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There is a growing feeling that biomolecular structure is not sufficient to determine biological activity which is also 
governed by large amplitude dynamics of the molecules. The transcription of DNA or its thermal denaturation are typical 
examples. Traditional approaches use Ising models to describe the denaturation transition of DNA. They have to introduce 
phenomenological "cooperativity factors" to explain the rather sharp "melting" of this quasi one-dimensional system. We 
present models which describe the full dynamics of the melting. Using molecular dynamics simulations and statistical 
analysis, we discuss the mechanism of the denaturation, including precursor effects that can be related to large amplitude 
localized nonlinear excitations of the molecule in which discreteness effects play a large role. We also show the microscopic 
origin of the cooperativity factors. 

I. Introduction 

Nucleic acids are the repository of genetic 
information and each of the units that compose 
D N A  or R N A  molecules plays an essential role 
in the biological functions. The famous discovery 
of the double helix has emphasized a strong 
relationship between structure and function in 
molecular  biology. However  this structure, 
which is so well designed to include the genetic 
code in two complementary  strands and protects 
it against external perturbat ions,  would also pre- 
vent  the expression of the code if the molecule 
were static because the coding bases are not 
directly accessible to chemical reaction. There  
are however  many  indications that D N A  is a 
very dynamical  entity, undergoing very large de- 
formations and should not be viewed merely as a 
solid with a particular structure. 

A typical example  in which the dynamics of 
the molecule is essential for its function is D N A  
transcription during which a segment of the gen- 
etic code is copied into RNA.  In order  to expose 

the coding bases to chemical reaction, the double 
helix unwinds locally and forms a "bubb le"  
which is about  20 base-pair  long and moves 
along the molecule as the transcription proceeds. 
This complex process, which is activated by an 

enzyme,  is still beyond a physical analysis but it 
has strong similarities with the early stage of the 
termal  denaturat ion,  or "mel t ing"  of the double 
helix. The  melting, which is the separation of the 
two complementary  strands, starts locally by the 
format ion of small denaturated regions very 
similar to the transcription bubble. Another  im- 
por tant  motion of the D N A  molecule is its 
"brea th ing"  or fluctuational opening. In these 
very large fluctuations, base-pairs are temporari-  
ly b roken  and the two bases are exposed for 
chemical reaction for a very short t ime (10 -7 s). 
These  ftuctuational openings can be considered 
as intrinsic precursors for the denaturat ion and 
they could play a role in carcinogenesis by exter- 
nal molecules [1]. 

The  molecular  deformat ion involved in melt- 
ing or in fluctuational openings are so large that 
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they cannot be described by linear approxi- 
mations. Therefore biomolecular dynamics is a 
fascinating topic for nonlinear science because it 
is related to basic phenomena of life and we 
know that it has to be fundamentally nonlinear. 
We discuss here some aspects of DNA dynamics 
and we show that simple nonlinear models can 
provide a good description of the large am- 
plitude distortions of the molecule which are 
observed experimentally. Our basic approach 
can be viewed as an extension of the Ising mod- 
els, which have been widely used to study the 
statistical mechanics of the melting, in which we 
treat completely the dynamics of the bases. In 
section 2 we present our basic model and its 
statistical mechanics. This section makes the con- 
nection with the usual Ising models for DNA. 
Section 3 studies the dynamics of the model. 
Molecular dynamics is used to detect the main 
types of large amplitude motions and connect 
them with the experimental observations. Then 
we propose two analytical investigations adapted 
to the description of the fiuctuational openings 
and denaturation bubbles. Section 4 discusses 
more precisely the thermodynamics of the melt- 
ing of this one dimensional object, the DNA 
molecule. We show how the introduction of non- 
linear coupling terms to describe the base stack- 
ing interactions is essential to explain the sharp 
melting transition observed experimentally. 

