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Abstract
One of the pivotal questions in the dynamics of the oceans is related to the cascade
of mechanical energy in the abyss and its contribution to mixing. Here, we propose
a unique self-consistent experimental and numerical set up that models a cascade of
triadic interactions transferring energy from large-scale monochromatic input to multi-
scale internal wave motion. We also provide, for the first time, explicit evidence of a wave
turbulence framework for internal waves. Finally, we show how beyond this regime, we
have a clear transition to a cascade of small-scale overturning events which induce mixing.

1 Introduction

The continuous energy input to the ocean interior comes from the interaction of global
tides with the bottom topography yielding a global rate of energy conversion to internal
tides of the order of 1TW. The subsequent mechanical energy cascade to small-scale
internal-wave motion and mixing is a subject of active debate in view of the important
role played by abyssal mixing in existing models of ocean dynamics. The oceanographic
data support the important role of internal waves in mixing, at least locally: increased
rates of diapycnal mixing are reported in the bulk of abyssal regions over rough topography
in contrast to regions with smooth bottom topography. A question remains: how does
energy injected through internal waves at large vertical scales induce the mixing of the
fluid?

Let us consider a stratified fluid with an initially constant buoyancy frequency N =
[(−g/ρ̄)(dρ/dz)]1/2, where ρ(z) is the density distribution over the vertical coordinate z,
and g the gravity acceleration. The dispersion relation is θ = arcsin(Ω). Here θ is the
slope of the wave beam to the horizontal, and Ω (resp. ω = ΩN) is the non-dimensional
(resp. dimensional) frequency of oscillations. The anisotropic dispersion relation requires
preservation of the slope of the internal wave beam upon reflection at a rigid boundary. In
the case of a sloping boundary, this property gives a purely geometric reason for a strong
variation of the width of internal wave beams (focusing or defocusing) upon reflection.
Internal wave focusing provides a necessary condition for large shear and overturning, as
well as shear and bottom layer instabilities at slopes.

In a confined fluid domain, focusing usually prevails, leading to a concentration of wave
energy on a closed loop, the internal wave attractor [1]. At the level of linear mecha-
nisms, the width of the attractor branches is set by the competition between geometric
focusing and viscous broadening. High concentration of energy at attractors make them
prone to triadic resonance instability which sets in as the energy injected into the sys-
tem increases [2]. Note that the particular case for which both unstable secondary waves
have a frequency equal to half of the forcing frequency is of particular interest in the
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Figure 1: Experimental set-up. The wave generator is on the left and the inclined slope on the right.
The color inset is a typical PIV snapshot showing the magnitude of the experimental two-dimensional
velocity field obtained after 15 periods T0 = 2π/(NΩ0). Black dashed lines show the billiard geometric
prediction of the attractor.

oceanographic context where viscosity is negligible. In that case, the appropriate name is
parametric subharmonic instability and abbreviated as PSI. By abuse of language, some
authors have sometimes extended the use of the name PSI to cases for which secondary
waves are not corresponding to half of the forcing frequency. For the sake of termino-
logical consistency, we propose to abbreviate triadic resonance instability using the new
acronym: TRI.

The onset of instability in this case is similar to the classic concept of triadic resonance,
which is best studied for the idealized case, with monochromatic in time and space carrier
wave as a basic state which feeds two secondary waves via nonlinear resonant interactions.
The resonance occurs when temporal and spatial conditions are satisfied: Ω1 + Ω2 = Ω0

and
−→
k1 +

−→
k2 =

−→
k0 , where

−→
k is the wave vector while subscripts 0, 1 and 2 refer to

the primary, and two secondary waves, respectively. In a wave attractor, the wave beams
serve as a primary wave, and the resonance conditions are satisfied with good accuracy [2],
providing a consistent physical framework for the short-term behavior of the instability.

2 The energy cascade revealed by the time-frequency diagram and the bicoherence plot

Using laboratory experiments and numerical simulations, we have shown that the set-up,
sketched in Fig. 1, provides an excellent energy cascade, emphasizing how internal wave
attractors can be a novel laboratory model of a natural cascade.

