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a b s t r a c t

Westudy the propagation in three dimensions of internalwaves using ray tracingmethods and traditional
dynamical systems theory. The wave propagation on a cone that generalizes the Saint Andrew’s cross
justifies the introduction of an angle of propagation that allows to describe the position of the wave ray in
the horizontal plane. Considering the evolution of this reflection angle for waves that repeatedly reflect
off an inclined slope, a new trapping mechanism emerges that displays the tendency to align this angle
with the upslope gradient.

In the rather simple geometry of a translationally invariant canal, we show first that this configu-
ration leads to trapezium-shaped attractors, very similar to what has been extensively studied in two-
dimensions. However, we also establish a direct link between the trapping and the existence of two-
dimensional attractors.

In a second stage, considering a geometry that is not translationally invariant, closer to realistic
configurations,weprove that although there are no two-dimensional attractors, one can find a structure in
three-dimensional spacewith properties similar to internalwave attractors: a one-dimensional attracting
manifold. Moreover, as this structure is unique, it should be easy to visualize in laboratory experiments
since energy injected in the domain would eventually be confined to a very thin region in three-
dimensional space, for which reason it is called a super-attractor.

© 2019 Published by ElsevierMasson SAS.
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1. Introduction

The unusual properties of internal waves propagating in strat-
ified fluids lead to a particularly interesting phenomenon that
has been studied in several situations in two dimensions: the
existence of internal wave attractors. The latter correspond to
a limit cycle towards which internal waves will focus in most
confined geometries with at least one sloping boundary. These
beautiful mathematical patterns exist thanks to the very peculiar
non-specular reflection law that linear internal gravitywaves obey.
Nonlinearity is effectively introducedby the dynamical system that
repeated application of this reflection law entails.

The large majority of internal wave attractor studies were re-
stricted to two-dimensional geometries [1]. Despite their intrigu-
ing properties at the origin of many very interesting works, if
one wants to study their possible oceanographic and astrophysical
relevance, one has to consider three-dimensional situations. This
is the main goal of this paper, in which we will use ray tracing to
study the most interesting situations.

In the literature, wave attractor studies set in three dimensions
were mostly restricted to spherical shells [2] that are particularly
relevant in astrophysics [3]. Indeed, it is usual to consider the
interior of gaseous planets as a fluid, (at least partially) stratified
radially, around a solid or very dense liquid core [4]. Internal
waves propagating within this spherical shell may indeed strongly
influence the dynamics of the planet [5]. With a view of modeling
internal tides in a channel, their three-dimensional behavior was
also investigated numerically in a rotating, uniformly-stratified
parabolic channel [6]. Taking into account the strong analogy be-
tween inertial and internal waves, one can also refer to works that
considered rotating fluids in spherical [7], or trapezoidal [8] basins.

Using three dimensional ray tracing algorithms in these ge-
ometries, these authors were able to show that wave attractors
obtained in two dimensions were not affected by the third dimen-
sion. They just keep their two-dimensionality. Owing to a residual
symmetry, such as an invariance to translation (due to along-slope
uniformity) or rotation (cylindrical or spherical symmetry), a set
of attractors may exist side-by-side. Together they can be seen as
a two-dimensional attracting manifold.

One may however ask two important questions:

(i) What are the conditions for the existence of two-dimensional
attracting manifolds when considering general three-
dimensional geometries?

(ii) Is it possible for basin geometries in which residual symme-
tries are absent to exhibit one-dimensional attracting mani-
folds, not contained in a plane?

These are the two objectives of this paper. In Section 2, we first
present the propagation of internal wave beams before focusing on
the reflection in three dimensions.We derive the reflection law for
internalwaves reflecting off an inclined slope and, using dynamical
systems theory, we discuss in detail themap linking awave beam’s
incident angle relative to the direction of the bottom gradient to its

reflected angle. In Section 3, we exhibit two-dimensional attrac-
tors in three dimensions before considering, for the first time in
Section 4, a fully tridimensional geometry with ‘super-attractors’.
Finally, in Section 5, we conclude and draw some perspectives.

