverse vibrations, the potential en-
ergy of the longitudinal, transverse (analog to a sub-
strate potential) and helicoidal connections. Here &
(K) is the harmonic constant of the longitudinal
(helicoidal ) spring, m the nucleotide mass and D (a)
the depth (width) of the Morse potential.

The dynamical equations deriving from this Ham-
iltonian are therefore

M, =k(Upyy +thy_ | —20,) KV p+0,_y —2u,)
+2aD{exp[ —a(u,—-v,)]-1}
xexp[—a(u,—v,)], (2)

M, =Kk(Vpyy +0,_y —20,) +K(Upip tthy_p—20,)
—2aD{exp[—a(u,—v,)]1 -1}
xexp[—a(u,—v,)]. (3)

The motions of the two strands can be described in
terms of the variables x,= (u,+v,) /\/5 and y,=
(u,—v,) /\/5 which represent the in-phase and out-
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of-phase motions respectively. We have then
mx, =k(X, 1 +Xp1 —2X,)
+K(Xnen +Xu_p—2X,) , (4)
MPp =k (Vnr1t ¥ Vnot =2V0) =K(Vnin +Yu_n +2y,)
+2./2 aD[exp(—a\/2 y,) 1]
Xexp(—ay/2y,) . (5)

The two equations decouple exactly. Eq. (4) is a dis-
crete linear equation with the usual plane wave so-
lutions. On the other hand, eq. (5) contains an extra
nonlinear term. If one performs an expansion of the
Morse potential, keeping only linear terms in eq. (5),
we obtain linearized equations whose solutions can
easily be obtained assuming they have the form of
plane waves with a wave vector ¢ and a frequency w.
We find two dispersion relations, corresponding to
an acoustical (lim,,, .ow,=0) and an optical branch
(lim g, _ow,+#0) given explicitly by

w?=(4/m)[ksin®(ql/2)+Ksin?(ghi/2)], (6)
wl=(4/m)[a*D+ksin?(ql/2)
+Kcos?(ghl/2)], (7)

where / is the distance between adjacent nucleotides
on the same strand. In the limit K=0, these disper-
sion relations tend to the corresponding ones [6] of
the original model without helical coupling, but we
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Fig. 1. Acoustical and optical frequency (in ps~') versus the
normalized wave vector, inside the first Brillouin zone. The
dashed line corresponds to the model introduced by Peyrard and
Bishop, the solid line to our helicoidal model (see the parameter
values in the text).
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can notice that the introduction of the new coupling
affects the spectrum, by increasing the frequencies
and introducing oscillations (fig. 1) in agreement
with Gaeta’s results [10].

3. Breather in the semi-discrete approximation

Let us focus our attention on the nonlinear equa-
tion (5), which includes the only degree of freedom
interesting for local denaturation: the stretching y,
between two nucleotides of different strands.

We are interested in collective oscillations which
are large enough 1o be strongly anharmonic, but still
much smaller than the motions which result in per-
manently open states; where the nucleotides reach
the plateau of the Morse potential. In this hypoth-
esis, the atoms oscillate near the bottom of the po-
tential well, so that we assume y=¢¢ (where e<< 1)
and expand the substrate potential to fourth order
terms in €¢. We obtain

V(y)=Dlexp(—a/2y)—1)?
=2Da’e*¢* (1 —a/2 ep+1a%e* 9> ) +O0((ep)?) ,
and the equation of motion is

.k
bo=—

(¢n+l +¢n—l _2¢n)

K
- (¢n+h +¢n—h +2¢n)
m

— (9, +adiet+ fore?) (8)

by setting w2 =4a*D/m, a=—3a//2 and f= a2

According to the experimental results, the prob-
lem implies two times-scales:

(1) the first one corresponds to the vibration of
the particle around its equilibrium position;

(i1) the second, much larger one, is relative to the
propagation of a collective coherent structure along
the chain.