2. A simple model for DNA melting and its 
statistical mechanics 

The simplest description of DNA melting rep- 
resents a base-pair by an Ising-like variable 
which takes only two values, 0 and 1, i.e., closed 
and open. The denaturation transition is then 
analyzed by treating the statistical mechanics of 
this one-dimensional Ising-spin chain [2]. The 
structure of DNA appears in the calculation of 
the statistical weight of each state of the mole- 
cule which is expressed as the product of a 
stability parameter for each base-pair, a 

cooperativity parameter taking into account the 
fact that breaking a base-pair destroys two stack- 
ing interactions unless the pair is the terminal 
pair of an open region, and an entropy parame- 
ter for each loop measuring the "stiffness" of the 
DNA strands. Many varieties of these Ising- 
models have been presented. For instance the 
stability parameter can be assigned to base-pair 
doublets rather than to a single base-pair be- 
cause, as we discuss in the last section, there is a 
strong relationship between the stacking inter- 
action of adjacent bases and the stability of the 
pairs. The model parameters are determined 
phenomenologically in order to get the best pos- 
sible agreement between the theoretical predic- 
tions and the experimental melting curves. Once 
a particular model has been calibrated it may be 
used to predict the melting curve of another 
DNA segment. The success of this approach to 
reproduce experimental melting curves is impres- 
sive, but it involves a large number of adjustable 
parameters. For instance, 10 parameters are 
used to represent the 10 possible types of base- 
pair doublets along the molecule. Moreover, 
using an Ising-variable prevents any attempt to 
describe the dynamics of the fluctuational open- 
ings since states intermediate between closed and 
open cannot be represented. 

Our approach goes further but still keeps the 
model as simple as possible in an attempt to 
determine the fundamental mechanism of the 
melting. Therefore we consider a simplified 
geometry for the DNA chain in which we have 
neglected the asymmetry of the molecule and we 
represent each strand by a set of point masses 
that correspond to the nucleotides. The charac- 
teristics of the model are the following: 

(i) The longitudinal displacements are not con- 
sidered because their typical amplitudes are sig- 
nificantly smaller than the amplitudes of the 
smaller transverse ones [3]. The stretching of a 
base-pair in the transverse direction is repre- 
sented by a real variable Yn which can therefore 
describe all the states of the pair from closed 
(Yn = 0) to completely broken. 
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(ii) Two neighboring nucleotides of the same 
strands are connected by an harmonic potential 
to keep the model as simple as possible. On the 
other hand, the bonds connecting the two bases 
belonging to different strands are extremely 
stretched when the double helix opens locally so 
that their nonlinearity must not be ignored. We 
use a Morse potential to represent the transverse 
interaction of the bases in a pair. It describes not 
only the hydrogen bonds but the repulsive inter- 
actions of the phosphate groups, partly screened 
by the surrounding solvent as well. The Hamilto- 
nian of the model is then the following: 

H = ~, [½m~ ] + ½K(Y. - y . _ l )  2 
n 

+ D(e -~yn _ 1)2]. (1) 

Since we are interested in the thermal denatu- 
ration transition of the molecule, the natural 
approach is to investigate the statistical mech- 
anics of the model. Due to the one-dimensional 
character of the system, and because the interac- 
tions are restricted to nearest neighbor interac- 
tions, it can be treated exactly, including fully 
the nonlinearities, with the transfer operator 
method [4]. 

For a chain containing N units with nearest 
neighbor coupling, the classical partition func- 
tion, given in terms of the Hamiltonian (1), can 
be expressed as 

N 

Y =  f 1-[ dy. dp,, e -tJn 
n = l  

+oo 

= ~fp x f dy~ e -¢f(yn 'y"- l )  

(2) 

where f ( y , ,  Y,-1) is the potential part of the 
Hamiltonian. The momentum part are readily 
integrated to give the usual kinetic factor for N 
particles ~p = (21rrnkBT) N/2. The potential part 
can be evaluated exactly [5-7] in the thermo- 
dynamic limit of a large system (N-->~) using 

the eigenfunctions and eigenvalues of the trans- 
fer integral operator 

f dy,,_l e - t 3 f ( y n ' y ' ~ - l )  ~bi (Yn_l )  

