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We study a model for the dynamical stretching of DNA which uses the stretching of the hydrogen bonds in a base- 
pair as its main variable. We present a statistical mechanical analysis of the denaturation and specific heat curves, 
obtained with the transfer integral method; discreteness effects are treated exactly by a numerical solution of the 
transfer integral operator. Second order self-consistent phonon theory agrees with the exact transfer integral results in 
the low and intermediate temperature range and explains the phonon softening observed in the molecular dynamics 
simulations. When the temperature approaches the denaturation temperature, the second order self-consistent phonon 
results deviate significantly from the exact ones, pointing to the fundamental role of nonlinear processes in DNA 
denaturation. 

1. Introduction 

The discovery of DNA structure has high- 
lighted the fundamental relationship between 
structure and function in molecular biology. 
Molecular dynamics has perhaps been at the 
origin of  this new attitude [1] because it has 
shown that chemical reactions that seem to be 
impossible according to the molecular structure 
might indeed take place due to temporary large 
molecular distortions. 

DNA transcription is a typical example in 
which the dynamics of  the molecule is essential 
to a biological function since the double helix 
has to be locally opened in order to expose the 
coding bases to chemical reactions. This pro- 
cess, however, is very complex because it is ac- 
tivated by an enzyme and it is probably still 
beyond a detailed analysis. Thermal denatura- 
tion has some similarities with the transcrip- 
tion because it starts locally by the formation 
of a so-called "denaturation bubble" similar to 
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the local opening occurring in the transcription. 
Therefore investigating thermal denaturation 
is a valid preliminary step toward the under- 
standing of the transcription. At temperatures 
well below the denaturation temperature, DNA 
shows also large amplitude motions known as 
"fluctuational openings" in which base pairs 
open for a very short time and then close again. 
These motions are important because, when 
the base pairs reclose they can trap some exter- 
nal molecules causing a defect in the sequence. 
These large amplitude motions can be consid- 
ered as intrinsic precursors to the denaturation. 

The denaturation or "melting" transition is the 
separation of the two complementary strands. 
It can be induced by heating or by changing the 
ionicity of  the solvent. It has been extensively 
investigated experimentally and models have 
been proposed to explain the complicated de- 
naturation curves found in the experiments [2]. 
However these models are essentially Ising-like, 
where a base pair is considered as a two-state 
system which is either closed or open. Such an 
approach cannot reproduce the full dynamics of 
the denaturation and it relies on phenomenolog- 
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ical parameters for the probability of opening 
or cooperative character of this opening, which 
are not easily derivable from first principle cal- 
culations. 

On the other hand, many investigations of 
DNA dynamics have been based on the idea 
that vibrational energy might be trapped into 
solitary wave excitations. This idea, originally 
suggested by Englander et al. [3] to explain the 
open states of the DNA molecule, has given rise 
to numerous investigations using soliton-like 
solutions to describe open states, transition be- 
tween the A and B forms, or energy transport 
along the molecule [4-6]. Most of these inves- 
tigations have focused on the propagation of 
solitons along the double helix. However, the 
biological function of DNA does not necessarily 
involve transport along the molecule. Conse- 
quently, although it is clear that a realistic model 
will exhibit nonlinear excitations owing to the 
very large amplitude motions known to exist, 
their ability to propagate along the helix is not 
a requirement of the model. Rather, for denatu- 
ration (and transcription) we are concerned by 
the ,formation and growth of these excitations. 
It is this question that we want to investigate in 
this paper. This is an extension to nonlinear dy- 
namics of the Ising models mentioned above. As 
in the Ising models, however our approach uses 
a very simple description of the molecule re- 
stricted to the most relevant degrees of freedom. 

The model was introduced in previous work 
[7] in which we investigated its statistical me- 
chanics and determined its denaturation tem- 
perature in a continuum limit. Numerical simu- 
lations have shown that when parameters which 
are expected to be representative of DNA are 
used, discreteness effects are very important. 
For this reason, we have extended the statistical 
mechanics investigations to take into account 
the intrinsic discreteness of the molecule. Sec- 
tion 2 introduces the model. Exact numerical re- 
sults for its thermodynamics, obtained with the 
transfer integral approach are presented in sec- 
tion 3 to determine the statistical mechanics of 

the model. Finally, in section 4 a self-consistent 
phonon theory is used to discuss some of these 
results, provide an analysis of the melting pro- 
cess, and present useful analytical expressions 
for some thermodynamical functions in the low 
and high temperature regimes. 

