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Abstract

We investigate a model of globally coupled conservative oscillators. Two different algebraic potentials

are considered that display in the canonical ensemble either a second (/4) or both a second and a first-order

phase transition separated by tricritical points (/6). The stability of highly clustered states appearing in the

low temperature/energy region is studied both analytically and numerically for the /4-model. Moreover,

long-lived out-of-equilibrium states appear close to the second-order phase transition when starting with

‘‘water-bag’’ initial conditions, in analogy with what has been found for the Hamiltonian mean-field model.

The microcanonical simulations of the /6-model show strong hysteretic effects and metastability near the
first-order phase transition and a narrow region of negative specific heat.
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1. Introduction

The treatment of long-range interacting systems remains a challenging issue in thermodynamics
and statistical mechanics [1]. Serious theoretical difficulties arise because internal energy, entropy
and other thermodynamic quantities are no longer additive, i.e. a part of a system has not the
same thermodynamic properties of the whole. This originates unusual effects, like negative specific
heat and the inequivalence of statistical ensembles even in the limit of infinite number of particles
(see Ref. [2] for a recent review emphasizing different examples such as gravitation, plasmas, fluid
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mechanics,. . .). Relevant physical examples displaying such anomalies are known in Newtonian
gravity but also in plasma physics (although in the latter case the screening of attractive and
repulsive Coulomb interactions may mitigate them).
As usual in theoretical physics, the study of simple toy models proves to be of major impor-

tance to attack more complex and realistic systems. In particular, simple mean-field models with
infinite-range interactions turned out to be extremely useful. In spite of the fact that they are
constantly used in statistical mechanics to describe cooperative phenomena, it is somehow sin-
gular that violation of additivity has hardly been recognized in the past. A reason for that lies
perhaps in the fact that the thermodynamic limit is performed resorting to saddle-point tech-
niques, which puts the Hamiltonian in the explicitly decoupled form, thus hiding the difficulties
inherent in the long-range interaction. Indeed, ensemble inequivalence (for example between
microcanonical and canonical ensemble) has been observed, producing effects like negative spe-
cific heats, which are the counterparts of the ones known in the gravitational context [1].
The advantage of such models is that their canonical thermodynamics can be exactly derived by

performing the mean-field limit (the infinite N limit at fixed volume), which is a reasonable sur-
rogate of the thermodynamic limit (the infinite N limit at fixed density). Contrary to the usual
belief, an exact microcanonical solution is also feasible for such nontrivial Hamiltonians, using
large deviations techniques [3], but the results will be presented elsewhere [4]. Here, for what
concerns the microcanonical ensemble, we will mainly limit ourselves to show the result of nu-
merical simulations, which, because of the mean-field nature of the interaction, require only OðNÞ
codes (instead of the usual OðN 2Þ). Moreover, further insight can be gained from solving the one-
dimensional collisionless Boltzmann-Poisson equation for the single-particle distribution func-
tion, which becomes exact in the N ! 1 limit (at all finite times) [5].
In the present paper, we investigate, both analytically and numerically, two simple mean-field

models which we denote as ‘‘/4’’ and ‘‘/6’’, which display respectively second (/4) and first and
second-order phase transitions separated by tricritical points (/6) in the canonical ensemble. Of
the former model, we investigate in addition the dynamical formation of clustered states at low
temperatures and we study their destabilization. The presence of quasi-stationary out-of-equi-
librium states is moreover revealed close to the second-order phase transition, in analogy with
what is found for the Hamiltonian mean-field (HMF) model (see [6] for a recent review). Con-
cerning the /6-model, we study the phase diagram in the canonical ensemble and we report nu-
merical simulations of hysteretic effects near first-order phase transitions. We point out the
existence of a narrow region of negative specific heat.
2. The mean-field /4 model

