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Understanding the relaxation of a system towards equilibrium is a long-standing problem in statistical
mechanics. Here we address the role of long-range interactions in this process by considering a class of
two-dimensional flows where the interaction between fluid particles varies with the distance as ∼rα−2 for
α > 0. We find that changing α with a prescribed initial state leads to different flow patterns: for small α, a
coarsening process leads to the formation of a sharp interface between two regions of homogenized α-vorticity;
for large α, the flow is attracted to a stable dipolar structure through a filamentation process. Assuming that
the energy E and the enstrophy Z are injected at a typical scale smaller than the domain scale L, we argue
that convergence towards the equilibrium state is expected when the parameter ( 2π

L
)
α E

Z
tends to one, while

convergence towards a dipolar state occurs systematically when this parameter tends to zero. This suggests that
weak long-range interacting systems are more prone to relax towards an equilibrium state than strong long-range
interacting systems.
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Self-gravitating systems, non-neutral plasma, and two-
dimensional (2D) flows are examples of long-range interacting
systems, for which the two-body potential decays with the
interparticle distance with an exponent smaller than the
dimensionality of the embedding space [1]. Those systems
share the property to self-organize spontaneously into large
scale coherent structures such as globular clusters and elliptical
galaxies in astrophysics or vortices and jets in geophysics [2].
Equilibrium statistical mechanics provides an explanation and
a prediction for this phenomenon as the most probable result
of mixing in phase space. It allows one to reduce the study
of the large scale organization to a few parameters, without
describing the full complexity of the dynamics involving a
huge number of degrees of freedom. The original idea to use
statistical mechanics arguments to describe self-organization
of 2D flows comes from Onsager himself in the framework of
point vortex models [3,4]. A statistical mechanics theory for
the continuous Euler dynamics has been proposed by Miller,
Robert, and Sommeria [5–8] (MRS hereafter), which has led
to several successful applications to geophysical flows [9–12].
This theory is the equivalent of Lynden-Bell’s statistical
mechanics of the Vlasov dynamics [13], which has been
proven useful to address self-organization in self-gravitating
systems [14], or in toy models of long-range interacting
particles [15].

The equilibrium theory of long-range interacting systems
is now fairly well understood [1], but determining how and
when an initially unstable condition far from equilibrium
actually relaxes towards an equilibrium state after a “violent
relaxation” process [13] remains a challenging problem [16].
Here we will focus on physical models that are continuous
dynamical systems involving an infinite number of degrees
of freedom, but their numerical implementation requires a
discrete approximation of the dynamics. The violent relaxation
corresponds to the fast evolution of the discretized system
towards a stable state of the continuous dynamics, usually
called quasistationary state (QSS). This relaxation occurs on a
typical time scale independent of the discretization [17,18].

One key difficulty concerning the continuous dynamics
of long-range interacting systems is that the set of stable

states is usually much larger than the set of equilibrium
states, and there exists other invariant measures than those
predicted by the equilibrium theory [19]. Consequently, a class
of unstable initial conditions may be attracted towards stable
states different from the most probable one. Indeed, various
examples of ergodicity breaking in non-neutral plasma and
self-gravitating systems have been reported [16]. Similarly,
applications of MRS theory to freely evolving flows have led
to mitigated results [20–24].

In all those previous studies, the initial conditions were
varied but the range of the interaction was fixed. Here we
address the role of long-range interactions during the violent
relaxation of a given unstable initial condition towards QSS
by considering a class of 2D flow models introduced in Ref.
[25], in which interactions between fluid particles (infinites-
imal fluid volumes) are labeled by a parameter α > 0. It
includes 2D Euler dynamics (α = 2), surface quasigeostrophic
dynamics (α = 1), which is relevant to describe some aspects
of atmospheric and oceanic turbulence [26], and a model
for mantle convection (α = 3) [27,28]. The initial goal for
studying this model was to address the locality hypothesis for
turbulent cascade [25,29,30]. It has then been proven useful to
investigate the possible emergence of finite time singularities
[31] and conformal invariance [32]. We will see that it
also sheds new light on the dynamical effects underpinning
self-organization of long-range interacting systems.

