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Abstract
Internal waves are known to be inherently unstable and evolve in time by transferring
energy to different length and time scales. While there has been substantial work investi-
gating internal waves stability theoretically and numerically, there has been comparatively
few laboratory studies examining these instabilities. Using a full-depth wave generator
to force a vertical mode-1 wave in a narrow rectangular tank, we observe the evolution
of the wave field. The fluid motion is quantitatively measured using synthetic schlieren.
We present preliminary results regarding the growth rates of secondary waves due to
parametric sub-harmonic instability.

1 Introduction

Internal gravity waves can spontaneously become unstable, producing waves of smaller
frequency and larger wavelength. The history of this problem has been explored in a
review article by Staquet and Sommeria (2002) considering both propagating and standing
waves. This instability represents an interesting phenomenon in oceanic situations, since
it provides a good way to transfer energy from large scale waves to smaller scales, where
it can be dissipated, without the need of a turbulent cascade.

Thorpe (1968) performed experiments in a rectangular container using plungers on
the sides to drive low-order standing modes. For large amplitude forcing, ‘irregulari-
ties’ were observed that led to mixing and overturning. A series of experiments were
performed by McEwan and collaborators to investigate parametric instability. McEwan
(1971) performed experiments with an oscillating paddle in a linearly stratified fluid. He
observed the formation of ‘traumata’ or sharp density discontinuities that were linked to
growth of secondary waves by parametric instability. Orlanski (1972) considered standing
internal gravity waves examining especially how large amplitude waves broke for low fre-
quency forcing. Laboratory experiments by Benielli and Sommeria (1998) demonstrated
parametric subharmonic instability qualitatively. They applied a varying body force to
parametrically excite a primary standing wave. Secondary waves due to parametric sub-
harmonic instability were observed to sporadically grow and break.

We report here on experiments performed with a wave generator that produces sinu-
soidal vertical waves propagating along a rectangular tank. We quantitatively measure
the growth rate of the instability. As will be pointed out in the discussion, these results
are preliminary, and therefore no comparison to theoretical predictions can yet be made.
In addition, the dependence of the measured growth rates on various control parameters
still has to be studied in more details.
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2 Internal waves and Parametric Subharmonic Instability

Internal waves result from the balance of inertia of a fluid parcel and a restoring buoy-
ancy force in a stratified fluid. This buoyancy force is characterized by the buoyancy
frequency, N . The 2-D Boussinesq inviscid equations of motion corresponding to conser-
vation of momentum and mass can be written as

∂2∇2ψ

∂t2
+N2∂

2ψ

∂x2
= − ∂

∂t
J(∇2ψ, ψ)− ∂

∂x
J(ρ′, ψ). (1)

Since the flow is assumed to be incompressible, we use a stream function ψ to represent
velocity ~u = (u, v) = (∂ψ/∂z,−∂ψ/∂x) and ρ′ represents the perturbation density field.

Upon linearization, the right side of the equation of motion is zero which leads to the
usual dispersion relation for frequency ω

ω2 = N2

(
1− k2z

k2

)
(2)

where k and kz are respectively the modulus and the vertical component of the wave
number, ~k. For small amplitudes, it can be assumed that that several waves could con-
currently exist simply as a linear superposition. However, in the case of a resonant triad
interaction, where three waves verify a condition of spatial resonance

~k0 + ~k1 + ~k2 = 0 (3)

and a condition of temporal resonance

ω0 + ω1 + ω2 = 0, (4)

the non-linear terms act as forcing terms transferring energy between the three waves.
In particular, a finite amplitude, larger length scale, higher frequency wave can transfer
energy to produce two secondary waves of smaller length scales and lower frequencies.

It has been shown by Hasselmann (1967) that growth of secondary waves occurs only
if |ω1| + |ω2| = |ω0|. The difference triads, where ||ω1| − |ω2|| = |ω0|, are only neutrally
stable. In the case of large scale waves, such as can be observed in the ocean, where the
dissipation is weak, it appears that the maximum growth rate of the instability occurs
for perturbations of half the primary wave frequency ω1 ' ω2 ' ω0/2, in the limit

of high wavenumbers ||~k1|| ' ||~k1|| � ||~k0||. The instability then takes the form of a
parametric instability, and is thus called “Parametric Subharmonic Instability” (PSI). In
the case of waves in an experimental tank, this particular condition is not fulfilled, but
by extension, we will still call PSI the observed phenomenon, since the corresponding
physical mechanism is the same.

3 Method and Analysis

3.1 Experimental setup

Internal waves can be generated in a laboratory setting by a variety of means using an
oscillating cylinder (Mowbray and Rarity (1967)), flow over topography, plungers (Thorpe
(1968)) or an oscillating paddle (McEwan (1971)). To generate monochromatic vertical
modes, we chose a relatively new way using a set of oscillating plates (Gostiaux et al.
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(2007); Mercier et al. (2010)). The vertical wave number is fixed by the relative horizontal
offsets of the plates. The frequency of the waves is controlled by the rotation rate of the
motor which in turn is linearly dependent on the voltage applied to the motor.