Let us first consider the following Hamiltonian:
H ¼
XN
i¼1

p2i
2

�
� ð1� hÞ q

2
i

2
þ q4i
4

�
� h
2N

XN
i;j¼1

qiqj; ð1Þ
where pi is the conjugate momentum of the variable qi, which defines the position of the ith
particle on a line. This is a mean-field model since all particles are connected to all others, and the
summation in the last term is not restricted to neighboring particles. Notice that positive (resp.
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negative) values of the parameter h correspond to attractive (resp. repulsive) mean-field interac-
tions. All variables are dimensional and, for the sake of comparison, we have used the same
parametrization introduced in Ref. [7] (which can be shown to be minimal by conveniently re-
scaling the variables and time). The local potential displays a double well for h < 1 and a single
well otherwise. The ground-state energy per particle is e0 ¼ �1=4 for positive h (all particles in a
single cluster) and e0 ¼ �1=4þ h=2 in the repulsive case (double cluster).
2.1. Dynamics of the magnetization: the generation of clusters

Introducing the time-dependent magnetization
Fig. 1

the gr

notice

h ¼ 0:
M ¼ 1

N

XN
i¼1

qi; ð2Þ
we are therefore interested in the following equations of motion:
€qqi ¼ ð1� hÞqi � q3i þ hM : ð3Þ

We study the dynamics of particle released with a water bag [8] initial condition where positions

and momenta are uniformly distributed at random in the intervals ½q0 � wq=2; q0 þ wq=2	 and
½�wp=2;þwp=2	, respectively. We have adopted the symplectic sixth-order Yoshida�s algorithm [9],
with a time step dt ¼ 0:05, which allows us to obtain an energy conservation with a relative ac-
curacy DE=E ranging from 10�7 to 10�10.
Fig. 1 shows the result: a coherent oscillating cluster self-consistently moving in the self-

generated potential. The data are obtained for an initial condition with a small velocity dispersion,
. Dynamics of the cluster. Evolution of the density qðqÞ of formula (5) in grey scale for short times. The darker
ey, the bigger the density. Space is horizontal, thereas the vertical downward direction corresponds to time. One

s the periodic motion with the characteristic time scale x�1
M , defined in the text. In this simulation N ¼ 4096,

5.
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Fig. 2. Phase space snapshots of the cluster and the corresponding density qðqÞ of formula (5) at two different times. In
this simulation N ¼ 1024, e ¼ �0:2387, h ¼ 0:5.
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i.e. q0 ¼ 1:1, wq ¼ 0:05, wp ¼ 0:0001. Besides the oscillation of the center, the particles display a
rotating motion around it, which creates a spiral structure (see Fig. 2), as frequently encountered
in long range systems; we have found this coherent behavior for a very large collection of initial
states. Notice that the spiral structure in the center is responsible for the very large peaks in the
single particle density (right panels in Fig. 2). A similar phenomenon has been described suc-
cessfully for the antiferromagnetic HMF model in terms of shock waves [10,11] by considering the
associated Vlasov equation valid in the N ! 1 limit.
We will therefore rely on a Vlasov-like approach. Denoting by f ðq; p; tÞ the one particle dis-

tribution function, we have here
of
ot

þ p
of
oq

þ of
op

ð1
�

� hÞq� q3 þ
Z þ1

�1
du
Z þ1

�1
daf ða; u; tÞa

�
¼ 0: ð4Þ
Introducing a density field q and a velocity field v, as follows
qðq; tÞ ¼
Z þ1

�1
f ðq; p; tÞdp ð5Þ

qðq; tÞvðq; tÞ ¼
Z þ1

�1
pf ðq; p; tÞdp ð6Þ
and neglecting velocity dispersion, we have recently shown [10] how to reduce this problem to
appropriate hydrodynamical equations. A short-time analysis, performed for the HMF model, led
us finally to a dissipativeless spatially forced Burgers equation. We expect that a similar treatment
can be developed for the current model and that similar techniques could be applied. A well
known property of the Burgers equation without viscosity, is that the solution becomes multi-
stream after a finite time: the appearance of shock waves in the velocity profile corresponds indeed
to singular points in the density profile (see Fig. 2). In the original discrete model, this phe-
nomenon would correspond to particle crossing; after some time, fast particles will eventually
catch slow ones downstream creating the so-called spiral dynamics exemplified in the left panels of
Fig. 2.
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2.2. Stability analysis

To understand the origin of this cluster and its stability, we will first consider the simplest case
of a fully clustered state where qi ¼ M . In this simple case, the collective motion is ruled by the
equation
€MM ¼ M �M3; ð7Þ

which can be easily solved using elliptic functions [12]. Integrating Eq. (7), between the initial
time, when the cluster is released without kinetic energy at the position q ¼ a > 1, and time t, we
get
M ¼ adn
atffiffiffi
2

p ; k
� �

; ð8Þ
where dn is the elliptic delta amplitude function and k ¼ ð2� 2=a2Þ1=2 the modulus of Jacobi el-
liptic functions. We remind that this solution is periodic, with the amplitude-dependent period
given in terms of the complete elliptic integral of the first kind 2KðkÞ; the magnetization M will
thus oscillate with a frequency xM ¼ pa=

ffiffiffi
2

p
K, which will be the main timescale of the problem.