2. Model 

In our model we consider a simplified geom- 
etry for the DNA chain, in which we neglect 
the asymmetry of the molecule and we represent 
each strand by a set of point masses which cor- 
respond to the nucleotides. The main character- 
istics of the model are as follows: 

(i) We only take into account transverse mo- 
tions. The displacements from equilibrium of 
the nth nucleotide is denoted by Un for one chain 
and Vn for the other. The longitudinal displace- 
ments are not considered because their typical 
amplitudes are significantly smaller than the am- 
plitudes of the smaller ones [8 ]. 

(ii) Two neighboring nucleotides belonging 
to the same strands are connected by an har- 
monic potential. The bonds connecting two 
bases belonging to different strands are ex- 
tremely stretched when the double helix opens 
locally: their nonlinearity must not be ignored. 
We use a Morse potential which represents not 
only the hydrogen bonds but the repulsive inter- 
actions of the phosphate ions, partly screened 
by the surrounding solvent as well. 

The Hamiltonian for the model is then the fol- 
lowing: 

H = ~ 2 { '  "2 ,,}n 2) ~m(u,, + 
n 

+ ½ K [ ( u n  - U n - l )  2 -}- ('Un - - l ) n - I  ) 2 ] 

+ D( e -a~/~(u"-''") -1 )2}. (1) 

When it is expressed in terms of the variables 
xn = (un + v~) /v~  and y~ = (un - vn)/x/2, it 
decouples into two parts: 
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H Z 1 "2 ½ K ( x .  ) 2 ]  = [ ~ m x  n + -- Xn_ 1 
tl 

1 "2 tK(yn - -Yn- I  + [_~my n + )2 

+ D(e  -ay. -1 )2 ] .  (2) 

The component of the Hamiltonian depending 
on the variable xn corresponds to a harmonic 
chain without substrate potential: it is well be- 
haved, and it is not coupled to the other one. 
We can ignore this term. The part of (2) depen- 
dent on the ynwe are interested in, has a much 
more interesting behavior as attested by molecu- 
lar dynamics simulation at constrained temper- 
ature [9 ]. 

The choice of appropriate model parameters 
is a very controversial topic, currently debated 
in the literature [ 10 ]. There are well established 
force fields for molecular dynamics of biological 
molecules, but they have been designed to pro- 
vide a good description of the small amplitude 
motions of the molecule and are not reliable for 
the very large amplitude motions involved in the 
denaturation. In our model, the Morse poten- 
tial is an effective potential which links the two 
strands. It results from a combination of  an at- 
tractive part due to the hydrogen bonds between 
two bases in a pair and the repulsive interac- 
tion between the charged phosphate groups on 
the two strands. The potential for the hydrogen 
bonds can be rather well estimated [ 11 ], but the 
other part is not well known. We have chosen a 
parameter set which gives realistic properties for 
the model when it is investigated by molecular 
dynamics, however, future work has to be done 
to confirm this choice. We do not expect, how- 
ever, that a better choice would change qualita- 
tively the results discussed here. The parameters 
that we have chosen are: a dissociation energy 
D = 0.04 eV, a = 4.45 A- l ,  a coupling constant 
K = 0.06 eV/A, and a mass m = 300 atomic 
mass units. 

3. Transfer operator method 

In this section we use the transfer operator 
method as it applies to the calculation of  the clas- 
sical canonical partition function, because it pro- 
vides exact results, including the full nonlineari- 
ties. For a chain containing N units, the classical 
partition function, given in terms of the Hamil- 
tonian (2), may be factored as 

+:x~ N 

Z = f 1-[ dy. dp. e - # H =  ZvZy. 
--oc~ n = l  

(3) 

The momentum part is readily integrated to 
give the familiar kinetic factor for N particles 
Zp = (2nmkaT) N/2. Since the coupling in- 
volves only nearest neighbor interactions, Zy 
can be expressed in the form 