The continuous dynamics is expressed as the advection of
the α-vorticity q(r,t) by a 2D incompressible velocity field
v = (−∂yψ, ∂xψ), with r = (x,y) and ψ the stream function:

∂tq + v · ∇q = 0, q = −(−�)α/2ψ, (1)

where −(−�)α/2 is the fractional Laplacian defined in terms of
the Fourier components qk = −|k|αψk in the case of a doubly
periodic domain D = [0, L]2, with k = (k,�) the wave vector.
Length unit has been chosen such that the domain scale is L =
2π . The dynamics conserves the α energy E[q] ≡ − ∫

D dr qψ

and the Casimir functionals Cf [q] ≡ ∫
D dr f (q), where f is

any sufficiently smooth function on D, which includes the α

enstrophy Z[q] ≡ ∫
D dr q2.
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FIG. 1. (Color online) Temporal evolution of the α-vorticity field
during the violent relaxation of an unstable initial condition.

The α energy can be formally written as a potential energy
E = ∫

D dr
∫
D dr′ q(r)V (r,r′)q(r′), where V is the Green’s

function of the fractional Laplacian in two dimensions. In the
case of an infinite domain D, this Green’s function is a Riesz
potential V ∼ rα−2 with r = |r − r′| except when α is even,
in which case V ∼ rα−2(log r + C) [33,34]. Whatever α > 0,
interactions between fluid particles are always long range.

In this Rapid Communication we present numerical sim-
ulations of the freely evolving Galerkin-truncated dynamics
of these 2D flow models, which is obtained by projecting
Eq. (1) on the wave numbers |k| � kmax and |�| � kmax,
where kmax is the wave-number cutoff. This corresponds to
an effective spatial resolution N1/2 × N1/2 with N1/2 = 3kmax

[35]. The initial α-vorticity field is the same for all numerical
experiments presented in this Rapid Communication (see
Fig. 1). It is characterized by a double-peaked global distri-
bution of α-vorticity, and by a typical injection scale ki = 4.
Anticipating that the equilibrium state is always self-organized
at the domain scale, choosing ki � 2 ensures that the initial
condition is far from equilibrium. This initial condition is
“typical,” in the sense that other initial conditions with similar
injection length scale and similar global distribution yield
similar results.

The initial eddy turnover time can be estimated as ti =
(ki/2π )α/2−2(2π/E1/2), and the time unit will be chosen for
each numerical experiment such that ti = 1. The vorticity field
is stirred by the turbulent flow during a few eddy turnover times
with concomitant self-organization at domain scale and direct
enstrophy cascade, until it reaches a QSS around t ∼ 10, which
can for instance be quantified by checking that the isotropic
energy spectrum does not change significantly over few dozens
of eddy turnover times beyond that time. Two striking features
of the QSS are summarized in Fig. 1. First, there is a scale
separation between erratic small scale fluctuations and a
well-defined large scale flow structure organized at the domain
scale. Second, the large scale flow structure is drastically
different depending on the value of α. We ask in the following
whether equilibrium statistical mechanics of the truncated
system and of the continuous system can account for those
features.
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FIG. 2. (Color online) (a) Isotropic energy spectrum EK (K) nor-
malized by (Z − E)/(4NKα−1) at large time (t ≈ 40) for numerical
simulations at resolution N = 10242. (b) Corresponding local distri-
butions of α-vorticity levels. The black symbols in panel (a) and the
black line in panel (b) are statistical mechanics predictions for the
truncated system, without fitting parameters.