One notices immediately that the modulus k and the frequency xM are both functions of the same
parameter, namely the amplitude a, related to the energy per particle e ¼ E=N through the re-
lation a2 ¼ 1þ ð1þ 4eÞ1=2. This solution is interesting in its own, since explicit analytical solutions
are not common for nonlinear nonintegrable systems of oscillators, but one should of course
study its stability in order to understand why this coherent oscillating cluster emerges sponta-
neously. Using the equations of motion (3) for the qi and introducing ni ¼ qi �M , we obtain up to
first-order
€nni þ ðh � 1þ 3M2Þni ¼ 0: ð9Þ

Introducing the new variable u ¼ at=

ffiffiffi
2

p
, we obtain the Lam�ee equation in its canonical form
d2ni

du2
þ ½a � mðm þ 1Þk2sn2ðu; kÞ	ni ¼ 0; ð10Þ
with a ¼ 6þ 2ðh � 1Þ=a2 and m ¼ 2. For integer values of m, many rigorous results are known
[13,14] and in particular it is established that there are only m þ 1 instability regions in the ða; kÞ
plane. The stability charts could be explicitly constructed [15] by observing that Eq. (10) has the
following five periodic solutions:
y ¼ 1� a
2
sn2ðu; kÞ with a ¼ 2½1þ k2 � ðk4 � k2 þ 1Þ1=2	; ð11Þ

y ¼ cnðu; kÞdnðu; kÞ with a ¼ 1þ k2; ð12Þ

y ¼ snðu; kÞdnðu; kÞ with a ¼ 1þ 4k2; ð13Þ

y ¼ snðu; kÞcnðu; kÞ with a ¼ 4þ k2: ð14Þ
Thus the above curves a ¼ aðk2Þ define the boundary curves of the three (m þ 1) nondegenerate
instability regions. Theses curves are presented in the plane ðh; eÞ in Fig. 3.



Fig. 3. Critical energy as a function of the parameter h. The solid line corresponds to the results given by the stability
charts derived analytically (or, alternatively, using the Floquet analysis), whereas the diamonds correspond to the

results of microcanonical simulations for an ensemble of N ¼ 1024 particles.
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One can also investigate the linear stability of this cluster solution with a standard Floquet
analysis, i.e. computing the eigenvalues of the 2N � 2N matrix of the tangent map. Here, contrary
to usual lattice systems with coupling between neighbors, Eq. (9) shows that we obtain N identical
second-order equations; this is a direct consequence of the mean-field character of Hamiltonian
(1). Consequently, we obtain two different N times degenerate Floquet eigenvalues and the pe-
riodic solution is linearly stable when the eigenvalues lie on the unit circle in the complex plane.
At this stage, one derives numerically the linear stability threshold by considering the numerical

evolution of two different initial conditions (1,0) and (0,1) for the vector ðn; _nnÞ. The dynamics is
solved by a standard fourth-order Runge–Kutta algorithm for the time integration of Eq. (9),
where the magnetizationM is either directly integrated using Eq. (7) or implemented with the help
of Eq. (8). For a given value of h, an energy threshold exists, above which the largest Floquet
multiplier is greater than unity, and therefore the solution is unstable. The solid line in Fig. 3
shows the evolution of this threshold as a function of the parameter h. The analytical calculations
were directly compared with the numerical thresholds obtained by considering a water bag with
very small but finite width, i.e. wq  q0 and wp  1, to make a direct comparison with the above
analytical results. Checking on Fig. 3, one gets, apart from a slight underestimate, a good
agreement between numerics and theory. It should however be remarked that, for the finite N
systems, stability persists only for a finite time, which presumably diverges as N increases, as it
happens for the HMF model [6,11].
2.3. Equilibrium statistical mechanics