The tank is filled with a linear salt water stratification using the standard double
bucket technique (Oster (1965)). The stratification is roughly N = 1 rad · s−1 for most
experiments. It is measured using a conductivity probe from Precision Measurement
Engineering which is calibrated using reference solutions whose density is measured with
a Anton Paar 35N density meter. The conductivity probe is traversed vertically through
the water before an experiment begins, using a computer controlled lead screw. A linear
best fit line is made to the measured density profile, the slope of which is used to define
a buoyancy frequency for the experiment. There is typically some mixing (1-3 cm) at the
top and bottom of the tank due to the filling procedure. The best fit line is estimated
on the interior of the profile. The stratification is measured at the beginning of the day
before any experiments are performed.

An Allied Vision StingRay 146B camera is used to acquire images at a rate of 1.875
frames per second. The camera is positioned roughly 2 m in front of the tank. Typical
experiments last for about 10 minutes to capture approximately a hundred buoyancy
periods of evolution of the wave field. The maximum camera resolution is 1280x960
which for our choice of zoom leads to a scaling of approximately 0.04 cm per pixel. The
tank is illuminated with a light sheet from behind with a random pattern of dots.

We define a lab reference frame for the experiments where the origin is the lower
left corner inside the tank at the equilibrium position of the right edge of the plates.
See figure 1 for a schematic. Various experiments were performed with varying forcing
frequency.

Figure 1: Setup of experiment. Plates of wave generator on the left force the linear stratified fluid inside
the tank of length L = 80 cm and depth H = 32 cm. The camera sees only a limited field of view (marked
as FOV) of the entire apparatus. The origin, marked by O, is positioned inside the tank at the bottom,
at the equilibrium position of the plates.

3.2 Image analysis

The motion of the fluid is inferred by synthetic schlieren (Dalziel et al. (2000)) using the
method of pattern matching refractometry. This optical method takes advantage of the
linear dependence of the index of refraction on the density of the fluid. Internal waves
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perturb the local density field and produce an optical distortion of a pattern behind the
tank which appears as a localized displacement of the background pattern. We can relate
this apparent displacement back to actual movement of the stratified fluid. The technique
assumes the flow is uniform across the tank. The synthetic schlieren method estimates
the ∂ρ′/∂x and ∂ρ′/∂z fields.

The apparent motion of the dots in the background pattern is computed using a
cross-correlation algorithm implemented in the CIVx software suite (Fincham and Del-
erce (2000)). The cross-correlation is performed between an initial image taken before
the experiment starts and the system is at rest and a later image taken during the exper-
iment. Since the experiment is recorded over many frames, this cross-correlation routine
is repeated giving the apparent displacements of the dots as a function of time. The
displacement, given in coordinates of the lab reference frame, is decomposed into both
horizontal, ∆x, and vertical, ∆z, components. The cross-correlation algorithm takes as
parameters the size of an interrogation box, ib, and a search area, is. Both of these boxes
are squares with values of ib = 21 pixels and is = 31 pixels. The interrogation boxes are
spaced with a resolution in ∆x and ∆z of 20 pixels. The measurements are performed
on a rectangular grid over the interior of the tank and the time resolution is given by the
frame rate of the acquisition system.

3.3 Spectral filtering

At each spatial position, a time series of each density gradient ∂ρ′/∂x and ∂ρ′/∂z can
be considered. The power spectrum obtained using a Fourier transform identifies the
dominant frequencies in that time series. A spatial average of each of these spectra
identifies the dominant frequencies in the overall fluid motion. The distinct peaks in this
averaged spectrum are identified and recorded.

A signal with multiple discrete frequency components can be decomposed using am-
plitude demodulation. The result of this operation applied to both density gradients
decomposes them into multiple components of known frequency. Applying the superposi-
tion principle by subtracting off these known components from the original signal leaves
a continuous spectrum. The relative fraction of the energy of this remaining signal to the
original signal gives a measurement of what fraction of the signal has been explained by
the multiple discrete frequency decomposition.

The amplitude as a function of time of each component is determined. The amplitude
is estimated as the spatial maximum. On a semi-log plot, assuming that a straight line
segment of the amplitude function can be identified, a linear regression applied to this
segment gives the growth rate λ.

4 Results

Figure 2 shows an experiment with ω/N = 0.9. At early times a clean mode-1 vertical
wave is seen propagating to the right away from the wave generator. At later times, there
are waves of multiple vertical wave number in the field of view.