2. Propagation and reflection in three dimensions

2.1. Three-dimensional propagation

In an inviscid and incompressible fluid, linearly stratified along
the vertical z-axis, internal waves correspond to perturbations of
the velocity, the pressure and the density fields
−→
V =

−→
V0 +

−→v , P = P0 + p, ϱ = ρ̄(z) + ρ ′(x, y, z, t) (2.1)

in which ρ̄(z) is the unperturbed linear stratification and with
|v| ≪ |V |, |p| ≪ P0 and |ρ ′

| ≪ ρ0.
In the framework of the Boussinesq approximation with ρ0 =

⟨ρ̄⟩ the average density over the stratified region, the projections
of the Navier–Stokes equation on the three axes lead in the linear
regime to

∂−→v

∂t
= −

1
ρ0

−→
∇ p + b−→ez (2.2)

where buoyancy b ≡ −ρ ′g/ρ0, while the conservation of buoyancy
reads
∂b
∂t

+ wN2
= 0. (2.3)

Here we introduced the square of the buoyancy frequency N2
=

−(g/ρ0)dρ̄/dz, assumed to be constant. Combining appropriately
Eqs. (2.2) and (2.3) and their time or spatial derivatives, one finally
gets using the incompressibility condition

∂2

∂t2
∇

2vz + N2
(
∂2

∂x2
+
∂2

∂y2

)
vz = 0. (2.4)

Plane waves vz = vz0 exp(i(ωt − k⃗.x⃗)) with wavevector k⃗ =

(kx, ky, kz) and frequencyω, are solutions provided that the disper-
sion relation

ω = ±N

√
k2x + k2y

k2x + k2y + k2z
(2.5)

is satisfied. Plane internal waves of frequency ω propagate their
energy along the direction of the group velocity vector. Let us
denote such an internalwave beama ‘ray’. Calling θ the angle of the
ray with respect to the horizontal, one thus recovers in this three-
dimensional setting ω = ±N sin θ that requires that plane waves
with frequency ω are propagating with a given and constant angle
θ with the horizontal. In three dimensions, internal wave rays
of fixed frequency therefore lie on a double cone. As the current
velocity vector associated with such an internal wave is parallel to
the rays, these also lie on the same double cone

vz = ± tan θ
√
v2x + v2y (2.6)
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Fig. 1. Double cone with aperture π/2 − θ representing all possible propagating
rays with frequency ω = ±N sin θ . Either half of the double cone on one side of the
apex is called a cone. Drawn in green, a ray is characterized by its horizontal angleφ.
Perspective view (a) and top view (b). (For interpretation of the references to color
in all figure legends, the reader is referred to the web version of this article.)

represented in Fig. 1(a) and that reduces to the St Andrew’s cross
in two dimensions. The propagation of an internal wave ray with
frequency ω is thus described by its position (x, y, z) and two
angles: the horizontal propagation angle φ with respect to the
downslope-directed y-axis and the angle θ that is linked to its
vertical inclination.

It is important to realize that these five parameters (vx, vy, vz,
θ, φ) are not strictly equivalent to the three components of the
position and of the velocity given usually for describing themotion
of an object. However, as we will show below, due to focus-
ing/defocusing of the wave component propagating in bottom-
normal direction this norm is not conserved upon reflection of an
internal wave off an inclined slope. During focusing it amplifies
which increases our interest in its location.When a ray approaches
an attractor, the ray path tells us where we should be looking be-
cause all the internal wave energy goes to that location. Therefore,
for now themain interest of this paper is in the direction of the ray,
not the wave field’s magnitude.

For any θ-value, by stretching or compressing the z-axis with a
factor tan θ , it is possible to map the problem to the value θ = 45◦

that we will assume for the remainder of the paper. In this case,
the three components of the velocity field of an internal wave ray
characterized by the horizontal angle φ are (vx, vy, vz) = (vz sinφ,
−vz cosφ, vz), that leads precisely to the equality v2z = v2x + v2y .

2.2. Reflection off an inclined plane

The impermeability conditionwhen internalwaves reflect from
a plane, z = sy inclined with an angle α with respect to the
horizontal y−direction and having slope s = tanα implies that
the normal group velocity should vanish at the boundary, while
the inviscid hypothesis and the invariance along the x-direction
leads to the conservation of the along slope group velocity. Taking
into account the incident (denoted with the index i) and reflected
(denoted with the index r) particle velocity v⃗i exp[i(ωit − k⃗i · r⃗)] +

v⃗r exp[i(ωr t − k⃗r · r⃗)], the above condition first implies that the
frequency ω is kept constant. Introducing the incident v⃗i = (vx,i,
vy,i, vz,i) and the reflected v⃗r = (vx,r , vy,r , vz,r ) velocity fields, these
remarks can be summarized in the following three conditions for
reflection:

(a) θr = ±θi modπ the reflected and incident waves are on the
same double cone.

