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Internal gravity waves contribute to fluid mixing and energy transport, not only in
oceans but also in the atmosphere and in astrophysical bodies. An efficient way to
transfer energy from large scale to smaller scale is the parametric subharmonic in-
stability. We provide here the first experimental measurement of the growth rate of
this instability. We make careful and quantitative comparisons with theoretical pre-
dictions for propagating vertical modes in laboratory experiments. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4706183]

Internal gravity waves result from the balance of inertia and buoyancy forces in a density
stratified fluid. Such waves have received a great deal of attention recently because of their relevance
and ubiquity in different physical situations: they are believed to be of primary importance as they
affect ocean mixing and energy transport.1 Although internal gravity waves do not play the dominant
role in the evolution of weather and climate, their influence is non-negligible in the dynamics of
the atmosphere.2 From a fundamental point of view, these waves are also particularly intriguing. A
striking consequence of stratification is an anisotropic dispersion relation relating the frequency to
the direction of propagation of the wave and not to the wavelength. This property is also encountered
for inertial waves (in presence of rotation) or plasma waves (in presence of a magnetic field). This has
unexpected and interesting consequences in the propagation, reflection,3 or transmission properties
of these waves.4

Internal waves are known to be inherently unstable due to parametric subharmonic instability
(PSI).5 PSI is a type of resonant triad interaction where nonlinear terms in the equations of motion
allow for efficient transfer of energy from large to small length scales where it can be dissipated.
The terminology “parametric subharmonic” is used because, for inviscid fluids, PSI transfers energy
from a primary wave to two recipient waves of half the frequency. As viscosity effects set in, the
frequencies of the recipient waves diverge from half the frequency of the primary wave. In previous
laboratory experiments, PSI has been qualitatively observed by driving low-order standing modes
with plungers on the sides of the container,6 with an oscillating paddle7, 8 or relying on the parametric
forcing of the tank.9 For large amplitude forcing, “irregularities” or “traumata” were observed, which
led to mixing and overturning. In Ref. 8, the critical amplitude of the instability has been measured.
Quantitative measurements of the growth rate of the instability have never been reported.

We present here experiments performed with a wave generator, which produces sinusoidal
vertical modes propagating along a rectangular tank. We measured the growth rate of the instability.
This quantity is of paramount importance to single out the major mechanism in dissipation processes,
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a recently highly debated issue.1, 10, 11 We first briefly outline theoretical aspects of this instability,
after which the experimental configuration is described. Then we present our experimental results
and compare some of them with theoretical predictions.

Internal waves are characterized by the buoyancy frequency, N =
√

(−g/ρ̄0)(dρ0/dz), in which
g is the acceleration of gravity, ρ̄0 is the characteristic fluid density, and (dρ0/dz) is the density gradient
in the vertical direction z. At large Prandtl number, the 2D Boussinesq equations of motion can be
written as

∂2∇2ψ

∂t2
+ N 2 ∂2ψ

∂x2
= ∂

∂t
J (ψ,∇2ψ) − g

ρ0

∂

∂x
J (ρ̃,ψ) + ν∇4ψt , (1)

where ρ̃ = ρ − ρ0 is the perturbation density field, ψ is the stream function, J is the Jacobian
operator, and ν is the viscosity. Seeking wave solutions with wave number −→k = (k, m), Eq. (1)
leads to the inviscid linear dispersion relation for frequency ω,

ω2 = N 2 k2

k2 + m2
. (2)

For small amplitudes, it can be assumed that several waves concurrently exist simply as a linear
superposition. In the case of a resonant triad interaction, where three waves satisfy the spatial
resonance condition