The spectrum of the example signals from figure 2 are shown in figure 3, with frequency
normalized by the buoyancy frequency. The plot displays two curves corresponding to the
spectrum computed with either the vertical displacement, or the horizontal displacement.
The largest peak on the right side of the spectrum corresponds to the forcing frequency, ω0.
To the left of this forcing frequency, a pair of spectral peaks are observed. If this pair of
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Figure 2: dρ/dx at early and late times (t = 9.8T and t = 19.9T ). The blue box indicates the extension
of the tank from the edge of the plates to its end-wall.

clearly defined peaks verifies the relationship ω0 = ω1 + ω2, it is interpreted as evidence
of parametric instability. There is also a background level of noise over a broad frequency
range. The strong peak near ω/N = 0 corresponds to slow changes (relative to the
buoyancy period) of the relative frequency content of the wave field.

Once each spectral component is identified, it is isolated by filtering, as explained in the
previous section, and its amplitude is computed. Figure 4 shows an example of computed
amplitude versus time (scaled by the buoyancy period TBV ), for the 3 frequencies identified
in a case of PSI. The amplitude of the primary wave (top plot), after an initial transient,
stays fairly constant, until the secondary waves reach their maximum amplitude. Then it
decreases slightly. This is a clear signature that energy is transferred from the large scale
primary wave to smaller scale secondary waves.

The secondary waves (middle and bottom plots) start to grow after a few buoyancy
periods and the linear increase of their amplitude in this semi-log representation confirms
an exponential growth. The slope of this linear increase, computed by a best line fit, gives
a direct measurement of the growth rate, scaled by the buoyancy period.

Figure 5 shows a summary of the growth rates measured for different forcing fre-
quencies. The various colors correspond to different realizations of the stratified tank,
showing that there is a variability in the growth rate, depending of the exact details of
the stratification. However, there is a clear trend showing that below a threshold in forc-
ing frequency, around 0.9 times the buoyancy frequency, PSI does not develop. Then,
above the threshold, the growth rates increase, to reach about a quarter of the buoyancy
period when the forcing frequency is close to the Brunt-Väisälä frequency.
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Figure 3: Spectrum showing primary wave and lower frequency secondary waves. Red line, vertical
motion. Blue line, horizontal motion.

5 Conclusion and discussion

Using a high resolution method of synthetic schlieren, coupled with a Fourier analysis al-
lowing us to separate the time dependence of the frequency components of a set of internal
waves, we were able to measure the growth rate of the instability produced by resonant
triad interactions between internal waves. Since these results are only preliminary, a
number of effects remain to be studied and understood:

• The particular structure of the stratification appears to be very important in the
outcome of these experiments. All stratification tests are nominally linear. However,
there is alway some amount of either surface or bottom mixing (or both), which
occurs during the filling of the tank, during successive experiments, or over time
due to surface heating and cooling. Experiments performed on successive days with
the same stratification (that is, same value of N in the middle part of the tank)
but different amounts of mixing at the top and the bottom produce very different
evolutions of the secondary waves with the same external forcing. We must conclude
that small scale details of the stratification are important in predicting the growth
of secondary waves due to parametric instability.

• The next step of this analysis will be to compare the measured growth rates to
theoretical predictions. However, the amplitude of the primary wave is a critical
parameter in determining the theoretical growth rate. And as we have pointed
out, this amplitude is not independent of the secondary wave growth. Therefore,
particular attention has to be paid to how this amplitude will be determined.

• For experiments with high forcing frequency, the horizontal group velocity of the
primary wave is very small. That is, the time it takes for linear mode-1 waves to
propagate to the end of the tank and return to the measurement area is longer
than the duration of the experiment. But in the case of lower forcing frequency, the
primary wave can reflect off the end wall and come back faster. It is then very likely
that the primary wave will establish a standing wave. The amplitude of the standing
wave is obviously not the same as the amplitude of the forcing. Since growth rate
is dependent on the amplitude of the primary wave, application of the theory is
somewhat complicated by the fact that, in this case of low forcing frequency, the
primary wave amplitude is function of the length of the tank.
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Figure 4: Amplitude of the 3 frequency components (top, primary wave, middle and bottom, secondary
waves) as function of time. As in the previous figure, red line represents vertical motion, blue line,
horizontal motion. The dashed lines represent the linear fits of each components, the solid line is the
average of both dashed lines.
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Figure 5: Growth rates as a function of ω/N . The color of the dots correspond to different days, therefore
slightly different stratifications.
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To extend this project further, we might study the spatial dependence on wave growth.
In particular, we could test a prediction by Koudella and Staquet (2006), stating that the
PSI most likely grows in regions where negative vorticity of the primary wave coincides
with positive vertical density gradient due to this wave. We also want to investigate the
evolution of other forced waves, namely, plane waves or wave beams (Thomas-Stevenson
profile). In addition, by running this experiment in a rotating frame of reference, we can
explore the effect of rotation of the evolution of the internal waves. In such a rotating
frame, the lower cut-off for internal waves is the Coriolis frequency. We could then test the
effect of a “critical latitude”. For simplicity, we have used a linear stratification. Other
possibilities include an exponential profile or more general (realistic) stratification profiles.
Furthermore, we have only considered two-dimensional forcing: with a modification of the
wave generator and the tank, we could explore three-dimensional modes.
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