= e -s ' '  6i(Y,) • (3) 

The calculation is similar to the one performed 
by Krumhansl and Schrieffer [6] for the statisti- 
cal mechanics of the ~4 field. It yields :~y--- 
exp(-N/3e0), where e0 is the lowest eigenvalue of 
the operator. We can then compute the free 
energy of the model as ~ : = - k B T l n ~ =  
- ( 1 N k n T )  ln(2~rmkBT) + NE o and the specific 
heat Cv=-T(O2~/oTE).  The quantity which 
gives a measure of the extent of the denaturation 
of the molecule is the mean stretching (Ym) of 
the hydrogen bonds, which can also be calcu- 
lated with the transfer integral method [5] and 
yields 

(Y) = (Ym) = 

N 
E (dpi(y)[y[qbi(y)) e -uÈ~' 

i=l 
N 

E (dpi(y)[dpi(y)) e -N~'' 
i=1  

4~o( y)l yl 6o( y) ) 

= f Ch2o(y)y dy ,  (4) 

since in the limit of large N the result is again 
dominated by the lowest eigenvalue E 0 associated 
with the normalized eigenfunction ~b0(Y ). 

In the continuum limit approximation, the TI 
eigenvalue problem can be solved exactly, but 
experiments on proton exchange in DNA [8] 
show some evidence of exchange limited to a 
single base pair which suggests that discreteness 
effects can be extremely large in DNA. There- 
fore we have solved numerically the eigenvalue 
equation of the transfer operator [9] without 
approximations. The TI operator is symmetrized 
and the integral is replaced by sums of discrete 
increments, using summation formulas at differ- 
ent orders. The problem is then equivalent to 
finding the eigenvalues and eigenvectors of a 
symmetric matrix. 
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Fig. 1. Variation of ( y )  versus temperature: the dash line 
corresponds to the TI results in the continuum limit, the solid 
line gives the exact TI results obtained by numerical solution 
of the TI operator, and the plus signs correspond to molecu- 
lar dynamics simulations. 

Figure 1 compares the thermal evolution of 
(Ym) obtained with the continuum approxi- 
mation and the exact numerical calculation, for 
the model parameters discussed in the next sec- 
tion. Both methods show a divergence of the 
hydrogen bond stretching over a given tempera- 
ture, but the melting temperature given by the 
numerical treatment is significantly higher, point- 
ing out the large role of discreteness in DNA 
dynamics if one uses realistic parameters for the 
model. The TI calculation shows that the specific 
heat has a broad maximum around the denatura- 
tion temperature. 

3. Dynamics of the DNA molecule 

The thermodynamics of our DNA model 
shows that it exhibits a thermal evolution that is 
qualitatively similar to the denaturation of the 
molecule observed experimentally. But this 
statistical approach does not give information on 
the mechanism of the denaturation, and in par- 

ticular, does it start locally by the formation of 
denaturation bubbles in agreement with the ex- 
periments. In order to study this aspect, we have 
investigated the dynamics of the model in con- 
tact with a thermal bath by molecular dynamics 
simulation with the Nose method [10-11]. 

Beginning with the Hamiltonian H and the 
2N-dimensional phase space of a chain of N 
base-pairs with periodic boundary conditions, 
the fixed temperature canonical ensemble can be 
simulated by the addition of a single variable s, 
which regulates the energy flows, and an addi- 
tional parameter M, which fixes the scale of the 
temperature fluctuations. Nose demonstrated 
that in this phase space of the extended Hamilto- 
nian H' ,  the microcanonical ensemble of H '  is 
precisely the canonical ensemble of H at tem- 
perature T. This property is only exact for 
equilibrium properties, but investigations cur- 
rently in progress [12] show that, provided that 
the characteristic time of the Nose thermostat, 
controlled by M, is properly chosen, it can also 
give reliable results for the dynamical properties. 
Most of the simulations have been performed 
with a chain of 256 base-pairs with periodic 
boundary conditions, but in order to achieve 
better statistics, some simulations have been per- 
formed on a Connection Machine-200 with 16384 
base-pairs. Equations are integrated with a 4th 
order Runge-Kutta scheme with a time-step 
chosen to conserve H '  to an accuracy better than 
0.001% during a run. 