Indeed, the internal wave attractor is the first step: the focalisation mechanism enhances
the development of the triadic instability within the beams of the attractor. While the
attractor is still visible, branches are progressively deformed by triadic resonance insta-
bility, leading to the presence of secondary waves. Once the instability is well-developed,
secondary waves are acting as primary waves for higher-order triadic interactions. If the
focalisation is strong enough, this mechanism will of course repeat through the instability
of the secondary waves. This is what is revealed by the time frequency diagram shown
in Fig. 2(a). Initially, only a signal around Ω0 = 0.61 is present, but almost immediately
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Figure 2: Cascade of Triadic Resonance Instabilities (TRI). Time-frequency diagram (a) and its associ-
ated bicoherence (b) of the PIV signal measures in the entire trapezoidal domain.

one distinguishes two secondary waves Ω1 = 0.36 and Ω2 = 0.25 whose sum gives Ω0.
However, again Ω1 and Ω2 are destabilized and this mechanism is pursued.

To detect the frequency triplets, we use the bispectrum analysis which measures the
extent of statistical dependence among three spectral components (Ωk, Ωi, Ωj) satisfying
the relationship Ωk = Ωi + Ωj, with the quantity M(Ωi,Ωj) = F (Ωi)F (Ωj)F

∗(Ωi + Ωj),
where F is the Fourier transform and ∗ denotes the complex conjugate. In practice,
the bispectrum is usually normalized and considered in form of bicoherence which is
0 for triplets with random phases and 1 for triplets with perfect phase coupling. The
bicoherence is shown in Fig. 2(b). In addition to the strong peak (0.61, 0.61) corresponding
to the forcing frequency (therefore to self-correlation), the possible triplets satisfying
the definition of triadic resonance at Ωk = Ω0 can be found on the line with slope −1
connecting the points (0, 0.61) and (0.61, 0). This emphasizes that the mechanism at play
is triadic. Other peaks are also visible corresponding to other choices of Ωk revealing that
the instability mechanism is repeated and leads to a cascade.

Thanks to this beautiful representation, it can therefore be attested that the energy trans-
fer from global to small scales in attractors operates via a hierarchy of triadic interactions
producing a complex internal wave field with a rich multi-peak discrete frequency spec-
trum embedded in a continuous spectrum of weaker magnitude.

3 A route towards wave turbulence

It is important to emphasize that the final stage is non-trivial since these phenomena
are beyond the domain of pure wave-wave interactions: it corresponds to a regime usu-
ally called wave turbulence [3]. A similar situation takes place for surface waves, where
the flourishing literature gives a fully consistent description of energy cascades between
components of wave spectra, only in the case of weakly nonlinear processes, while ex-
perimental reality deals with cascades significantly “contaminated” by effects of a finite
size fluid domain, wave breaking, wave cusps, nonlinear dispersion, viscous damping of
wave-field components, etc. The very specific dispersion relation for internal waves intro-
duces additional complications. For instance, in rotating fluids, which have a dispersion
relation analogous to stratified fluids, the usefulness of the formalism of wave turbulence
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Figure 3: Energy spectra. Colors indicate the levels of energy spectra. The black lines correspond to the
dispersion relation Ω = ± sin θ = ±kx/

√
k2x + k2z . Integration across different wavenumbers ranges from

0.22 to 1 rad·cm−1, i.e. wave lengths 28.5 cm to 6.3 cm.

as a basis for the studies in rotating turbulence has been reported for experiments only
recently [4]. For internal waves, the question is still fully open, from both experimental
and numerical points of view.

The presence of wave turbulence-like phenomena is illustrated in Fig. 3 using the energy
spectra experimentally obtained for large scales as a diagnostic tool [4]. Horizontal and
vertical velocity fields u(x, z, t) and w(x, z, t) are obtained with 2D PIV measurements
in the entire trapezoidal domain. A two dimensions for space and one for time Fourier
transform of these fields leads to û(kx, kz,Ω) and ŵ(kx, kz,Ω). One can thus define the
2D energy spectrum by

E(kx, kz,Ω) =
|û(kx, kz,Ω)|2 + |ŵ(kx, kz,Ω)|2

2ST
, (1)

where S is the area of the PIV measurement and T its duration.