The partition function can be computed by means of a standard Hubbard–Stratonovich
transformation. Indeed, for a Hamiltonian of the general form
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H ¼
XN
i¼1

pi
2

2
�

þ V ðqiÞ
�
� h
2N

XN
i¼1

qi

 !2

; ð15Þ
the partition function is
Z ¼
Z þ1

�1

YN
‘¼1

dp‘dq‘ e�bH ¼ ZKZV ¼ ð2p=bÞN=2ZV ; ð16Þ
where the configurational partition function is
ZV ¼
Z þ1

�1

YN
‘¼1

dq‘ e�bV ðq‘Þ e
bh
2N

PN

i¼1
qi

� 2
: ð17Þ
We use at this point the Hubbard–Stratonovich trick, i.e. we consider the identity
elx
2 ¼ 1ffiffiffi

p
p

Z þ1

�1
dy e�y2þ2 ffiffilp

xy: ð18Þ
Defining
wðx; bÞ ¼ ln

Z þ1

�1
dqe�bV ðqÞþxq

� �
; ð19Þ
after some algebra one gets
ZV ¼
ffiffiffiffiffiffiffiffiffiffiffi
N

2bhp

s Z þ1

�1
dxe�NbfLðx;bÞ ð20Þ

bfL ¼ x2

2bh
� wðx; bÞ ð21Þ
where fL is the configurational Landau free energy. In the thermodynamic limit, one can evaluate
the above integral by means of the saddle point approximation. The saddle point is determined by
the condition �xx ¼ bhwxð�xx;bÞ, (where wx denotes the derivative with respect to x) and can be
evaluated numerically in a self-consistent manner. Notice that �xx ¼ 0 is always a solution if the
potential V is even.
Finally, we can thus express the configurational partition function as
ZV ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhwxxð�xx;bÞ � 1

p exp N wð�xx; bÞ
 "

� �xx2

2bh

!#
: ð22Þ
Up to terms of order Oð1=NÞ, the relevant equilibrium observables can be expressed accordingly
as a function of �xx, using the following formulæ:
bf ¼ � 1
ln Z ¼ � 1 lnð2p=bÞ � wð�xx; bÞ þ �xx2 ð23Þ
N 2 2bh
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M ¼ 1

N

XN
i¼1

qi

* +
¼ �xx

bh
ð24Þ

e ¼ obf
ob

¼ 1

2b
� wbð�xx; bÞ �

�xx2

2b2h
¼ 1

2b
� wbð�xx; bÞ �

h
2
M2: ð25Þ
In the disordered phase, when M ¼ 0, the system reduces to an ensemble of independent an-
harmonic oscillators. In the ferromagnetic case (h > 0), as presented in Fig. 4, the model displays
a second-order transition in the canonical ensemble, in full agreement with previous results based
on the Fokker-Planck approach [7]. The magnetization vanishes as ðTc � T Þ1=2 in the subcritical
regime and the specific heat has a finite jump at Tc. Conversely, in the antiferromagnetic case
(h < 0), no transition occurs, and �xx ¼ 0 is the only solution of the consistency equation for any
value of the temperature. The free energy and the internal energy are always given by the above
formulæ, with zero magnetization.
As this behavior is clearly reminiscent of the HMF model, that we have already studied in the

past [10,16,17], and where the presence of long-lived out-of-equilibrium states was surprisingly
discovered, it was natural to suspect that they also appear in the present model. We have therefore
performed two types of numerical simulations: microcanonical ones with a symplectic algorithm
(sixth-order Yoshida or fourth-order McLachlan-Atela [18]) and canonical ones with a Nos�ee-
Hoover thermostat [19] (fourth-order Runge–Kutta algorithm). No appreciable deviations
are observed between the two types of simulations for initial conditions close to equilibrium, see
Fig. 4.
However, a region with clear differences is found for ‘‘water-bag’’ initial conditions: see an

example for q0 ¼ 0 in Fig. 5. This is strongly reminiscent of similar observations made on the
HMF model [16,20]. The fact that some points lie on the branch with vanishing magnetization
also in the subcritical region (see Fig. 5b) indicates that this is a metastable state in the micro-
-0.2 -0.1 0 0.1 0.2
energy per particle

