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We present a simple laboratory experiment to illustrate some aspects of the soliton theory in discrete
lattices with a system that models the dynamics of dislocations in a crystal or the properties of
adsorbed atomic layers. The apparatus not only shows the role of the Peierls–Nabarro potential but
also illustrates the hierarchy of depinning transitions and the importance of the collective motion in
mass transport. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

Since the discovery of solitary waves by J. Scott Russ1

on his horse along the Edinburgh canal, and the sem
paper by Zabusky and Kruskal2 explaining the recurrence
phenomenon found by Fermi–Pasta–Ulam in a nonlin
chain of atoms, the soliton concept has been the star
point of very fruitful research: It has not only led to ve
important advances in applied mathematics but it is also
excellent tool for explaining the properties of various phy
cal systems.3

The soliton concept is generally associated with conti
ous fields. For instance, the very interesting resource le
on solitons, recently published in theAmerican Journal of
Physics,4 does not contain more than a few lines on discr
lattices despite the fact that many physical systems are
trinsically discrete, such as crystals or macromolecules. T
is because, except for very few specific cases such as
Toda lattice, the discretized version of integrable partial d
ferential equations that describes physical systems does
have true soliton solutions. However this does not mean
the soliton concept is useless for describing nonlinear e
tations in discrete systems. Such systems can sustain
proximate soliton solutions, and discreteness introduces
features such as soliton pinning or radiation of small am
tude waves. These effects are important for understan
some physical phenomena. For instance, it is because
width is of the same order as the lattice spacing that di
cations do not propagate freely in a crystal and radiate vib
tional modes when they are forced to propagate by an ex
nal stress. This explains the familiar observation that wh
one successively bends and unbends a piece of iron
many times it gets hot. Each plastic distortion moves dis
cations that radiate vibrational waves in the solid, raising
temperature.

The present paper has a dual purpose. First we wan
give a brief tutorial on quasisolitons in discrete systems
ing the example of the diffusion of atoms on a crystalli
surface because, on the one hand, it allows a rather intu
understanding of the phenomena and, on the other han
shows how collective effects can lead to new phenome
Then we introduce a simple experiment, easily built in
physics laboratory, which illustrates some of the discreten
effects that cannot be shown with the soliton experime
that have been proposed earlier, such as water waves ex
ments~see the review by Segur in Ref. 3! or the chain of
strongly coupled pendula proposed by A. C. Scott.5
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II. A BRIEF TUTORIAL ON COLLECTIVE
DIFFUSION

Before describing the apparatus and experimental res
let us recall some basic ideas on the diffusion of partic
over a periodic potential under the effect of an applied for
The motion of a single particle can be easily analyzed if o
considers only the low temperature situation where the th
mal fluctuations can be neglected. In the absence of a driv
force, the particle is trapped in a potential well. Applying
driving force is equivalent to tilting the potential and, abo
a critical anglea0 , the minimum disappears and the partic
starts to slide on the washboard potential.6

Instead of a single particle let us now consider a chain
particles coupled by harmonic springs with an equilibriu
length equal to the distance between the potential mini
This state is called a commensurate state. Its ground sta
reached when all the particles are in the potential mini
@Fig. 1~a!# and the situation is comparable to the case o
single particle: The motion induced by an external force w
only start when the minima of the total potential~including
the force term! have disappeared. If a defect is introduced
the chain, the situation becomes very interesting and
equivalent to creating a dislocation in a crystal. Consider
instance the case of a missing particle obtained by mov
one-half of the chain by one unit, i.e., a kink in the partic
positions. In the vicinity of the defect, the competition b
tween the elastic energy of the springs and the substrate
tential energy displaces the particles with respect to
minima of the potential@Fig. 1~b!#. As a result, the particles
next to the defect are easier to move with an external fo
than a particle sitting at the bottom of the well. For a sin
soidal potential of perioda,V(x)5V0@12cos(2px/a)#, when
the coupling between the particles is strong, the position
the nth particle is xn5a@n1(2/p)tan21 exp(n/l)#, with l
5(a/2p)Ak/V0 wherek is the spring elastic constant.5 No
analytical solution for the structure of the defect is known
the case of weak coupling.

When the coupling between the particles is verystrong,
the defect is extended. The displacements of the parti
vary progressively from zero to one lattice spacing across
defect. Consequently, there are particles at any level of
substrate potential, including on the maximum. This is
situation that is realized in the chain of strongly coupl
pendula described by Scott.5 In this quasicontinuum situa
tion, it is easy to understand why the defect~or soliton in the
terminology of nonlinear science! can move freely. When it
is translated, some particles have to climb over the subst
potential barriers but simultaneously others move downw
552© 2000 American Association of Physics Teachers
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in the potential and the overall translation does not requ
any energy. In a continuum model, the system is invari
underany translation and the free motion of the soliton
simply a manifestation of this translational symmetry~Gold-
stone mode!.