We have chosen a system of units adapted to 
the energy and time scales of the problem. Ener- 
gies are expressed in eV, masses in atomic mass 
unit (a.m.u.) and length in A. The resulting time 
unit is l t.u. = 1.0214x 10-14s. The choice of 
appropriate model parameters is a very con- 
troversial topic, as attested by the debate in the 
literature [13]. There are well established force 
fields for molecular dynamics of biological mole- 
cules, but they have been designed to provide a 
good description of the small amplitude motions 
of the molecule and are not reliable for the very 
large amplitude motions involved in the denatu- 
ration. In our model, the Morse 
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potential  is an effective potential which links the 
two strands. It results from a combination of an 
attractive part due to the hydrogen bonds be- 
tween two bases in a pair and the repulsive 
interaction between the charged phosphate 
groups on the two strands. The potential for the 
hydrogen bonds can be rather well estimated [14] 
but  the repulsive part is harder to determine 
because the repulsion is partly screened by ions 
of the solvent. Consequently we had to rely on 
estimations. The parameters that we use have 
been chosen to give realistic properties for the 
model  in terms of vibrational frequencies, size of 
the open regions, etc., but future work will be 
needed to confirm our choice. We do not expect 
however  that a bet ter  choice would change quali- 
tatively the results presented here. The parame- 
ters that we have chosen are: a dissociation 
energy D = 0.04 eV, a spatial scale factor of the 
Morse potential a = 4 . 4 5 / ~  -~, a coupling con- 
stant K = 0.06 eV/A, a mass m = 300 a.m.u. The 
constant of the Nose thermostat  has been set to 
M = 1000. 

A first scan of the dynamics of the model is 
obtained by imposing a slow temperature  ramp 
(200-540 K) that generates sets of states which 
are approximately equilibrated and are used then 
as initial states for simulations at constant tem- 
perature.  Figure 2 shows a time evolution of the 
dynamics of the model at three temperatures.  
The  stretching of the base-pairs is indicated by a 
grey scale, darker  dots corresponding to larger 
stretching. Looking at this figure, one notices 
immediately two major  features. First, as one 
moves along an horizontal direction, i.e., along 
the molecule for a given time, the amplitude of 
the stretching varies very much from site to site. 
This is especially true at high temperature,  but it 
is still noticeable at 150 K, well below the melt- 
ing temperature.  This shows that there is no 
equiparti t ion of energy in this nonlinear system, 
but on the contrary a tendency for the energy to 
localize at some points which is more and more 
pronounced as temperature  increases. At high 
temperature ,  the figure shows large black regions 
which correspond to denaturated regions of the 

molecule. These black areas are the denaturation 
bubbles observed experimentally. At  the highest 
temperature  shown here (fig. 2c) they extend 
over  20 to 50 base pairs and their boundaries are 
sharp. 

If the temperature  is raised slightly above 
540 K, the bubbles grow even more and finally 
extend over the whole chain: the molecule is 
completely denaturated.  The second remarkable 
feature on fig. 2 can be observed by moving 
along a vertical line on the figure, i.e., following 
the time evolution of a given base pair. If one 
choses one region of the molecule in which the 
energy is concentrated,  one can see alternating 
black and light-grey dots. This is due to an 
internal breathing of the localized excitations that 
oscillate between a large amplitude (black dots 
in the figure) and a small amplitude state (light 
dots) in a regular manner.  These motions are the 
fluctuational openings of DNA. They exist even 
well below the denaturation temperature and 
coexist with denaturated bubbles in the high 
temperature  range. Figure 2b shows that they 
play the role of precursor motions for the forma- 
tion of the bubbles. 