0

0.1

0.2

0.3

0.4

ki
ne

tic
 te

m
pe

ra
tu

re

canonical solution
microcanical
Nose’ τ=2

|m
|

-0.2 0 0.2
energy per particle

0

0.2

0.4

0.6

0.8

1

canonical solution
microcanical
Nose’

(a) (b)

. Comparison of ensembles for the /4 model, h ¼ 0:5, N ¼ 512: caloric (panel a) curve and magnetization (panel

uares and triangles refer to microcanonical and canonical simulations, respectively, while the solid lines are the

canonical solutions given by Eqs. (25) and (24). The critical point is located at Tc ¼ 0:264 (ec ¼ 0:132). In both
the initial conditions were qið0Þ ¼ 1 and pið0Þ chosen randomly with a Gaussian distribution.
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Fig. 5. Microcanonical results obtained using molecular dynamics simulations for the ferromagnetic /4 model: h ¼ 0:5,
N ¼ 104 and water bag initial conditions q0 ¼ 1, wq ¼ 10�4.
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canonical ensemble. On the contrary, let us notice that triangles below the theoretical curve in Fig.
4b are due to finite size effects and would disappear for larger N values. A careful study of the
numerical results for very large integration times shows a systematic tendency of these points to
converge towards the equilibrium state indicated in Fig. 4 by the solid line. This attests the
metastable character of these states.
Series of microcanonical runs for the repulsive case have shown that metastable states may

possibly exist also in this case, and we suspect that they may be related to the existence of a stable
cluster in the energy region �1=4 < eK � 0:097. This metastability is thus of dynamical rather
than of thermodynamical origin.
Summarizing, the /4 model has emphasized the striking appearence of a cluster and also dy-

namical differences between microcanonical and canonical ensembles, presumably related to slow
relaxation towards the final Boltzmann–Gibbs equilibrium state; ensemble inequivalence appears
only in a transient. Indeed, it has been recently reported in spin systems [21], that true ensemble
inequivalence occurs in regions of first-order phase transitions. It would be therefore very in-
teresting to exhibit a dynamical mean-field model of the polynomial class with a first-order phase
transition. This is the purpose of the next section.
3. The mean-field /6 model

The simplest generalization of the previous model is
H ¼
XN
i¼1

p2i
2

�
þ r

q2i
2
� q4i
4
þ q6i
6

�
� D
2N

XN
i;j¼1

qiqj; ð26Þ
where D and r are two independent parameters (also in this case it can be shown that this
parametrization is minimal). The main interest of model (26) lies in the fact that it may exhibit a
first-order phase transition for a proper choice of the parameters, and therefore possibly ensemble



384 T. Dauxois et al. / Communications in Nonlinear Science and Numerical Simulation 8 (2003) 375–387
inequivalence. This can be realized by first considering the zero temperature limit, where equi-
librium states are given by the minima of the function
Veff ¼
r � D
2

x2 � x4

4
þ x6

6
: ð27Þ
For 0 < r � D < 1=4, such polynomial admits three minima located at x ¼ 0 and x ¼ �xþ and two
maxima at x ¼ �x� where
x2� ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðr � DÞ

p
: ð28Þ
A first-order transition can thus be expected within this parameter region. Furthermore, in
order to have a first-order phase transition at T ¼ 0 we must impose that the two minima attain
the same value (equal to zero). This conditions holds for r � D ¼ 3=16 and we can at least hope
that close to this parameter values the transition persists also at nonzero temperature. We checked
that this is indeed the case by computing the free energy in a self-consistent way, as explained in
the previous section. The transition exists in a very narrow region below r � D ¼ 3=16.
It is useful to consider the expansion up to sixth-order of the Landau free energy of the /6-

model in order to determine the critical line of second-order transitions and the tricritical point.
We obtain
bfLðx;bÞ ¼
x2

2bD
� wðx;bÞ ¼ const:þ ax2

2
þ bx4

4
þ cx6

6
þ Oðx8Þ; ð29Þ
where
aðb; r;DÞ ¼ 1

bD
� hq2i; ð30Þ

bðb; r;DÞ ¼ � ðhq4i � 3hq2i2Þ
6

; ð31Þ
with
hqmi ¼
R
qme�bV ðqÞ dqR
e�bV ðqÞdq

: ð32Þ
The numerical solution of a ¼ 0 yields the critical line of second-order transitions, see Fig. 6.
The tricritical point, separating first and second-order phase transition, is determined by the more
restrictive condition a ¼ b ¼ 0. Table 1 presents some values of the tricritical point as a function
of the parameter D.
The canonical thermodynamics in the case of a first-order transition is further illustrated in Fig.