(b) vx,r = vx,i the along-slope component is unchanged.
(c) The component of the velocity normal to the slope changes

its sign, that leads to

vz,r cosα − vy,r sinα = −(vz,i cosα − vy,i sinα) (2.7)

that can be simplified using s = tanα as

vz,r + vz,i = s(vy,r + vy,i). (2.8)

Condition (a) taking into account Eq. (2.6) with θ = 45◦ leads
directly to v2z,r = v2x,r + v2y,r and v

2
z,i = v2x,i + v2y,i. Subtracting both

equalities and using condition (b), one gets

(vz,r − vz,i)(vz,r + vz,i) = (vy,r − vy,i)(vy,r + vy,i). (2.9)

For a sloping boundary, (vy,r + vy,i) is non-zero. Hence, by combin-
ing Eqs. (2.8) and (2.9) this term can be divided out, which leads
to the following system of two equations with two unknowns vz,r
and vy,r :

vz,r + vz,i = s(vy,r + vy,i), (2.10)

vy,r − vy,i = s(vz,r − vz,i). (2.11)

Recalling condition (b) for the along-slope velocity component, the
above system leads to

vx,r = vx,i, (2.12)

vy,r =
(1 + s2)vy,i − 2svz,i

1 − s2
, (2.13)

vz,r =
−(1 + s2)vz,i + 2svy,i

1 − s2
, (2.14)

providing the reflected ray from the knowledge of the incident one.
It is interesting to derive the corresponding law between the

incident and reflected horizontal angles φi and φr , both angles
being defined in Fig. 2. Recalling that vx = vz sinφ and vy =

−vz cosφ, the ratio of Eqs. (2.12) and (2.14)

vx,r

vz,r
= sinφr =

(s2 − 1) sinφi

1 + s2 + 2s cosφi
, (2.15)

which can be written as a map defining the subsequent angle of
incidence, φ′

i ≡ π + φr = R(φi, s), detailed in Appendix. Above
formula was originally derived by Maas [1]. Interestingly, one can
easily check that this law is also valid when considering horizontal
(s = 0) or vertical (s→∞) boundaries.

Note that in the remainder of the paper, this transformation
will always be associated with an appropriate normalization of the
reflected velocity field. Indeed, as in two dimensions, the norm of
the velocity field is not a conserved quantity through the reflection
mechanism. Consequently, such a normalization is natural to avoid
any numerical difficulties, especially as our primary interest is the
direction of the velocity vector rather than its magnitude.

2.3. Study of the reflection map R

In order to understand the variation of the angle because of the
reflection, instead of studying the reflected angleφr itself, it ismore
appropriate to consider φ′

i , the following incident angle once the
raywill come back towards the slope upon an intermediate surface
reflection, analogously to a Poincaré map. Indeed, after reflection
the green ray represented in Fig. 2 is transformed into the red one
thatwill encounter horizontal or verticalwalls, before coming back
towards the slope of interest, with an angle φ′

i = π + φr as shown
by the green dashed ray in the example of Fig. 2b. An example of
such a possible trajectory is depicted in Fig. 3(a).

This is of course not the general situation since the ray can
impinge on a vertical wall and then on an horizontal one, before
coming back towards the slope with an angle φ′

i = −φr . However,
let us discuss first a simple case that will allow us to derive global
and rather generic properties of this reflection law.

Once the angle of the slope is given, the value of s is known and
then one can study the mapR providing φ′

i as a function of φi (see
Appendix for useful detail). Note that for s = tanα < 1, only the
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Fig. 2. Perspective view (a) and top view (b) of the reflection of an internal wave beam off an inclined slope. The bottom, inclined at angle α with respect to the horizontal
xy-plane, is represented by the inclined blue rectangle. The internal wave beam propagates along a cone whose inclination, θ , is set by the ratio of wave and buoyancy
frequencies. The incident (in green) and reflected (in red) beams make angles φi > 0 and φr < 0 relative to the downslope direction, respectively. The green dashed line is
discussed in the text.