The truncated dynamics is a dynamical system with a
finite number of degrees of freedom given by the Fourier
components of q, for which a detailed Liouville theorem holds
[36]. This allows for a direct application of the equilibrium
statistical mechanics machinery. Among the infinite number
of conserved quantities by the continuous dynamics, only the
α energy E = ∑

k Ek and the α enstrophy Z = ∑
k Zk are

conserved by Galerkin-truncated models, where Ek = −qkψ
∗
k

and and Zk = |k|αEk are the energy and the enstrophy
of mode k, respectively. Computation of equilibrium states
of the truncated system in the thermodynamic limit (N →
+∞) is a classical result predicting condensation of the α

energy in the lowest-wave-number mode (
∑

|k|=1 Ek = E)
and a concomitant loss of α enstrophy towards small scales
[36,37]. More precisely, for large N , Fourier modes other
than the lowest-wave-number one have a contribution to the
equilibrium state given by 〈Ek〉 = 1

4N
( Z−E
|k|α−1 ), where 〈·〉 stands

for a temporal average, which shows equipartition of the
enstrophy Z − E among the Fourier modes for sufficiently
large |k| [38].

The “isotropic energy spectrum” defined as E(K) =
(
∑

|k|=K Ek)/(2πK) is shown in Fig. 2(a) for various values of
α. The spectra are computed for only one snapshot at large time
(t ≈ 40), and we checked that averaging over many snapshots
did not make any difference. As predicted by the theory, the
energy is mostly condensed at the domain scale (K = 1),
and Fourier modes are thermalized with equipartition of α

enstrophy into Fourier modes at large K , confirming previous
numerical studies performed in the context of 2D Euler
dynamics [36,38,39] or surface quasigeostrophic dynamics
[40].

The presence of a large scale flow containing most of
the energy coexisting with wild small scale fluctuations of
α-vorticity gives a strong incentive for a mean-field theory that
would predict the probability density field ρ(r,σ ) to measure
the α-vorticity level q = σ in the vicinity of point r, and
this is what is predicted by the MRS equilibrium statistical
mechanics [7,8]. In this framework, all conserved quantities of
the continuous dynamics can be expressed in terms of ρ(r,σ ).
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One can then count the number of microscopic configurations
associated with each macroscopic state ρ(r,σ ) and compute
the most probable macrostate ρ(r,σ ) satisfying the constraints
of the problem. The theory predicts a concentration of
all microscopic configurations close to the most probable
macrostate ρ(r,σ ) [41]. The large scale flow is then given by
q(r) = ∫

dσ σρ, and the theory predicts a monotonic relation
between q and ψ [7,8]. In practice, following a standard
procedure, the observed macrostate q will be computed
through a local coarse-graining of the microscopic field q,
by using a smoothing operator with a typical length scale
much larger than the effective grid mesh, but much smaller
than the domain scale. Equilibrium states of the truncated
system in the thermodynamic limit (N → +∞) are a subclass
of MRS equilibrium states, characterized by a linear q − ψ

relation and by local Gaussian fluctuations of α-vorticity
ρ(r,σ ) with variance (Z − E) [19,42]. By contrast, when
additional invariants other than the energy and the enstrophy
are taken into account, ρ(r,σ ) is in general non-Gaussian.
For instance, the initial condition shown in Fig. 1 has been
constructed in such a way that the global distribution is close
to a double-peaked distribution, and MRS theory predicts
in that case that the local probability distributions of the
equilibrium states of the continuous dynamics should also be
double-peaked distributions [11].

In Fig. 2(b) we show an observation of such local Gaussian
fluctuations for the vorticity field in numerical simulations of
the Galerkin-truncated dynamics [43], confirming theoretical
predictions [19,42]. However, the success of the statistical
mechanics theory of the truncated system is restricted to
small scales: the theory underestimates the contribution of
intermediate wave numbers 1 < K < 30 in the spectra of
Fig. 2(a). In addition, Fig. 3 clearly shows that the q − ψ

relation of the large scale flow is nonlinear: in the case α = 0.5,
it has a tanh-like shape, while it has a sinh-like shape in the
case α = 3. In any case, such relations are not predicted by the
statistical mechanics of the truncated system, which fails to
account for the different large scale flow structures observed
in Fig. 1.