−→k0 = −→k1 + −→k2 , (3)

and the temporal resonance condition

ω0 = ω1 + ω2 , (4)

the nonlinear terms of Eq. (1) act as forcing terms transferring energy between the three waves.
Each wave must satisfy the dispersion relation (2). A finite amplitude, large length scale, high
frequency wave (−→k0 ,ω0) can transfer energy to produce two secondary waves of smaller length
scales and lower frequencies, (−→k1 ,ω1) and (−→k2 ,ω2). The instability results from a competition
between nonlinear effects and viscous dissipation. The growth is exponential if the amplitude of the
secondary waves is initially small compared to the amplitude of the primary wave.12, 13 In this case,
the growth rate is equal to

λ = −1
2

(T1 + T2) +
[

1
4

(T1 − T2)2 + I1 I2ψ
2
0

]1/2

, (5)

where ψ0 is the amplitude of the stream function of the primary wave, I1 and I2 are the interaction
coefficients

Ii = kpmq − kqm p

2ωiκ
2
i

[
ωi (κ2

p − κ2
q ) + N 2ki

(
kp

ωp
− kq

ωq

)]
, (6)

and i, p, q = 0, 1, or 2 while Ti = νκ2
i /2 is the viscous damping factor of the wave i and

κ2 = k2 + m2.
A tank, 160 cm long and 17 cm wide, is filled with linearly stratified salt water with constant

buoyancy frequency N using the standard double bucket method. A monochromatic vertical mode-1
wave is generated using the wave generator employed in previous experiments.14, 15 The generator is
composed of 50 plates moving horizontally to impose the horizontal velocity component of a mode-
1, i.e., u(x = 0, z, t) = −aω0cos (πz/H)cos (ω0t), H being the water depth, ω0 being the excitation
frequency, and a being the amplitude of the oscillation of the plates. The motion of the fluid is
captured by the synthetic schlieren technique using a dotted image behind the tank.16 A camera is
used to acquire images of this background at 1.875 frames/s. The CIVx algorithm17 computes the
cross correlation between the real-time and the t = 0 background images, giving the variation of
the horizontal, ρ̃x (x, z, t) = ∂x (ρ(x, z, t) − ρ0(z)), and vertical, ρ̃z(x, z, t) = ∂z(ρ(x, z, t) − ρ0(z)),
density gradients.

Snapshots of an experimental horizontal density gradient field at different times for a particular
experiment are presented in Fig. 1. At early times, a pure vertical mode-1 wave can be seen
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FIG. 1. Snapshots of the horizontal density gradient (in kg m−4) obtained at t = 20T, t = 30T, and t = 40T with the parameters
a = 0.5 cm, ω0 = 0.95N, and N = 0.822 rad s−1. On the left-hand panel the direction of the group velocity, %vg , is indicated.
After 20T, the primary wave has only reached a steady state in the first 20 cm from the generator (see Fig. 4).
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FIG. 2. Real part of the Hilbert transform of ρ̃x at t = 40T (see Fig. 1 (right)) presented after filtering at ω0 = 0.95N (left),
ω1 = 0.38N (center), and ω2 = 0.57N (right). Note that the shade scale (color scale) is the same as in Fig. 1.

propagating to the right away from the wave generator located at x = 0: this is the primary wave.
After several frequency periods T (typically 30), this wave is destabilized and two secondary waves
appear, with different frequencies and wave numbers from the primary wave. To see these waves
more clearly, the horizontal density gradient at later times is filtered at the frequency of the primary
wave ω0 and at the frequencies of the two secondary waves ω1 and ω2. As described below, the
frequencies ω1 and ω2 were determined from a power spectrum. The result is shown in Fig. 2.
Some of the energy of the primary wave has been transferred to both secondary waves, leading to
a decrease in the amplitude of the primary wave (compare the left part of Fig. 1 (left) and Fig. 2
(left)). These two waves have smaller frequency and also smaller wavelength. In agreement with
the dispersion relation, which links the frequency to the angle of propagation of the wave, the angle
of constant phase is different for the two wavelengths. For the experiment presented in Fig. 1, the
three measured frequencies (ω0, ω1, ω2) are equal to (0.95, 0.38, 0.57)N, attesting that the temporal
resonance condition (4) is satisfied. To justify that the spatial resonance condition (3) is also satisfied,
the components of the three wavevectors have to be measured. This is done by extracting the phase
of the signal at a given frequency, ω0, 1, 2t ± k0, 1, 2x ± m0, 1, 2z, using a Hilbert transform.18 At a fixed
time and x (respectively, z), the phase is linear with the position z (resp. x). The component m0, 1, 2