Fig. 3. Possible reflections of an internal wave off a bottomwhose slope is subcritical (left panel) or supercritical (center and right panels). In the right panel, the trajectory is
represented with a dotted line after the second reflection. Next to each ray, the corresponding horizontal angle φ is written. Note that this picture, being a side view displays
only the projection of horizontal angles φ on the yz plane.

top cone of Fig. 1 is physically interesting since the bottom one is
fully below the slope.

Let us study separately the three different cases: s < 1, s = 1
and s > 1.

2.3.1. Subcritical reflections s < 1
Fig. 4 presents the evolution of the angle φ′

i as a function of φi,
for different subcritical cases with s < 1. One realizes immediately
that for any s-value, the function intersects the diagonal line inφi =

0 and±π . There are therefore three fixed points ofmapR (actually
two since±π correspond to the same physical state). For any value
s < 1, asR′(0) < 1whileR′(±π ) > 1, only φ⋆ = 0 is a stable fixed
point, corresponding to upslope propagation. The reflection off the
inclined slope of an internal wave ray has therefore the systematic
tendency to reduce its horizontal angle. This is what we will call in
the remainder of the paper, the trapping effect. Fig. 4 shows that
the closer the value of s is to 1, the faster is the trapping effect.

2.3.2. Critical reflection s = 1
In the theoretical case s = 1, the angle of the slope coincides

with the aperture of the double cone. Eqs. (2.13) and (2.14) show
that, in that case, vy,r and vz,r diverge. Eq. (2.15) is however still
valid and leads to φ′

i = 0 for any initial horizontal angle φi. The
trapping is total from the very first reflection.

2.3.3. Supercritical reflection s > 1
Fig. 5 shows that in that case the top cone is not anymore fully

attainable. Introducing the limiting angle φℓ = arctan
√
s2 − 1,

one realizes that φi has to be restricted to [−π + φℓ, π − φℓ] for
the top cone and to [−φℓ, φℓ] for the bottom one. Fig. 6 presents
the analysis for reflections on the top (vz,i < 0) and the bottom
(vz,i > 0) cones, that have to be studied separately.

Fig. 4. Map φ′

i = R(φi, s) for φi ∈ [−π, π] for three different values of s < 1. The
solid diagonal line represents φ′

i = φi .

(i) For rays impinging on the top cone, φi ∈ [−π + φℓ, π − φℓ],
one gets vz,r < 0, implying that the reflected ray belongs (and
is restricted) to the bottom cone.
Reflections on vertical or horizontal boundaries leading to
φ′

i = π+φr , like in Fig. 3(a), are therefore not possible. On the
contrary, the situation is like the one presented in Fig. 3(b), in
which thewave reflects on a vertical boundary before coming
back towards the slope, leading to φ′

i = −φr shown in Fig. 6.
Here again, there is one unique stable fixed point, that isφ⋆ =

0. One finds once more that the three-dimensional reflection
law has the tendency to straighten the horizontal angle of
propagation. However, this case is of limited consequences;
indeed, in the canal geometry that we will be interested in,
when s > 1, the two-dimensional version leads to a point
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Fig. 5. Cone of possibilities for a supercritically sloping bottom s > 1. The left panel shows that the planar slope, in gray, inclined with an angle α, partially intersects the
double cone. The right panel presents the available angular sector for φi on the top (resp. bottom) cone in blue (resp. mauve).

Fig. 6. Map φ′

i = R(φi, s) for three different values of s > 1 for an internal wave ray impinging on the top cone (left panel with vz,i = −1) and on the bottom one (right
panel with vz,i = 1). The solid diagonal line represents φ′

i = φi .

Fig. 7. Map φ′

i = R(φi, s) for φi ∈ [0, π] for s = 0.8 represented with the yellow dotted line. We follow two different reflections (dash-dotted and dashed lines) initiated
from two initial horizontal angles φ1 and φ2 . As previously, green (resp. red) corresponds to incident (resp. reflected) rays. The diagonal line φ′

i = φi is represented by the
solid black line.

attractor,with allwave rays ending in the bottom right corner
as one can guess by looking at Fig. 3(c).