So we will use the reductive perturbation method
in which we expand in the small parameter € and,
using 6,=gnl—wt (where w is the optical frequency
w, of the linear approximation), we substitute

0.(t)=¢€[F,(enl, €t) exp(if,) +c.c.]
+e2[Fy(enl, et)+ F,(enl, et) exp(2i6,) +c.c.]
+0(€) 9
392
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in (8) by using the semi-discrete approximation [12]
(the complete continuum limit would be too restric-
tive for DNA, where discreteness effects may be im-
portant ). Indeed, as we limit ourselves to excitations
with large enough width, we can determine the en-
velope in the continuum limit, as function of the slow
variables Z=¢z and T=et, while the fast oscillations
of the quasiharmonic carrier, inside the envelope, are
treated exactly. Equating the coefficients of ¢ for each
harmonic, we get Fy=u|F,|? and F,=0F%, and fi-
nally obtain the nonlinear Schrédinger (NLS) equa-
tion for the envelope function F,

OF, _9°F,
o TP

+Q|F\|*°F, =0, (10)

where we have made the transformation t=¢7T and
S=Z-V,T, with the linear group velocity

V,=dw/dg=I[ksin(ql) —Khsin(ghl) ]/ mw,
the dispersion coefficient
P={[*[kcos(gl)—Kh?cos(ghl)1/m—-V2} /2w
and the nonlinear one
O=—-wi2a(u+d)+38]1/2w .

We will briefly discuss the stability of the analytic
solutions of the NLS, which depends on the signs of
PQ. However, to simplify this study, we expand these
quantities to first order terms in ¢ (a numerical study
shows that the results of the stability discussion are
almost unaffected by this expansion), since in the
next section we limit ourselves to large-width bub-
bles, i.e. g 1.

In this limit, P has the sign of k—Kh? and Q of
1 —{K/a’D. Therefore the solutions change quali-
tatively, depending on the value of K. PQ is negative
for k/h?< K< 8aD; in this case, the solution of (10)
is a finite-amplitude plane wave with a dip near
S—u.tx0, called a dark-soliton [13] (or an enve-
lope hole), which does not correspond to the small
amplitude limit of breather modes. For 0< K< k/h?
(this case includes the usual model without helicoi-
dal coupling) and 842D <K, PQ is positive; we have
plane wave solutions, unstable because of modula-
tional (or Benjamin-Feir) instability, and a local-
ised envelope solution, with a vanishing amplitude
at | z| —oo; such a solution has the appropriate shape
to represent breathing modes in DNA.

Therefore, the solution of (10) is then [14]
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Fi (S, 1)=A4 sech(Li (S—ue'r))

A
Xexp(lﬁ(S-—ucr)), (11)

with u. and #, the velocities of the envelope and car-
rier waves, the amplitude A=,/ (u2-2u.u.)/2PQ
and the width L.=2P/./u?—2u.u.. The envelope
soliton, solution of (8), is a plane wave with a fre-
quency corrected for the nonlinearity, an amplitude
modulated by a sech-type envelope modified by the

second harmonic and the non-oscillating compo-
nents. It reads

ya(t)=2eA sech[e(nl-V_t)/L.]
X (cos(Onl—Qt)+ed sech[e(nl—V, 1) /L.]

X{3u+dcos[2(Oni—-Qt)]1})+0(€%), (12)
with V.=V, +eu,, O=qg+eu./2P and Q=w+
(Vet+uce)eu /2P,

When K <k/h?, we obtain a very narrow pulse, al-
most identical to those found in the model without
helicoidal interactions [6] (because K approaches
0). On the other hand, when K> £42D, the solution
is much broader and has a larger amplitude so that
it could provide a better representation of the fluc-
tuational openings of DNA. We have investigated its
stability numerically.

4, Numerical results

The lifetime of the solutions determined above is
an important parameter, because only long-lived ex-
citations can be detected experimentally. First, we
discuss briefly the numerical technique, and then we
compare the numerical and theoretical results.

Basically, we perform the simulation by using a
continuum breather as an initial condition in the dis-
crete lattice, with the complete Morse potential.
Then, we simulate the ensuing propagating of the
pulse, solving the Newtonian equations of motion
with a fourth order Runge-Kutta method. The ti-
mestep At is chosen so that the total energy of the
system is conserved to a relative accuracy better than
10-3,

The question of the choice of parameters for this

PHYSICS LETTERS A

28 October 1991

model is still a controversial topic, as shown by the
debate over these values in the literature [15]. We
have chosen a dissociation energy D=0.1 eV, a=2
A-"', coupling constants k=1.5 eV/A? and K=0.5
eV/A2 a distance between base pairs /=3.4 A and
a mass of 300 m.u. for each nucleotide. To generate
the bubbles, we choose a small value for the wave
vector (g=0.01 A~') and therefore the wavelength
of the carrier wave is in the range of the envelope
width: then the solution is similar to a local opening
which oscillates.