(resp. k0, 1, 2) is given by the slope of the linear fit. Within experimental errors, the wave vectors,
represented in Fig. 3, satisfy the theoretical spatial resonance condition (3).

The measured density gradient fields are then analyzed using a time-frequency representation
calculated at each spatial point

Sx (t,ω) =
∣∣∣∣

∫ +∞

−∞
du ρ̃x (u) eiωu h(t − u)

∣∣∣∣
2

, (7)

where h is a smoothing Hamming window of energy unity.19 Good frequency resolution is provided
by a large time window h while good time resolution is provided by small time window h. To
increase the signal to noise ratio, the data is averaged along a vertical line over the water depth. For
large ω0/N values, the dissipation length is small, so the analysis line is chosen to be close to the
generator so that the amplitude is large.
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FIG. 3. Spatial resonance conditions for the experiment presented in Fig. 1. The black line represents the theoretical location
of the tip of the wave vector %k1 for a given primary wave vector %k0 so that the resonance conditions (3) and (4) and dispersion
relations (2) are satisfied. The three arrows are the experimental measurement of the three wave vectors: the solid arrow (red)
is the primary wave vector %k0, the dashed (green) and the dotted (blue) arrows are the secondary wave vectors %k1 and %k2. The
square ! represents the most unstable theoretical mode.

Figure 4 (left) presents the spectra of the density field for four different excitation amplitudes
with ω0 = 0.94N. The spectra are obtained using a time window width equal to 100 T to have
good frequency resolution. Sx(t, ω) is then averaged over the 10 last periods. Analyzing first the
result for the amplitude 0.5 cm, the picture emphasizes a large peak close to N, corresponding to the
frequency of the mode-1 wave. A pair of twin peaks is observed, corresponding to secondary waves
of frequencies, ω1 and ω2, smaller than ω0.

The amplitude of each wave is then computed using a time-frequency analysis with a time
window width equal to 20 T to increase time resolution. The amplitude of the secondary wave of
frequency ω1 is presented in Fig. 4 (right). After several forcing periods, a steady state for the primary
wave is reached. After a time interval, the secondary wave starts to grow and a linear increase of
the amplitude on a semilogarithmic plot is observed, confirming exponential growth. The value of
the growth rate λ is measured using a linear fit, shown with the dashed lines in Fig. 4 (right). The
amplitude of the secondary waves eventually saturates.

Comparing the different curves in Fig. 4, one observes that the amplitude has an influence not
only on the location but also on the height of the peaks of the secondary waves in the spectrum. If
the amplitude of the primary wave is too small, no peaks are visible and therefore no instability is
observed during the experiment run time, Trun. This result shows that the growth rate in this particular
case has to be smaller than 1/Trun. It may also give an indication of the existence of a threshold
in amplitude. As the amplitude increases, the distance between the two peaks increases and the
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FIG. 4. (Left) Spectra of the density gradient field, 〈Sx(ω)〉t, for four different excitation amplitudes for ω0 = 0.94N measured
at x ≈ 12 cm. The amplitudes are, respectively, 0.25 cm (green), 0.35 (red), 0.5 (black), and 1 (blue). The value of the amplitude
is indicated next to the corresponding curve. The spectra 0.25, 0.35, and 1 are multiplied, respectively, by 0.01, 0.1, and 10
for illustration purposes. (Right) Amplitude of the secondary wave ω1, Sx, 1(t), normalized by the amplitude of the primary
wave, 〈Sx, 0〉t, averaged over time when the steady state of the mode-1 has been reached. Results are similar for the other
secondary wave ω2. The dashed-dotted lines represent the amplitude of the primary wave using the same normalization. The
dashed lines show the linear fit, which gives the value of the growth rate λ.
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FIG. 5. (Left) Values of the frequencies of the secondary waves for the experiments (◦, blue) and the theoretical calculation
(!, red). The vertical and horizontal error bars are defined as the half-width of the corresponding peak. The top line of point
corresponds to the sum of the frequencies, with corresponding symbols for theoretical and experimental data. (Right) Values
of the growth rate of the secondary waves for the experiments (◦, blue) and the theoretical calculation (!, red). Vertical error
bars for the experimental results come from the choice of the horizontal location and from the linear fit. T is the period of the
primary wave. The theoretical values (!, red) are computed using Eq. (5) and the measured amplitude of the primary wave.
The vertical error bars come from the error made measuring the amplitude of the mode-1.