+oc N 

:~Y = S I 'I  dy. e -#f(y"'y"-'), 
- o c  n = l  

(4) 

where f denotes the potential energy in Yn of the 
Hamiltonian (2). This integral (4) can be eval- 
uated exactly in the thermodynamic limit of a 
large system (N ~ ~c ) using the eigenfunctions 
and eigenvalues of the transfer integral operator 
[12-14] 

f dyn_ e -# f (y . , y . - t )  ~bi(Yn_ 1 ) 

= e -# ' '  ~i(Yn). (5) 

The calculation is similar to the one performed 
by Krumhansl and Schrieffer [13] for the sta- 
tistical mechanics of  the ~4  field. It yields Zy = 
exp ( -Nflc0) ,  where Co is the lowest eigenvalue 
of the operator. We can then compute the free 
energy of  our model as the sum of the different 
contributions in Z 

.~ = - k B T l n Z  
NkBT 

- -----2---ln(21rmkaT) + Neo. (6) 
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From this result we can derive the specific heat 
Cv = - T O 2 f / O T  2, the quantity which is char- 
acteristic of the thermal denaturation is the 
mean stretching (Ym) of the hydrogen bonds, 
which is given by 

N l/ 
(Ym) = ~ H ym e ~H dyndpn 

n = l  

N 

1 fI-[Ym e- f l f (Y" 'Y"- l )  dyn .  

Zy i=1 

(7) 

As the model is assumed to be homogeneous, the 
result does not depend on the particular site m 
considered. The integral can again be calculated 
with the transfer integral method [ 12 ] and yields 

(v) = (Ym) 
N e _ N & ,  

EN=](Oi(y)l~i(y)) e-Na ", 
= (~o(y)lylOo(y)) 

= f o ~ ( y ) y d y ,  (8) 

since in the limit of large N, the result is again 
dominated by the lowest eigenvalue e0 associated 
with the normalized eigenfunction 00 (Y). 

In the continuum limit approximation, the 
transfer integral eigenvalue problem can be re- 
duced to a Schr6dinger-like equation [7]. When 
temperature is lower than Td = 2 2 ~ / a k B ,  
the equation has a discrete spectrum which 
corresponds to localized eigenfunctions; for T 
exceeding Td, they correspond to delocalized 
states and (y) = (Ym) diverges so that Td ap- 
pears as the melting temperature. However the 
results are not in good agreement with the nu- 
merical results because the discreteness is too 
important. We must take into account the in- 
trinsic discreteness of the Hamiltonian. Small 
discreteness effects have been treated by a per- 
turbative approach [15], but here we consider 
a physical system in which the discreteness ef- 
fects can be extremely large. Therefore we have 
solved numerically the eigenvalue equation for 
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Fig. 1. Variation of (y) versus temperature: the solid line 
corresponds to the transfer integral results and the plus signs 
correspond to molecular dynamics simulations. 

the transfer integral operator. The operator is 
symmetrized and the integrand is expressed as 
a discrete sum by a standard numerical inte- 
gration formula [16] (we have tested different 
orders). The problem is then equivalent to find- 
ing the eigenvalues and eigenvectors of a sym- 
metric matrix. The results obtained in this pro- 
cess are in good agreement with the numerical 
simulations as shown in fig. 1. 

In fig. 2 we show the specific heat versus the 
temperature which also shows a good agreement 
with the MD results. 

4. Self-consistent phonon (SCP) method 

Because the Schr6dinger equation approxi- 
mation to find the eigenvalues of the transfer 
operator breaks down, we are not able to find an 
analytical expression for the thermodynamical 
functions, and particularly for the free energy. 
Therefore we applied the self-consistent phonon 
(SCP) method [ 17], which can give us not only 
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The perturbation series for Z, 1 is obtained by 
expanding the exponential, and the logarithmic 
function; the coefficient of ( - f l ) ' / n !  in the ex- 
pansion of In 2~ is termed the nth cumulant and 
is written [19] ( (H - Ho)n)0,c. Thus 

.Y = - k B T I n  Z 

= - k B T l n Z o  - kBTln( e-fl(H-H°))O 

O 0  

= N . ~ o - k B T y ~  ( - f l ) "  
n! 

n=l  

- - (  ( H  - Ho)n)o., 

= N (.Yo +,Y~ + Y2 + ' " ) .  