(ii) For incident wave rays on the bottom cone, φi ∈ [−φℓ, φℓ]
that leads to vz,r > 0: the reflected ray is therefore on the
top cone. Not unexpectedly, this case corresponds precisely
to the previous one, once the sense of propagation has been

reversed. After a series of reflections as plotted in Fig. 3(c), one
finds the reflection law R detailed in Appendix for vz,i > 0
(see right panel of Fig. 6). This time, the reflection is defocus-
ing since |φ′

i | > |φi| for any value s > 1: the fixed point 0 is
thus unstable. However, as shown by the example depicted
in Fig. 3(c), onewill not indefinitely get reflectionswith vz,i >
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Fig. 8. Geometry under investigation with the definition of the height H , length L
and width W of the canal. The slope, inclined at the angle α with respect to the
horizontal xy-plane, is represented by the blue rectangle.

0 since, eventually, due to a reflection at the horizontal rigid-
lid surface onewill get vz,i < 0, corresponding to the previous
case.
Moreover, if the upper boundary of the domain (the surface
in the present case) is high enough, as the function is an
increasing function of its argument, one eventually reaches
a value φ′

i that will be greater than φℓ. Above that value,
one cannot have anymore reflection with vz > 0, and one
comes back to the previous case converging towards the fixed
point φ⋆ = 0.

In summary, in the situations that we have considered, the ray
is eventually trapped in the plane corresponding to a vanishing
horizontal angle φ. This is the generic case, but as we will discuss
below, trapping may not occur in some peculiar cases.

2.3.4. Focusing or trapping?
We called trapping the alignment of the horizontal angle φwith

respect to the downslope direction of the reflecting slope. It is
important to distinguish this from the focusing that occurs in two-
dimensions, when a corresponding internal wave beam reflects
off a slope. Focusing corresponds to the decrease of the width of
the beam after reflection, or alternatively, to the decrease of the
distance between two rays initially parallel and impinging on a
planar slope.

In three dimensions, the analog of this focusing would corre-
spond to a study of the angular gap φ2 −φ1 between both rays. In a
situation where trapping is present as shown in Fig. 7 for s = 0.8,
one sees that the reflection off an inclined slope could be focusing
or defocusing. The gap between two initial angles increases after
the first reflection, before decreasing. The first reflection is there-
fore defocusing, while the second is focusing. On the contrary, both
reflections lead to smaller values of the angle, they are trapping.
Trapping and focusing are corresponding therefore to different
ideas. Defocusing occurs between two rays characterized byφ1 and
φ2 if and only ifR′(φ) > 1 forφ ∈ [φ1,φ2], where a prime indicates
a derivative to its argument. Reciprocally, focusing occurs when
R′(φ) < 1 in this interval.

3. 2D attractors in a 3D geometry

3.1. Choice of the geometry

Having presented the trappingmechanism due to the reflection
off a slope, let us turn to its consequences in a canalwith an inclined
slope as depicted schematically in Fig. 8. This geometry, that we
used to derive the reflection law (2.15), has several advantages:

(i) Corresponding to a schematic simplification of estuaries or
river arms, it has a geophysical interest. The Lower St.
Lawrence Estuary (Eastern Canada) with its river bed es-
sentially U-shaped transversally and longitudinally invariant

over 1000 km [9] is a prototypic example. This site is remark-
able since even though internal tides are known to be gener-
ated at the land-locked head of the Channel [10], surprisingly
low intensity internal tides have been measured near the
mouth of the Laurentian Channel, eastern Canada [11]. It is
therefore important to study propagation and reflection of
internal waves in such a geometry.

(ii) This geometry is simple and easy to implement experimentally,
before studying in a second stage more complicated ones.

(iii) A theoretical interest can also be anticipated from this geome-
try from the study presented in the preceding section. Indeed,
when an internal wave ray reflects off a subcritical slope (as
sketched in Fig. 3(a)), there is one single fixed point of the
iterated map, φ⋆ = 0, that proves that the ray will eventually
converge to a yz-plane, transverse to the canal. The internal
wave will therefore be trapped.

Interestingly, the transversal cut of the canal is precisely the
appropriate geometry leading, in two dimensions, to internal wave
attractors. In a given geometry, an internal wave attractor is a path
towards which all internal waves of a given frequency will con-
verge: the existence of such a limit cycle has been tested through
ray tracing and experiments in various geometries [1,12–15], and
has been confirmed in an exceptional case analytically [16]. De-
pending on a dimensionless lumped parameter containing the
aspect ratio and the ratio of wave to buoyancy frequencies, for
the same geometrical domain, different attractors exist; they are
labeled using two indices (m, n), in which m and n describe the
number of reflections on a vertical wall and on the slope respec-
tively.