The calculation of the dynamical structure fac- 
tor from the molecular dynamics results exhibits 
two types of excitations. In the high frequency 
range, one recognizes the phonon modes corre- 
sponding to linear motions of the chain. At low 
tempera ture  their dispersion curve is well de- 
scribed by the linear dispersion curve resulting 
from the equations of motions of the model. 
Close to melting, on the contrary, most of the 
chain is on the plateau of the Morse potential 
and therefore  experiences almost no restoring 
force that brings it back to y = 0. The dispersion 
curve is then the dispersion relation of a chain of 
harmonically coupled particles, without a sub- 
strate potential,  i .e.,  a dispersion relation with- 
out gap. The variation versus temperature  of the 
frequency of main phonon peak at wavevector 
q = ½ xr plotted on fig. 3 shows clearly the transi- 
tion between a frequency belonging to the origi- 
nal dispersion curve at low T toward that of a 
gapless dispersion curve. This phonon softening 
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Fig. 2• Results of molecular dynamics simulations at three different temperatures (a) T = 150 K, (b) T = 340 K, (c) T = 450 K. 
The horizontal axis indicates the position along the 256 cells of the molecule and the vertical axis indicates time. The stretching y, 
of the base-pairs along the molecule is indicated by a grey scale, the lighter grey corresponding to y -< -0 .1 /~  and black indicating 
y --- 1 A. Therefore black regions show broken base-pairs. 

should  be  observable  exper imenta l ly  in the vic- 
inity o f  D N A  mel t ing  transition• The  second 
characterist ic  feature o f  the dynamical  structure 
factor is a l ow frequency  peak ,  associated to the 
f luctuational  open ing ,  which shifts to zero  f ie -  

quency  as the denaturat ion bubbles  form near 
the  mel t ing  point .  

S ince  the molecu lar  dynamics  s imulat ions  have 
found the two  types  of  m o t i o n s  observed  ex- 

per imenta l ly ,  f luctuational  openings  and bub- 
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Fig. 3. Frequency of the phonon modes versus temperature 
for q = ~xr. The error bars indicate an interval where the 
frequency lies, at those temperatures for which a single mode 
cannot be identified. The horizontal lines correspond to the 
phonon frequency at the bottom of the well (dashed) and on 
the Morse plateau (dash-dot-dot-dot). 

bles, it is interesting to see whether an analysis in 
terms of nonlinear excitations can explain these 
motions. 

The fluctuational openings correspond to large 
amplitude breathing modes which are localized 
by nonlinear effects. As they extend only over a 
few base pairs, they are intrinsically discrete. 
Their existence and long term stability poses the 
general question of the existence of breathers in 
discrete Kle in-Gordon models which has already 
attracted a great deal of attention without receiv- 
ing a definite answer [15]. An analytical investi- 
gation of the DNA model presented above is 
difficult due to the Morse potential, but, since 
the fluctuational openings are intermediate am- 
plitude oscillations, their study can be performed 
with a simpler potential that has qualitatively the 
shape of the Morse potential for small and inter- 
mediate amplitude but is more suitable analyti- 
cally. The potential 

D" 1 2 V ( y , ) =  ~ y , - a . ½ y 3 ) ,  (5) 

for y .  -- 1/a  is convenient. Introducing the vari- 
able w. = a y .  and the scaled time ~ = ~ t, 
and defining the parameter 0)2_ D/K,  which 
measures the discreteness, the Hamiltonian of 
this simplified models becomes 

= _ _  + - 

Ot n 

.at. 0 ) 2 ( 1  2 l W 3 ~ ]  
2 W n -  3 nil" (6) 

Large amplitude localized breathers can be ob- 
tained for this model [16] by the lattice-Green 
functions method [17] developed recently to 
study local modes in nonlinear lattices. We seek 
long-lived oscillatory solutions under the form 

w. = ~'~ ~bi. COS(i0)bt ) (7) 
i = 0  

where 0)b is the eigenfrequency of the fundamen- 
tal mode (i = 1) and ~bi, is the time independent 
amplitude of the ith mode (the ansatz has a dc 
part simply because of the asymmetry of the 
potential). Inserting this ansatz in the equations 
of motion and setting the coefficients of COS(i0)bt ) 
equal tO one another and retaining only the first 
three terms, which gives already a good approxi- 
mation, we obtain: 