7. Three branches of solutions (two stable and one unstable) exist from T ¼ 0 up to T ¼ T 0 where
a saddle-node bifurcation occurs. The m ¼ 0 branch is stable at all temperatures, while the stable
(upper branch in Fig. 7) and unstable (lower branch in Fig. 7) m 6¼ 0 solutions meet and collide at
T ¼ T 0. Notice that this is at variance with the Blume–Emery–Griffiths model [21] (BEG), where
the three branches do not extend down to zero temperature.
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Table 1

Some numerical values of the tricritical points of the /6 model. Notice that Ttr is approximatively proportional to the
coupling constant D

D r � D Ttr

0.5 0.15965 0.05926

1 0.156068 0.115159

2 0.15393 0.22018

5 0.15247 0.52811
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We have performed some simulations in the canonical ensemble to check this caloric curve. The
results are in agreement with the theory and, as expected, display a marked metastability around
the transition point (hysteretic effects). More specifically, three different initial conditions were
adopted: (i) all qi ¼ 0; (ii) all qi ¼ xþ and (iii) random distribution between qi ¼ 0 and qi ¼ xþ. In
all cases, the pi were initially chosen according to a random Gaussian distribution. Some mi-
crocanonical data are reported in Fig. 7 for an initial condition of type (ii).
A peculiarity of this model appears in some region of the parameters, when one considers the

caloric curves. Indeed one notes in Fig. 7a that the m ¼ 0 line (full) crosses the magnetized curve
(dashed) to the left of T 0, the temperature corresponding to the saddle node bifurcation shown in
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Fig. 7. Thermodynamics of the /6 model in the region of the first-order transition (r ¼ 1:18, D ¼ 1:0): Panel (a)
presents the caloric curve and panel (b) the magnetization as a function of the energy. The critical temperature is

Tc ¼ 0:0156 < Ttr. Data obtained with microcanonical simulations, N ¼ 1024 t ¼ 1:25� 106.
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Fig. 7b. This leads to the impossibility of applying the usual Maxwell construction. However, this
is not always the case and, for example, D ¼ 1, r ¼ 1:157 > rtr leads to the usual features of a
crossing to the right of T 0. This confirms that in the interval r 2 ½rtr; 1:157	, the mean-field /6

model has a narrow region of negative specific heat, where the transition will be first-order in the
canonical ensemble and second-order in the microcanonical. Unfortunately, the points near T 0 are
extremely difficult to obtain because of numerical inaccuracies, and we are therefore unable to
report a clear determination of negative specific heat. In conclusion, this model shows a scenario
similar to the BEG model [21], in the case of a dynamical Hamiltonian. Meanwhile, similar results
have been published for some extensions of the HMF model [22].
4. Conclusion

The Blume–Emery–Griffiths mean-field model was shown to be an excellent benchmark to
discuss relations between canonical and microcanonical ensembles in long range interacting
systems [21]. Indeed, this model is exactly solvable in both ensembles and is, at the same time,
sufficiently rich to display such interesting features as negative specific heat and temperature
jumps in the microcanonical ensemble. However, it has no dynamics and only the thermody-
namical behavior can be investigated. This is why we need to study models that displays all these
interesting thermodynamical effects, but for which one would also dispose of an Hamiltonian
dynamics. This point was already addressed in the framework of the HMF model and in par-
ticular in its two-dimensional version (see [6] for a review). Having access to dynamics, one can
moreover study nonequilibrium features.
The mean-field models that we have considered in this paper are exactly solvable in the ca-

nonical ensemble by a Hubbard–Stratonovich transformation. The data in the microcanonical
ensemble were obtained using molecular dynamics simulations. We have shown that these models
have first and second-order phase transitions and tricritical points. Their phase diagram allows to
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test the presence of ensemble inequivalence near canonical first-order phase transitions and we
have also studied spontaneously generated out-of-equilibrium structures.
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