The first contribution 5% gives the contribution 
of N harmonic oscillators of frequency 

Fig. 2. Variation of the specific heat versus temperature: 
the solid line corresponds to the transfer integral results and 
the signs correspond to molecular dynamics simulations. 

approximate thermodynamic expressions, but 
also the dependence of the phonon frequen- 
cies on the temperature. The explicit evaluation 
of  the second order correction gives successful 
results away from the actual transition region. 

In the low temperature regime, introducing 
Un = Yn - (Y) = Yn - q and two parameters .Q2 

and ~b, we apply the SCP method [ 18 ], by con- 
sidering the trial harmonic Hamiltonian 

Ho = ~-~'(~mu,'2 ..[_ l ~ ( / 2 n  _ /2n+l  )2 
l l  

+ lg22uZX n)" (9) 

The canonical partition function Z can be ex- 
pressed as the product of  the unperturbed parti- 
tion function Z0 and the perturbation factor ZI: 

Z = f 1-I dui  e - p v  
i 

= Zo&.  

oj2(p) = .Q2 q._ 4q~sin 2 (__~), 

and its contribution to the free energy is 

N - I  
- k B T  ~ 2 n k B T  

~'0 - ~ z-,  In w2(p---- ~ .  
q=0 

(10) 

Introducing the parameters ~/, (1d 2) = (/22) and 
(v 2) = (u ,u ,+l ) ,  the only difficulty in evaluat- 
ing f v  is the self-consistent substrate potential. 
Expanding the exponent in a series as 

o¢ (_a)2p 2p Z ( - a )  2p+I , 2p+l \  

= Z (2p)! ( u k )  + (2p + 1)! (% ! 
p p 

oc (_a)2p (2p ) ! luZ \p  
= Z (2p)! ~ -p7  ~ k/ + 0  

p 

= e a2(u2)/2 . ( 1 1 ) 

we obtain an "effective" potential, which keeps 
the shape of  the Morse one, but with a temper- 
ature dependent minimum, as shown in fig. 3a. 
The expression for the first order correction for 
the free energy is then 
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Fig. 3. (a) Substra te  potential  in the SCP approx ima t ion  for a ID chain o f  Morse oscillators coupled by ha rmon ic  springs. 
The  potential  is plotted for lhe  3 following values o f  (u2/ = 0 (solid curve) ,  0.02 (dashed) ,  0.06 (dash-dot )  A 2 (which 
cor responds  to the 3 t empera tu res  7" = 0, 275, 411 K).  (b) Free energy ?v  versus )1 at different  temperatures :  T = 3 5 0  
(dashed) ,  380 (dash-dot ) ,  411 (solid) ,  430 (dash-dot -dot -dot )  K. 

f l  = ( K  (b ) ( ( l t  2) - ( t ' 2 ) )  - 1 ~ 2 ( l l 2 )  

+ D( I  + e 2arl+2a2(u2) 

- 2 e -aq+a2/2(u2) ). (12)  

The variat ional  free energy gives an upper bound 
of  the actual free energy [20]: 

? <_ ?o + ?~ = ? , .  (13) 

Considering q, (lt 2) and (v 2) as variat ional  

parameters,  ?'v is minimized.  The stat ionari ty 
equat ions Of?v are then equivalent  to the system 

3 "? rl = 5_a(ll-) 

.Q2 = 2a2D e-2a~//3 . ( 1 4 )  

We can note that £2 2 is t empera ture-dependent  
while K is not, which means that the coupling 
constant  is not renormal ized because o f  the an- 
harmonici t ies  of  the substrate potential.  The  
phonon  dispersion curve is just  translated par- 
allel to the frequency axis as the tempera ture  

is varied. As q is an increasing function of  the 
temperature,  £22 is a decreasing function of  T 
and the phonons  will soften as T is raised, in 
agreement with molecular  dynamics and exper- 
iments. 