0 2 0 0 + ~b,_ 1_24,0)  
0 )d t ] )n  - -  ( ~ n + l  

2 r  j 0  2 I ( A k l  2 2 
= °Jdtq~. + iv+',, + ~b] ] ,  ( 8 )  

0 ) 2  __ 2 1 1 1 0 ) b ) 4 , .  - ( ( ~ n + l  + ( ~ n - 1 -  2~b'.) 
2 0 2 1 = oJd(2~b,, + ~b,,)~b,, , (9) 

0 ) 2  2 2 2 2 
- ( 4 ~ . + 1  + - 40)b)4~. 4~,,_, 2~b 2) 

2 0 2 = oJd(Z~b,,~b,, + ½~ln2 ) . (10) 

Using the lattice Green's function of the linear 
part of the above equations, 

1 e iq (n  - m )  
c ( - -  m, 0)b)= 0)2 2 , 

( q ) -  0)b 
(11) 
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where q is the wave vector inside the first Bril- 
louin zone, th ° , ~bl~, ~b 2 can be expressed in terms 
of the r.h.s, of eqs. (8)-(10), which gives a set of 
simultaneous nonlinear eigenvalue equations de- 
termining the eigenfrequency to b and the eigen- 
functions 4,i,. They can be solved numerically by 
iterations, starting with appropriate initial condi- 
tions. We fix the dc term, which amounts to 
choosing a particular amplitude for the solution. 
Only 15 iterations are necessary to determine the 
values with an accuracy of 10 -4. A numerical 
simulation of the dynamics of the chain with the 
solution determined as above as an initial condi- 
tion shows that a large amplitude breather local- 
ized on very few lattice sites is extremely long 
lived, in agreement with the results of the molec- 
ular dynamics simulations of our DNA model. 
Consequently the very narrow fluctuational 
openings observed experimentally in DNA [8] 
and in our molecular dynamics investigations 
could well be discrete breathers stabilized by 
nonlinearity. 

The study of the denaturation bubbles turns 
out to be much more difficult because they can- 
not be studied independently of the thermal 
effects. Due to the shape of the Morse potential, 
at T = 0, any large amplitude opening bringing a 
set of neighboring base-pairs on the plateau of 
the Morse potential is unstable. This initial state 
would oscillate at very low frequency, but cannot 
stay in an open state since the bases in the open 
region are called back to their closing state by 
the bases which are still closed in the molecule 
and by the small downward slope of the Morse 
plateau. Therefore the existence of long lived 
open bubbles in our model, as they are seen in 
the molecular dynamics simulations, is fun- 
damentally a thermal effect which cannot be 
studied by Hamiltonian mechanics, as we did for 
the fluctuational openings. One way around this 
difficulty is to include temperature effects in the 
potential itself. This is exactly what the self- 
consistent phonon (SCP) method does using a 
trial Hamiltonian for the calculation of the free 
energy of the system at temperature T [18]. 

Introducing u. = y.  - ( y )  = y.  -7/  and two pa- 
rameters ~-~2 and ~b, we apply the SCP method 
[18] by considering the trial harmonic Hamil- 
tonian 

no E 1 .2 1~.~2 21 = [ ~ m u . +  ½4~(u.-u.+~) 2+ ~ U.l .  

" (12 )  

The canonical partition function ~ can be ex- 
pressed as the product of the unperturbed parti- 
tion function ~0 and a perturbation factor ~1: 

~ = f ~ I d u ,  e -~v 

=(f~duie-Om)(e-°('-'O')o 

The perturbation series for ~1 is calculated by 
expanding the exponential, and the logarithmic 
function; the coefficient of ( - f l ) ' / n !  in the ex- 
pansion of In ~1 is called the nth cumulant and is 
written [19] ( ( n -  Ho)")o.c. Thus 

.~ = - kB T In 

= - k B T  In ~0 - k a T  ln(e-~(n-n°))o 

= ~;o - k a T  ~] ( - f l ) "  .=1 n! ( ( H -  Ho)")o x 

= ~0+ ~1+ ~ 2 + ' " .  