instability occurs earlier (after fewer forcing periods) and is stronger, i.e., with a larger growth rate,
which is in agreement with the theoretical growth rate (5).

Experiments were performed using the same stratification and an amplitude of 0.5 cm for
frequencies in the range of 0.9 < ω0/N < 1. For each experiment, the value of the frequencies of
the two secondary waves, ω1 and ω2, and the growth rate λ were measured. Experimental results
are presented as a function of the frequency of the primary wave, ω0/N, in Fig. 5. The sum of the
frequencies of the two secondary waves, ω1 + ω2, is equal to the frequency of the primary wave,
ω0, within experimental errors, in agreement with Eq. (4). As ω0/N increases, the distance between
the two secondary frequencies is larger. The measured value of the growth rate is presented in Fig. 5
(right). The growth rate increases to reach a maximum around ω0 = 0.95N and then decreases as ω0

gets closer to N.
To compare quantitatively the experimental results with the theoretical prediction of the growth

rate, the value of the amplitude of the mode-1 wave has to be precisely known. The theoretical
value of the amplitude of the streamfunction is equal to aω0/m0. However, the conversion efficiency
from the energy of the wavemaker to the energy of the mode-1 is less than unity and depends
on experimental conditions.15 Moreover, as ω0 gets closer to the cut-off frequency, N, the value
of the viscous damping increases.20 Consequently, the efficiency is not the same for all primary
frequencies ω0, and the amplitude of the primary wave has to be measured experimentally to
compute the theoretical value of the growth rate. It is important to check that the steady state of the
mode-1 wave has been reached. However, the tank being finite in length, the measurement has to
be performed before the mode-1 wave reflects back into the measurement area. Then, using a linear
polarization relation, the amplitude ψ0 of the stream function at this particular frequency and wave
number is ψ0 = gω0∂x ρ̃0/(4k2

0 ρ̄N 2). The theoretical frequency pair (ω1, ω2) of the instability is
defined as the one that maximizes the growth rate. Without adjustable parameters, the comparison
between experimental and theoretical results, presented in Fig. 5, emphasizes a good quantitative
agreement.

We have reported the first experimental measurement of the growth rate of parametric sub-
harmonic instability in stratified fluids and we have demonstrated this effect in a systematic set
of laboratory experiments allowing careful comparisons with theoretical predictions. In practice,
this heavily debated mechanism10 has implications for many geophysical scenarios. Interestingly,
although the generation mechanisms of oceanic internal gravity waves are quite well understood,
the comprehension of the processes by which they dissipate is much more open. Consequently, de-
termining the relative importance of parametric subharmonic instability, among the four recognized
dissipation processes,1 is the next step in furthering our understanding of how internal waves impact

Downloaded 27 Apr 2012 to 140.77.167.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



041703-6 Joubaud et al. Phys. Fluids 24, 041703 (2012)

ocean mixing. Quantitative measurements of the subsequent mixing together with a fundamental
study of wave turbulence would be of high interest.
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