In the weaklycoupled situation that we consider here, t
situation is different. The defect is highly localized and ev
though some particles are slightly displaced from the pot
tial minima as in Fig. 1~c!, the springs are not strong enoug
to maintain particles at the top of the substrate potential b
riers. Now, in order to translate the defect, one has to m
particles up on the substrate potential: There is a barrie
the free translation of the defect, which is well known
dislocation theory as the Peierls–Nabarro~PN! barrier. The
weak coupling case appears therefore as a natural interm
ate case between the case of individual particles which m
overcome the full potential barrier of the substrate poten
and the continuum case where the soliton is completely
to move. In this intermediate case, the defect moves a
collective excitationover aneffective potential, the PN po-
tential, which has the period of the lattice and an amplitu
which is much lower than the individual potential barrier
the substrate. This analysis in terms of a collective ob
explains why the critical stress for the plastic deformation
a crystal is several orders of magnitude lower than the st
that would translate a full atomic plane above another.7

The case of atoms adsorbed on an atomic surface is
more interesting because usually the equilibrium distancb
that the atoms would select if they were free is not comm
surate with the perioda of the crystalline substrate. As
result, the interaction forces compete with the substrate
tential to determine the particle positions. The atomic la
minimizes the energy by letting the particles drop near
bottom of the substrate potential wells almost everywh
and compensating for the mismatch betweena andb by cre-
ating local discommensurations which are very similar to

Fig. 1. Positions of a set of harmonically coupled particles subjected
periodic potential. The springs connecting the particles~schematized by the
thick line! have an equilibrium length equal to the period of the potential.~a!
Ground state of the system. All particles are in the potential minima.u51.
~b! Excited state. The particles on the right half of the chain have b
moved to the next potential well, creating a localized defect in the part
distribution.u5121/N. ~c! The same excited state for a weaker couplingk
~weaker connecting springs!. The defect is narrower~i.e., the width l is
smaller!, and the atoms in the defect core are closer to the minima of
potential. The depinning force required to move the defect~c! is therefore
higher than the depinning force in case~b!. u5121/N.
553 Am. J. Phys., Vol. 68, No. 6, June 2000
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isolated defect described above for the commensurate c
The only difference is that, depending on the commensu
bility ratio, there is a hierarchy of defects with differen
shapes and different barriers. In the case of an irrational
tio, this hierarchy is complete and some defects have a v
ishingly small PN barrier: In the discrete lattice~provided the
coupling is not too weak8!, a vanishingly small external force
can cause mass transport in the system. The application o
external driving force to an interacting chain of atoms exh
its this hierarchy of depinning transitions.9 For very low
force, no motion can be detected. Then, the geometr
kinks ~the discommensurations due to the concentration
particles related to the number of minima of the potenti!
start to move whereas the atoms remain static. For la
external forces, additional defects~kink–antikink pairs! are
created, giving rise to an increase of the mobility. Finally, f
high enough forces, all atoms move with the mobility
single Brownian particles.

III. EXPERIMENT

Let us now describe the experimental apparatus sketc
in Fig. 2. The system under study is a chain of steel cy
ders, each one 60 mm in length and 8 mm in diameter.
cylinders sit on a washboard potential cut in a block of pl
tic ~approximate sine-shape potential!. The height of the val-
leys is 10 mm and the lattice spacing is 20 mm. The cyl
ders are coupled to one another with an elastic string;
first cylinder is fixed whereas the other ones are free
move. In the example shown in Fig. 2, a 3-mm slot w
made along the center of the plastic support@represented by
the two dotted lines in Fig. 2~b!# in order to let the elastic
move freely.

The concentration of cylinders, which determines the pr
ence and structure of the discommensurations, is define
u5M /N where M is the number of cylinders andN the
numbers of lattice spacings. The defects shown in Fig. 1~b!
and~c! correspond tou515/16 while Fig. 2 shows schemat
cally the caseu52/3. In the experiment, the lengthb of the
elastic strings is adjusted for each concentration by impos
the conditionu5a/b, which means that in the absence of t
substrate potential, the cylinders would be equally space
such a way thatM cylinders would coverN lattice spacings,
achieving the desired concentration.