3.2. Simple attractors

Let us consider first the simplest case for which the transverse
geometry (i.e. in the yz-plane) leads to (1,1) attractors. We will
moreover consider the subcritical case s < 1. As the successive
reflections will occur with an incident horizontal angle φi between
0 and π , the right panel of Fig. 4 shows that the angle will converge
towards the fixed point φ⋆ = 0. This is indeed possible since the
(1,1) attractor loop allows φ′

i = π + φr , as shown by Fig. 3(a).
The important parameters for ray tracing are:

• Geometrical ones (H , W , α). Note that the dimensionless
length of the canal is L = 1000.

• The angle of propagation of internal waves θ has been chosen
to lead to a (1,1) attractor. It is not useless to recall that, in the
ray tracing, θ is always equal to π/4 by modifying the height
H with the factor tan θ that stretches the vertical.

• The initial values of the ray (x0, y0, z0, φ0) and vz0 that deter-
mines the sheet of the double cone that is initially chosen.

A typical trajectory is plotted in Fig. 9 with different views.
It is clear that the ray, initially launched in the longitudinal x-
direction, after a finite number of reflections on the sloping bottom,
eventually rotates towards a transverse plane. Fig. 9(c) reveals that
the transverse structure of the trajectory is an attractor, identical
to those obtained in 2D [1,12,13]. Note however a fundamental
difference with respect to the 2D propagation: the rays do no
longer propagate only along one of the four different angles θ , −θ ,
π − θ , π + θ , but involve a horizontal angle of propagation, φ, too.
Fig. 9(c) shows only the angle projected on the transverse plane;
it coincides precisely with one of these four possibilities only if
φ = 0, which indeed is reached asymptotically.

The above discussion has emphasized how the trapping mech-
anism occurs in three dimensions, and transforms an initial longi-
tudinal propagation into an attractor in the transverse plane. We
will turn towards the trapping and the convergence times, two
important notions.
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Fig. 9. Perspective (a), top (b) and side (c) views of the trajectory of a single internal wave beam propagating in the canal-like geometry filled with a linearly stratified fluid
and the following geometrical parameters: H = 350, W = 400, L = 1000, α = 20◦ and θ = 35◦ . The beam is sent downwards (in the negative z-direction) from the plane
x = 0 with y0 = W/2 and φ0 ≃ π/2 (i.e. into the positive along-tank x-direction). Panel (b) shows the convergence of the horizontal angle φ towards φ⋆ = 0, (rebounds on
the slope are indicated with red crosses), while panel (c) emphasizes the limit cycle of the (1,1) attractor. The color of the ray progressively changes from blue to red with
the advancement of the ray.

Fig. 10. Evolution of the longitudinal velocity component vx in linear scale as a
function of the number of reflections. The inset presents the same plot in semi-
logarithmic scales. For this plot α = 8◦ and therefore s = 0.18.

3.2.1. The trapping time
The speed of convergence of the trapping is not always as

progressive as the example shown in Fig. 9 for which, in order to
identify the different regimes, parameters have been tuned to get
a trapping, neither too fast, nor too slow.

Instead of considering the evolution of the angle φ as a function
of the number of reflections, one can study the longitudinal veloc-
ity component vx. As briefly discussed in Section 2.2, because of
the specifics of this reflection process, the longitudinal component
vx stays constant while both transverse ones, vy and vz , diverge
towards infinity. To avoid this divergence, the total velocity has
therefore been normalized after each reflection. During the trap-
ping, one thus gets vz → ±1/

√
2 and vy → ∓1/

√
2while vx → 0,

the signs between vy and vz being exchanged at each reflection.
Fig. 10 presents the longitudinal component vx as a function

of the number of reflections on boundaries. The rebounds on the
horizontal or vertical boundaries do notmodify vx. On the contrary,
it strongly decreases when the reflection occurs on the slope. In
agreement with the geometrical structure of the (1,1) attractor
with three non-focusing vertical or horizontal sides and only one
slope, this is the reason for the four identical values before a drop
corresponding to a reflection off the inclined slope.