For any monotonic functional q − ψ relation, there exists
at least one set of constraints such that the MRS equilibrium
state associated with these constraints is characterized by this
functional relation [44]. In that respect, the observed large

−5 0 5
−6

−4

−2

0

2

4

6

Stream function ψ 

α 
−

vo
rt

ic
ity

 q

α=3 q

α=0.5

Ψ

FIG. 3. (Color online) q − ψ relation for the fields shown in
Fig. 1 at t ∼ 100. The plain black line is obtained by considering
the averaged α-vorticity value along a given streamline.
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FIG. 4. (Color online) (a) Temporal evolution of the order pa-
rameter O (see text) for various values of α, in the run with resolution
10242. (b) Temporal average of the order parameter O for different
values of α and wave-number cutoff kmax = N 1/2/3.

scale flow is close to an equilibrium state of the continuous
dynamics. However, we see in Fig. 3 that fluctuations around
the observed q − ψ functional relation are present, and we
checked that these fluctuations are independent of the wave-
number cutoff. This means that the large scale flow is not
exactly stationary. In addition, given our choice of an initial
condition characterized by a global distribution of α-vorticity
levels with a double-peaked shape, MRS theory predicts that
the equilibrium state should be characterized by a tanh-like
shape, whatever the value of α (see, e.g., [11]). This means
that the large scale flow obtained in the case α = 0.5 is close
to the actual equilibrium state, but not in the case α = 3.

A transition from a unidirectional flow to a dipolar flow is
expected when the q − ψ relation changes from a tanh-like
shape to a sinh-like shape [45], and the large time flow
structures shown in Fig. 3 are consistent with these predictions.
In order to study more quantitatively the transition from
one state to the other when α is varied, it is useful to
introduce an empirical order parameter O = min {E(1,0);E(0,1)}

max {E(1,0);E(0,1)}
comparing the energy of the lowest-wave-number modes
(k,l) ∈ {(1,0),(0,1)}. This parameter is zero in the case of
a unidirectional state, and 1 in the case of a purely dipolar
state. Figure 4(a) shows the temporal evolution of O in the
high resolution runs N = 10242. The flow is trapped in the
dipole state when α � 2. The order parameter decreases with
α for 1.25 < α < 2, which shows the existence of a smooth
transition from the dipole state to the unidirectional state. For
α ≈ 1 the order parameter is characterized by small periodic
or quasiperiodic oscillations, which are related to the presence
of unmixed vortices. Such oscillations have previously been
reported in the context of 2D Euler dynamics, for particular
initial conditions [22,24,46]. For even smaller values of α

(here α = 0.5), the unidirectional state is characterized by
periodic oscillations corresponding to large scale oscillations
of the interface between two homogeneous regions of potential
vorticity. These states were previously observed for some
particular initial conditions in the context of the 2D Euler
equation [46]. In the presence of finite small scale dissipation,
these oscillations were found to decay at sufficiently large time
[21]; here effective dissipation occurs due to finite resolution
and we observed that increasing resolution leads to an increase
of the time scale for the decay of these oscillations. Figure 4(b)
shows temporal averages of the order parameterO as a function
of α and resolution N1/2. Time average is performed over few
dozens of eddy turnover times once the QSS is reached. We see
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a sharp transition from one regime to the other around α = 1
for low resolution runs, but the transition becomes smoother
for higher resolution runs, as in Fig. 4(a). We checked that the
dipolar state was robust when further increasing the resolution
for α = 2. We also found that decreasing the injection length
scale ki shifted the transition from dipolar to unidirectional
states below α = 2, but did not change qualitatively the results.
We show in the following that phenomenological arguments
in limiting cases allow us to rationalize these observations.