As long as the amplitude remains in the region
where the Taylor development is justified (typically
where y is lower than the Morse potential inflection
point ), our approximations are valid so that the so-
lution can be expected to be stable. In order to de-
scribe the large-amplitude fluctuational openings ob-
served in DNA, we must however consider initial
conditions with a larger amplitude.

Fig. 2 shows the motion of a breather with an ini-
tial amplitude of 1 A and a half-width of 18 nucleo-
tides. We can see that, when the motion begins, the
amplitude adapts to the real substrate potential. The
figure exhibits an amplitude modulation not ex-
plained by the calculations performed in the limit of
small displacements, i.e. at the bottom of the Morse

[u-v] (4)

-1 TR ST S T S T W SN SR R N T N

0 200 400 600
TIME (ps)

Fig. 2. u—v versus time for the center of the moving breather,
followed in his motion. The figure contains about 1000 oscilla-
tions of the breather and shows that its amplitude is stable over
a very long time (€=0.007, u.=10*A/ps and u,=0A/ps). The
asymmetry about the #—»=0 line is simply a consequence of the
asymmetrical potential.
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well. Fig. 3 shows these excitations to be very long-
lived, although some radiation is emitted by the
breather. In spite of this radiation, it should be no-
ticed that the decrease in amplitude is only very weak.

In order to analyse the emitted waves, we plot in
fig. 4 the amplitude of the stretching at a distance of

11 4

/

n=1

n=1000

Fig. 3. Propagation of the breather along the chain (only 1000
nucleotides are represented ). The period of the breathing oscil-
lation is 0.56 ps and the transverse stretchings are shown every
250 oscillations, when the position of the breather center is at its
maximum. Note the asymmetry of the backward and forward ra-
diation patterns.
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Fig. 4. u—vversus time for a particle at a distance of 100 particles
away from the center of the breather. Note that the amplitude is
always significantly smaller than the oscillation amplitude of the
breather center.
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100 particles away from the center of the breather.
We can see, after the first burst due to the adapta-
tion, that the radiative rate decreases, and finally
corresponds to a permanent emission of resonant
phonons, responsible for the instability of the
breather. Indeed, a temporal Fourier transform of
the same simulation data, started at 1~ 400 ps, shows
that the frequency of the breathing osciilation
wp=11.20ps~" is about 1% higher than the analyt-
ical value; the frequency of the radiated phonons is
wp=10.97 ps—', which coincides with w within 0.2%
and attests the coupling mechanism of the breath-
erlike motion to phonon radiation.

The position of the frequency at the bottom of the
dispersion relation (V,~0) explains the slow speed
of the radiation packets, compared to the speed of
the burst due to adaptation. Besides, the propagation
speed of the breather V,=3.7 A/ps, is about 20% less
than the theoretical value, because of the discrete-
ness effects which usually tend to slow down the
motion.

5. Conclusion

In this Letter, our primary aim was to construct a
new extended model for the coherent dynamics of
bubbles in DNA. We considered, on the one hand,
first-neighbor harmonic longitudinal and nonlinear
transverse interaction and, on the other hand, an
harmonic helicoidal coupling, due to transgroove hy-
drogen-bonded water filaments. Then envelope so-
litons, solutions of the NLS equation, were obtained
using a perturbation approach and simulation re-
sults were used to show the coupling mechanism be-
tween the motion of the breather and phonon radia-
tion. Note that the addition of the helicoidal term,
introducing modifications in P and @, has created a
special zone without breather modes. We emphasize
that this model can have large-amplitude broad os-
cillations which correspond better to the fluctua-
tional openings of DNA, whereas the previous model
with similar parameters cannot.

Finally let us add some remarks. It is known that
during the local denaturation, the distance between
two nucleotides (in the same strand) undergoes
variation [16]. Our model, which includes only
transverse motions, cannot take it into account;
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however, we can allow the constant K to become a
decreasing function of the stretch degree of freedom
y. Therefore, with the same method, we can evaluate
the upper limit, defining the stability zone of the
breather (Kj;,), which has increased, and it is easy
to verify that limg_ x,,, 4=0c0, whereas the width of
the opening L, is invariant. This seems able to give
an accurate mechanism for the formation of dena-
turation bubbles with a very large amplitude.

Nevertheless, it is obvious that before obtaining a
suitable description of DNA, we have to take into
account the local asymmetry of the two helices, as
well as the second principal source of nonlinearity
[17] which appears as DNA chains unwind: the bi-
stability of the sugar ring, which allows sugar puck-
ering modes [16].
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