a

n
e

e

Fig. 2. Sketch of the experiment in the caseu52/3. The side view is pre-
sented in~a!, whereas~b! presents the top view. In~a!, the arrowg indicates
the direction of the gravity field. The top arrow means that this cylinde
always kept fixed. In~b!, the dotted lines represent the slot made in t
plastic support in order to let the elastic, represented by the solid line,
553Laroche, Dauxois, and Peyrard
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The apparatus can be used to test the static and dynam
properties of this model system. First one can measure
depinning force which is required to move a lattice with
given concentration above the substrate. This is done by
gressively inclining the system, i.e., increasing very slow
the anglea and determining the critical angleac above
which the initial distribution of cylinders is unstable, i.e
above which at least one cylinder begins to slide. The res
of this experiment are shown in Fig. 3. Foru51/q ~with q
51,2,...!, the system has a trivial ground state with one c
inder at the bottom of the substrate potential well everyq
wells. In these cases, all cylinders start to move simu
neously. As discussed above, these commensurate c
should be the hardest to depin and this is confirmed by
experiment. Moreover the behavior should not depend on
number of empty wells that might separate two cylinde
i.e., we expect the same critical angle forq51 or q52. This
is confirmed by the results shown in Fig. 3. Whenu5p/q is
a rational number withq.p,qÞ1, such asu52/3 shown in
Fig. 2, the ground state involves defects, and Fig. 3 sh
that their cooperative motion~casesu52/3,u53/4! occurs
for lower angles than the individual motion. This illustrat
therefore the depinning hierarchy, the Peierls–Nabarro
rier being lower than the substrate barrier. Figure 3 a
shows that the PN barrier depends on the commensurab
ratio which governs the structure of the kink defects;9,10

higher order rational numbers result in a lower PN barr
ac(2/3).ac(3/4)⇒EPN(2/3).EPN(3/4). With a system as
small as the one we are using we cannot study other ratio
such as 3/5, 5/8, 8/13 that should lead to lower barriers
truly incommensurate case, leading to a vanishing
barrier,8 corresponds to an irrational ratio and therefore
cannot be obtained in an experiment sinceM andN are nec-
essarily integers. This case can however be approache
rational numbers with numerators and denominators cho
in a Fibonacci sequence,11 but it would require a mode
much longer than the one we have built.

The second class of experiments that can be perfor
tests the dynamical properties of the system by measu
the mobility of the defect as a function of the applied forc
This is done by artificially holding the defect above the cr

Fig. 3. Critical angle above which the initial concentration is unstable, g
ing rise to a moving kink soliton. The concentration is defined as the r
between the number of cylinders and the number of sites.
554 Am. J. Phys., Vol. 68, No. 6, June 2000
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cal angleac while the potential is tilted, and then letting
go. When the constraint is released, the defect slides on
washboard potential. Using a high speed charge-coupled
vice ~CCD! camera to record the fast motion, we measure
time Dt for the propagation of the defect overn lattice spac-
ings.

Since the velocity iŝv&5na/Dt and the external force is
due to gravity,F5mgsin(a), the mobility is by definition

B~a!5^v&/F5
na/Dt

mgsin~a!
. ~1!

The results, obtained for the concentrationu52/3 sketched in
Fig. 2, are plotted in Fig. 4: They clearly show a plate
corresponding to the kink-running state, obtained when o
the defect moves, leading to the first contribution to ma
transport. The final transition to the sliding state, where
cylinders slide on the washboard potential, is reached
higher external forces.

IV. CONCLUSION

In this brief report, we have presented a simple teach
experiment stressing the kink concept in a discrete syst
One is able to illustrate different theoretical ideas in a sim
way using this experiment. The Peierls–Nabarro poten
usually presented in the context of dislocation theory, and
role are not only clearly emphasized but one shows that
a function of the concentration,8 i.e., for atoms adsorbed on
crystal, it varies with the coverage. Moreover, this expe
ment explains the recently developed idea about tw
dimensional diffusion of atoms.9 One easily detects a hiera
chy of depinnings: First the defects~kinks or antikinks! are
moving, then for higher forces, we have the individual m
tion. The present apparatus is too short to illustrate exp
mentally the existence of a hysteresis phenomenon in
force driving the diffusion:9 The chain starts to slide for a
force F1 but stops only when the force has been lower
below F2,F1 because, once the motion has been initiat
the kinetic energy allows the particles, or the defect, to ov
come a small potential barrier. It would be very interesting

-
o
Fig. 4. Mobility in the caseu52/3, represented in Fig. 2, versus the extern
force, monitored by changing the anglea. The results illustrate the three
different regions, and the hierarchy of depinning transitions.
554Laroche, Dauxois, and Peyrard
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build a much longer chain, so that few defects could coe
and of course interact. The critical angle of the differe
concentration regions would also be different.

This experiment has however some important differen
from the physical problem of atomic diffusion. The elas
strings apply a force to the cylinders only when they a
extended~not in compression! and the unavoidable solid
friction has no simple equivalent at the microscopic level
is therefore important not to overemphasize these res
Nevertheless, as recent very nice experiments in Josep
junction arrays12 have confirmed discreteness effects
soliton-like structures~see the review by Peyrard in Ref. 3!,
we think that the present experiment, conceptually and
terially more appropriate for teaching purposes, could be
excellent tool to present the soliton concept in the framew
of discreteness to nonspecialists.
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WESTERN CIV

Anyone who became convinced that modern cosmology was peculiarly Western, and who did
care about objective truth, might reasonably conclude that Western civilization is superior to all
others in at least one respect, that in trying to understand what you can see in the sky on a starry
night, Western astronomers got it right.
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