In the limit α → 0, the α-vorticity can be written at lowest
order as q = αL[ψ] − ψ , with L a negative definite operator
whose eigenmodes are Laplacian eigenmodes and whose
eigenvalues are increasing functions of |k|. This is reminiscent
of the 1 1

2 layer quasigeostrophic model, another 2D flow
model for which the advected tracer is q = �ψ − ψ/R2. In
the limit R → 0, this flow model is known to spontaneously
form regions where q is homogenized, separated by sharp jets
[47,48], which is expected either from cascade phenomenol-
ogy [49] or from statistical mechanics arguments [50]. The
formal analogy between the 1 1

2 layer quasigeostrophic model
and 2D α turbulence in the limit α → 0 explains therefore the
coarsening process resulting in the phase separation observed
in Fig. 1 for α = 0.5. Once the two regions of homogenized
α-vorticity are formed, their interface supports the existence of
neutral (or Kelvin) modes oscillating periodically [51,52]. This
prevents a complete relaxation towards the actual equilibrium
state, which is characterized by a minimal interface length [50].

When α → +∞, the stream function field is dominated
by the lowest-wave-number modes |k| = 1 as soon as the
α-vorticity projections on the lowest-wave-number modes
(q1,0 or q0,1) are nonzero. The α-vorticity field q is sheared by
this large scale flow, except at the two points where straining
vanishes (provided that both q1,0 and q0,1 are nonzero).
Since the large scale flow is initially nonstationary, the early
evolution of the α-vorticity field looks like chaotic mixing of a
passive tracer due to a large scale flow (see Fig. 1 for α = 3).
This process leads to a background of homogenized α-vorticity
field, with two isolated blobs of α-vorticity in the vicinity
of the two points where straining vanishes. Following this
phenomenology, irreversible mixing in physical space through
filamentation due to stretching prevents efficient mixing in
phase space.

For intermediate values of α, a useful nondimensional
parameter of the problem is given by P = ( 2π

L
)
α E

Z
comparing

the enstrophy of the coarse-grained large scale flow with the
total enstrophy. This parameter varies from 0.5 to 0.02 in
our simulations. It has been observed in the Euler case that
an unstable initial condition converges in general towards a
state close to the equilibrium one when P is close to 1 [20],
while the dynamics relaxes towards a dipolar flow with two

isolated vorticity peaks and a background of homogenized
vorticity when P is small [53,54]. A qualitative reason for
the failure of statistical mechanics prediction in that case is
that excess enstrophy Z − E( 2π

L
)
α

initially at scale 2π/ki

contains most of the information on the large scale distribution
of α-vorticity, and yet does not contribute significantly to
the dynamics of the large scale flow since it is rapidly lost
into smaller scales through a direct enstrophy cascade. In our
numerical experiments Z is prescribed independently from
α, and the energy is E ∼ k−α

i Z, which yields P ∼ (kiL)−α .
We see that P decreases when either ki increases or when
α increases: as far as the convergence towards the dipolar
state is concerned, changing the range of interactions has the
same effect as changing the initial condition. We also see that
P tends to 1 when α tends to zero, which suggests that the
dynamics is more likely to reach an equilibrium state in this
limit, consistently with our numerical results.

We have studied the dynamics of truncated two-
dimensional flows in which the energy and the enstrophy
were injected at a scale 2π/ki smaller than the domain scale
L, ensuring that the initial state is far from equilibrium. We
have shown that small scale features of the QSS following the
initial violent relaxation are well described by the equilibrium
statistical mechanics of the truncated system, but that the
corresponding large scale flow remains close to a stable state
of the continuous dynamics whose topology depends strongly
on the range of interactions, through the parameter ( 2π

L
)
α E

Z
.

When this parameter is small, which occurs whenever α is
sufficiently large, the dynamics systematically relaxes towards
a dipolar state through a filamentation. When this parameter is
close to one, which occurs whenever α is sufficiently small, the
system relaxes close to the equilibrium state of the continuous
dynamics predicted by MRS theory through a coarsening
process, but we observed persistent large scale oscillations
preventing a complete relaxation. On the basis of those results,
we conjecture that weak long-range interacting systems are
more prone to relax towards equilibrium than strong long-
range interacting systems, but that the time scale for complete
relaxation may diverge as the range of interactions get weaker.
In this Rapid Communication we focused on a small range
of α that included existing physical models. Exploring a
larger range of α will be needed to test in more detail the
phenomenological argument obtained in limiting cases.
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