In the dispersion relation for internal waves, Ω = ± sin θ, the wave vector
−→
k and its

components do not appear directly but they are linked with the angle θ by sin θ =
±kx/

√
k2x + k2z . To compute the energy spectrum as a function of variable θ, one can

interpolate the energy spectrum E(kx, kz,Ω) to get E(k, θ,Ω), where k is the norm of the
wave vector. For this interpolation, we define ∆k as the smallest wave vector that has
data points in the Cartesian coordinates. Then, one can integrate over the entire range
of wave vectors [kmin, kmax] as follows

E(θ,Ω) =

∫ kmax

kmin

E(k, θ,Ω)kdk, (2)

or on any range of wave vectors between kmin and kmax. This is what has been done
in Fig. 3 and the integration range represents 84% of the energy in the entire range
[kmin, kmax]. The linear dispersion relation is seen to attract the maxima of the energy
spectra. Above results are convincing signatures of a discrete wave turbulence framework
for internal waves in this intermediate forcing amplitude regime.

If we repeat the same experiment with a larger amplitude, we have indications that
a system is beyond the wave turbulence-like regime and has reached a mixing regime.
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Figure 4: Mixing and vorticity. (a) Ratio between the density profiles measured after and before the
experiments for cases with intermediate (black) and large (red) forcing amplitudes. (b) Experimental
probability density functions of the vorticity, calculated on the grid from experimental images for low
(blue), intermediate (black) and large (red) forcing amplitudes. Figures 2 and 3 correspond to the
intermediate forcing amplitude.

Indeed, short-scale perturbations in particular clearly escape any relation to linear wave
dynamics. This is expected to be due to overturnings, natural precursors to mixing.

4 Mixing inferred from vorticity distribution

An important issue is whether or not sufficiently energetic internal wave motion can pro-
duce an irreversible energy contribution to mixing. Figure 4(a) presents the comparison
between density profiles measured before and after experiments: while no modification of
the density (within experimental error) can be observed for the intermediate amplitude
forcing that leads to wave turbulence regime described in the previous section, one gets a
clear evidence of mixing in case of a larger forcing amplitude.

Further, differences between the regimes corresponding to low and high mixing are clearly
seen in statistics of extreme events. This statistics is obtained by the calculation of
probability density functions (PDF). Since we are interested in small-scale events desta-
bilizing the stratification, we take the horizontal y-component of vorticity ξ(x, z, t) =
∂u/∂z − ∂w/∂x measured in the vertical midplane of the test tank as a relevant quan-
tity and consider the PDF of the dimensionless quantity ξ/N . In Fig. 4(b), we present
the vorticity PDFs corresponding to different wave regimes in the attractor. In a stable
attractor (see blue curve), extreme events are completely absent and the wave motion is
concentrated within the relatively narrow branches of the attractor while the rest of the
fluid is quiescent. Accordingly, the PDF has a sharp peak at zero vorticity and is fully
localized between well-defined maximum and minimum values of vorticity. For larger forc-
ing amplitudes (black and red curves), the development of TRI increases the probability
of extreme events due to summation of primary and secondary wave components.

The occurrence of local overturning events can be viewed as a competition between strat-
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ification and vorticity. In a two-dimensional flow, a relevant stability parameter is a
version of the Richardson number, which can be introduced as Riξ = N2/ξ2. For a hori-
zontal stratified shear flow this parameter reduces to the conventional gradient Richardson
number Ri = N2/(du/dz)2, where du/dz is the velocity shear. Flows with large Ri are
generally stable, and the turbulence is suppressed by the stratification. The classic Miles-
Howard necessary condition for instability requires that Ri<1/4 somewhere in the flow. If
this condition is satisfied, the destabilizing effect of shear overcomes the effect of stratifi-
cation, and some mixing occurs as a result of overturning. The threshold value |ξ/N | = 2
is marked on the plot of vorticity PDFs. It can be seen that data corresponding to large
forcing amplitudes have ”tails” extending into the domains |ξ/N | > 2. The area under
the tails represents the probability of event of strength |ξ/N | > 2. In the larger forcing
case (red curve), this probability is an order of magnitude greater than in intermediate
one (blue curve), in qualitative agreement with the much higher mixing that has been
reported.

5 Conclusion

We report and describe a novel experimental and numerical set up, an “internal wave
mixing box”, which presents a complete cascade of triadic interactions transferring energy
from large-scale monochromatic input to multi-scale internal wave motion, and subsequent
cascade to mixing. We report interesting signatures of discrete wave turbulence in a
stratified idealized fluid problem. Moreover, we show how statistics of extreme vorticity
events leads to mixing that occur in the bulk of the fluid.
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