The first contribution ~0 is the contribution of N 
harmonic oscillators, 

u-1 2xtkBT 
~:0 = - l k B T  E In 

q=0 to2(q) 
(13) 

It can be shown [20] that the variational free 
energy ~ - ~:0 + ~:1 = ~v gives an upper bound 
for the actual free energy. The only difficulty in 
evaluating ~v is the self-consistent substrate 
potential. It can be evaluated and gives an "ef- 
fective" potential that keeps the shape of the 
Morse potential, but with a minimum which is 
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temperature dependent. The expression for the 
first order correction for the free energy is then: 

~, = ( K -  (~ ) (<U2>  --  <U2>) -- In2<U2> 

+ D(1 + e -2a 'o+2a2{u2)  - -  2 e a'q+(a2/2)<u2}) , 

(14) 

with (u  2) = (u 2} and (v 2) = ( u , u , + , ) .  Consid- 
ering r/, (u  2) and (v 2) as variational parame- 
ters, the conditions for ~ to be stationary give 
n = 3a(u2) ,  ~b = K and O2 =2a2D exp( -  ~an). 

As rl is an increasing function of temperature, 
O2 decreases with T, which corresponds to the 
mode softening observed in the molecular dy- 
namics simulations. Since (u  2) and ~/ are re- 
lated, the minimization of ~1 amounts simply to 
solving the equation 

clearly that the self-consistent solution, which 
corresponds to the metastable minimum of the 
dashed and dash-dotted curves, disappears at 
T c = 411 K to give a strictly decreasing function 
of ~7. Over T c the only minimum is obtained for 
an infinite value of r/, which does not correspond 
to a self-consistent solution of the problem. Con- 
sequently T c can be identified as the denatura- 
tion temperature given by the SCP. Moreover, 
assuming that the free energy can play the role 
of an effective potential at temperature T, one 
can see that, as T approaches the melting tem- 
perature, the free energy exhibits a maximum 
followed by a decreasing part. In a "mechanical" 
equation of motion, such a potential would give 
stable open bubbles. 

7 / -  3akBT ~ [2a2D e -2an/3 
2N  p 

+ 4K sinZ(~p/N)] 1 . (15) 

In practice, eq. (15) is solved by a simple 
bisection method and fig. 4 shows the free ener- 
gy o% v versus 7/at different temperatures. We see 
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Fig. 4. Free energy ~v versus 7/ at different temperatures:  
T =  350 (dashed) ,  380 (dash-dotted) ,  411 (solid), 430 (dash- 
dot-dot-dot)  K. 

4. Is DNA melting a one-dimensional phase 
transition? 

The model discussed above has been able to 
describe some of the main features of DNA 
melting as it is observed experimentally. How- 
ever there is a crucial point in which this model 
gives incorrect results, it is the sharpness of the 
phase transition. For an homopolymer, the ex- 
periments show that the melting occurs very 
abruptly over a temperature interval which is 
only a few K or even less. This poses a very 
fundamental  question since DNA is basically a 
one-dimensional system, which is not expected 
to have a phase transition. We would like to 
conclude our paper by showing that, within a 

one-dimensional model with short range interac- 
tions, a sharp transition is possible if one takes 
into account properly the nonlinearity of the 
base stacking interaction [21]. The possibility of 
a phase transition in one-dimensional DNA was 
already examined within the Ising-model ap- 
proach by Poland and Scheraga [22] and Azbel 
[23] who concluded that it can be attributed to 
cooperativity effects and to the role of the wind- 
ing entropy released when the two strands sepa- 
rate. A simple extension of our DNA model (1) 
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can describe the dynamics of these effects and 
gives a very sharp transition in agreement with 
the experiments. 