To characterize the velocity of trapping that Fig. 10 suggests
to be exponential, let us introduce the coefficient γp defined as

the ratio between the horizontal velocity components before the
reflection, vx, and after, v′

x. Since the horizontal component is
modified only by the normalization, one gets

γp =

(
v

′2
x + v

′2
y + v

′2
z

)−1/2
(3.1)

=

(
v2x +

1

(1 − s2)2
[
(v2y + v2z )((1 + s2)2 + 4s2)

−8svyvz(1 + s2)
] )−1/2

. (3.2)

In order to get rid of the dependence of this coefficient with
respect to the components of the velocity, it is necessary to con-
sider the regime close to the convergence towards the fixed point.
As discussed in previous section, in this regime, the horizontal
component vx can be neglected with respect to vy and vz . Taking
advantage of the normalization, one gets v2y + v2z ≈ 1 and vyvz =

−1/2, that leads to

γp ≃

(
0 +

[
(1 + s2)2 + 4s2 + 4s(1 + s2)

]
(1 − s2)2

)−1/2

(3.3)

=
1 − s2(

1 + 4s + 6s2 + 4s3 + s4
)1/2 (3.4)

=
1 − s
1 + s

, (3.5)

the focusing power of normally-incident internal waves reflecting
off an inclined wall of slope s. In the framework of this approxima-
tion, the convergence is therefore exponential with the number N
of reflections since one can write vx(N) = vx(0) γ N

p = vx(0) eN ln γp .
It is straightforward to check that γp is less than 1; it is also a
decreasing function with the gradient of the slope, s, and tends
towards zero as s tends toward unity (we recall that this discussion
is performed in the subcritical regime).

The example presented in Fig. 10 attests that this approxima-
tion is very quickly valid. The inset of the exponential relaxation
leads to ln γ num

p ≃ −0.091 that one can compare to the predicted
value. Once the value s = tanα/tan θ = 0.178 is obtained from
the angle of the slope α = 8◦, one just has to realize that only
the reflection on the slope is effectively trapping, while the three
successive reflections on the vertical or horizontal boundaries are
not modifying the velocity components. Once this factor four is
taken into account, one gets ln γ th

p ≃ −0.090 that does confirm
the approach.

3.2.2. The convergence time
It is important tomake a distinction between the trapping time,

defined as the inverse of ln γp, and the convergence time, that could
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be defined as the time for the ray to be really trapped. Indeed,
successive reflections on vertical and horizontal boundaries do not
necessarily each lead to φ′

i = π + φr < φi as in the example
in Fig. 3(a). Several untrapping reflections can follow one another,
and consequently significantly delay the trapping.

Fig. 11 presents three examples, in which only the initial po-
sition y0 has been modified, but leading to significantly different
convergence times. Geometrical parameters used in the ray tracing
presented in Fig. 9 have been kept constant, but only the value for
α is now smaller to get a slower trapping, and the value θ has been
modified to correspond again to a (1,1) attractor.

These examples show that, due to reflections on the boundaries,
the velocity component changes its sign several times, before the
exponential trapping towards zero occurs, as discussed in Sec-
tion 3.2.1 It is clearly apparent in these examples that the expo-
nential decay lasts much less than the first phase of the evolution.
The trapping time discussed earlier is therefore not always the
appropriate quantity to characterize the convergence. The first
regime can last a transitory but long time, before the ray falls into
a funnel and becomes fully trapped.

In summary, despite a value of s being close to 1 that suggests
a fast decay of the velocity component vx, the trapping time may
be very long, depending on the geometrical parameters and initial
conditions. Such an effect will be central when dissipation will
come into play. Indeed, a large number of reflections usuallymeans
a long distance of propagation and therefore a strong decay in
amplitude when viscous effects cannot be neglected before any
trapping can take place. In such cases, predictive aspects of ray
dynamics become less meaningful.

3.2.3. Trapping plane
The longitudinal coordinate of the trapping yz-plane is clearly

also an important quantity, especially for what concerns any ten-
tative experimental application. To determine its coordinate that
we will call x∞, one has to study its dependence with the two
launching coordinates y0 and z0. Taking advantage of the expo-
nential relaxation, the criterion chosen is that the x-component of
the velocity field is four orders of magnitude smaller than the two
other components.