Using the system (14),  we can simplify the 
expression for the first order  correction of  the 
free energy to obtain 

?'I = D[ I  - (1 + 3aq)  e Xa,/3]. (15) 

Since (lt 2) and ~1 are related, we have only to 
solve self-consistently the equat ion 

I ]  - -  - -  

3 a k B T  

2 N  
1 

x ~ 2aZD e 2aq/3 + 4 K s i n 2 ( ~ r p / N )  " 
P 

(16) 

In practice, eq. (16) is solved by a simple bisec- 
tion method and fig. 3b shows the free energy 
f v  versus q at different temperatures.  We see 
clearly that the self-consistent solution which 
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Fig. 4. Variat ion o f  the  free energy versus  tempera ture .  The  
solid line cor responds  to the  exact free energy calculated 
with the t ransfer  integral me thod ,  the  dashed  line to the first 
order  SCP result, the  dash-dot ted  line to the second order  
SCP, and  the  dash-dot -dot -dot  line to the  h igh- tempera ture  
ha rmon ic  approx imat ion .  Note  that  while the first order  
SCP m e t h o d  is necessari ly an  upper  b o u n d  to the  exact  
free energy this  is not  a cons t ra in t  for the  second order  
approx imat ion .  

corresponds to the metastable minimum of the 
dashed and clash-dotted curves, disappears at 
Tc = 411 K to give a strictly decreasing func- 
tion of q. Over Tc, the minimum is only ob- 
tained for an infinite value of q, which does not 
correspond to a self-consistent solution of the 
problem. Consequently, Tc can be identified as 
the denaturation temperature given by SCP. We 
can note that at this temperature there is still a 
small well in the substrate potential of fig. 3a, 
but not deep enough to support a bound state, 
i.e., a localized state. 

In fig. 4 we compare fv  and the exact transfer 
integral result f as function of T. The approxi- 
mation is good at low temperatures. As the tem- 
perature rises, the approximation becomes poor. 
Because of the even parity of the trial Hamilto- 
nian Ho, the infinity of odd powers in the poten- 
tial do not contribute to 5rl. In order to obtain 

a more accurate expression, we must therefore 
calculate the second order correction f2  to the 
free energy. It can be expressed as 

((H - H o )  2) - (H - H o )  2 

Y2 = - 2 N k a  T 

D2 e -4aq/3 ~ (2 e a2(u'u') - 1 )2 
- 2 k B T  

_ e4a2(u,'u,) + 2 a 4 ( u l u g )  2, 

where 

1 ~ cos(2~rp(l-  1)/N) (ulu ) 1 

Fig. 4 shows that f2  significantly improves the 
agreement with the exact results up to about 
300K. However the SCP calculation still fails 
for higher temperatures, emphasizing the fun- 
damental role of the non-perturbative nonlinear 
effects in the denaturation process. 

The very high temperature regime is again 
simple because the whole chain is on the plateau 
of the Morse potential, with an effective har- 
monic coupling constant K. Therefore, the sys- 
tem is equivalent to an harmonic chain, without 
substrate potential and its free energy is simply 

N - I  
ka T ~zkB T 

• ~'HT - -  2 ~ In 
2K sin 2 ( ~ z p / N )  

p = l  

(17) 

and the specific heat per particle, in units of ks, 
is equal to 1. Figs. 2 and 4 show that, above the 
transition, this picture is indeed correct. 

5. Conclusion 

The model that we have discussed can be con- 
sidered as an extension of the Ising-like mod- 
els for DNA melting which includes a degree 
of freedom that describes the dynamics of the 
nucleotide motion. Therefore it can represent 
not only denaturation, but also precursor ef- 
fects like fluctuational openings, which are a 
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potential guide to the mechanism of denatura- 
tion. Two complementary methods were used 
to study the statistical mechanics of this model. 
The transfer integral method has confirmed that 
the lattice discreteness effects are large enough 
to change significantly the results, whereas the 
SCP method has emphasized the dominant ef- 
fects of the nonlinearity in a precursor regime 
near the transition. The use of the second order 
correction to the free energy gives us a useful 
approach to obtaining analytical expressions 
for thermodynamic functions. But this simple 
model is still not complete: the transition oc- 
curs at a quite high temperature and over a too 
large temperature range. This suggests that the 
model lacks a sufficiently efficient mechanism 
for an energy localization. As a step to address 
this problem, we have recently implemented 
anharmonic nearest neighbor interactions [21 ]; 
with this interaction the system shows a very 
sharp melting transition at a substantially re- 
duced temperature, in good agreement with 
experimental observations. 
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