The stacking energy between two neighboring 
base pairs is described by the anharmonic 
potential: 

W ( y , ,  Yn-1) = ½K(1 + p e -a(yn+y"-l)) 

x (y .  - y . _ l )  2 . (16) 

This new intersite coupling, replacing the simple 
harmonic coupling of our previous approach, is 
responsible for qualitatively different properties. 
The choice of this potential has been motivated 
by the observation that the stacking energy is not 
a property of individual bases, but a character o f  
the base pairs themselves [24]. When the hydro- 
gen bonds connecting the bases break, the elec- 
tronic distribution on bases are modified, causing 
the stacking interaction with adjacent bases to 
decrease. In eq. (16), this effect is enforced by 
the prefactor of the usual quadratic term ( y ,  - 
y,_ 1) 2. This prefactor depends on the sum of the 
stretchings of the two interacting base-pairs and 
decreases from ½ K(1 + p) to ½ K when either one 
(or both) base-pair is stretched. Although its 
form was chosen for analytical convenience, the 
qualitative features of potential (16) are in 
agreement with the properties of chemical bonds 
in DNA. They also provide the cooperativity 
effects that were introduced phenomenologically 
in the Ising models. A base pair that is in the 
vicinity of an open site has lower vibrational 
frequencies, which reduces its contribution to the 
free energy. Simultaneously a lower coupling 
along the strands gives the bases more freedom 
to move independently from each other, causing 
an entropy increase which drives a sharp transi- 
tion. Our approach can be compared to recent 
views on structural phase transition in elastic 
media which stress that intrinsic nonlinear fea- 
tures characterize the physics of these trans- 
formations, and extend the standard soft mode 
picture [25,26]. It is important to notice that, 

although cooperativity in introduced through 
purely nearest neighbor coupling terms, it has a 
remarkable effect on the 1D transition. 

Figure 5 shows the drastic change introduced 
by the anharmonic coupling on the specific heat 
of the model calculated by the transfer integral 
method [21]. The full curve corresponding to the 
anharmonic stacking interaction shows a sharp 
peak very similar to that one would expect from 
a first-order phase transition, whereas the har- 
monic coupling investigated before gives only a 
smooth maximum. This result suggests that, al- 
though DNA structure is very complicated, a 
simple nonlinear model is able to reproduce with 
a good agreement the main experimental fea- 
tures of its dynamics for the fluctuational open- 
ings as well as the melting curves. Indeed such a 
model does not pretend to give exact quantita- 
tive results that would fit exactly the experimen- 
tal melting curve of an heteropolymer with all its 
small structure. Our feeling is that it is more 
important to get a basic understanding than to 
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Fig. 5. Variation of the specific heat versus temperature. The 
very narrow peak corresponds to the anharmonic coupling 
case ( a  = 0.35, p = 0.5), the dotted curve and the solid broad 
peak to harmonic coupling ( k ' =  1.5k and k " =  k, respec- 
tively). 
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try to expla in  the very small  exper imen ta l  result.  

This  does no t  m e a n  that  we th ink  that  the simple 

mode l  tha t  we discussed here  is comple te  and  

shou ld  no t  be  ex tended .  But  any ex tens ion  will 

have  to be m e a s u r e d  for the new f u n d a m e n t a l  

f ea tu re  it br ings  against  the unnecessa ry  compli-  

ca t ions  it in t roduces .  Final ly  we would  like to 

po in t  out  that ,  a l though we have discussed non -  

l inear  dynamics  of D N A ,  we have not  intro-  

duced  sol i tons  in our  p ic ture  (a l though the dis- 

cre te  b rea the r s  are p robab ly  close to be ing  sol- 

i tons) .  I t  is s imply because  they do not  seem to 

be  necessary  to expla in  the dynamica l  features  of 

D N A  we are in te res ted  in. Sol i tons are marvel l -  

ous  objec ts  bu t  n o n l i n e a r  science can also live 

wi thou t  them.  
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