Fig. 12(a) and (b) show for different initial conditions, varying
the coordinates (y0, z0) of the initial launching point (left panel)
or of the initial horizontal angle φ0 (right panel), the correspond-
ing final paths. All rays converge towards the same structure, an
attractor, but whose x-coordinate depends moderately on y0 and
z0, but strongly on φ0. By considering the limiting case, φ0 = 0,
one indeed realizes that rays are restricted to the transverse plane
and therefore in that case the trapping plane is x∞ = x0. The
collection of attractors in these two panels illustrate the notion
of an attracting two-dimensional manifold, existing due to along-
slope translational symmetry.

Fig. 13 presents the position of the trapping plane x∞ as a
function of y0 and z0 in two cases: a beam propagating initially
upward, vz = 1 (left panel), or downward, vz = −1 (right panel).
The convergence of the first case vz = 1 is in general slower
since the first reflection on the sloping bottom is delayed with
respect to the case vz = −1. Other effects may come into play
and modify the map. Indeed, discontinuities are due to reflection
off the end wall of the canal-like geometry at x = L, that delays
the trapping. These examples show the richness of this dynamical
system and emphasize that, even in a case leading to a simple (1,1)
attractor, the convergence towards the trapping plane can bemore
complicated and with surprises.

3.3. More complicated attractors

3.3.1. Phase diagram
Considering cases not leading to the simple (1,1) attractors, let

us plot for the same geometry the diagram as a function of θ and
α. The dimensions H = 360, L = 1000 and W = 410 are constant
once the canal is given. While this diagram is not universal as the
so-called (d, τ )-diagram reported for two-dimensional attractors
in a trapezoidal domain by Maas [1] and discussed more recently
in [17], we will show that it allows to vizualize the main regions
with simple attractors.

Moreover, as discussed above, initial values for the launching
point or the horizontal angle are generically not important since
one gets eventually always the same attractor, only its position x∞

changes. The phase diagram plotted in Fig. 14 shows on the left
(resp. right) the number of reflectionsm (resp. n) of the final steady
paths on the vertical wall y = 0 (resp. on the slope). They are
plotted only for α < arctan (H/W ) ≃ 41◦, since for larger values
the trapezoidal geometry is modified into a triangular domain in
which all attractors boil down to a point attractor. Both pictures
show to what kind of attractors the final steady paths belong to.

Let us describe the main areas in the diagram:

(i) The top right dark blue triangle corresponds to the conver-
gence towards a domain without reflection, on the surface.
It corresponds to the point attractors, that one precisely en-
counters in the supercritical regime α > θ (see the central
and right panel of Fig. 3 in which the ray eventually reaches
the bottom right corner of the domain).

(ii) The blue tongues, present in both the right and left panels
correspond to one reflection on the slope and one reflection
on the vertical wall. These two pieces of information allows
us to conclude the path is the one of a (1,1) attractor. Panel (a)
of Fig. 14 shows an example of such cases that we discussed
in detail in previous sections.

(iii) Tongues that are only blue on the left panel (i.e. with one
reflection on the vertical wall,m = 1) but differently colored
(multiple reflections on the slope) on the right panel, corre-
spond to (1, n) attractors, with n given by the associated color
of the tongue in panel (f). Panel (c) of Fig. 14 shows such an
example corresponding to a (1,3) attractor.

(iv) One can identify other structures in the phase diagrams in
Fig. 14(b) and (d), and especially, colored tongues in both
panels attestingmore complex (m, n) attractors. One (3,1) at-
tractor (panel (b)) and one (1,2) global resonance case (panel
d), with 2 reflections from the slope, one focusing and one
compensating defocusing reflection, which occupy a line in
panels (e) and (f). Global resonances have n focusing reflec-
tions exactly compensated by n defocusing reflections. These
are characterized by each ray being periodic, instead of, as for
attracting cases, approaching a limit cycle.

(v) The remaining large domain in red, and therefore with (m, n)
> 10, corresponds to even more complicated attractors. As
for the (d, τ ) diagram for two dimensional attractors in a
trapezoidal domain, except for singular values (lines), one
gets attractors for all (α, θ ) values.

It is important to emphasize that there are no attractor regions
with an even number of reflections Ns off the slope. This is a prop-
erty already known for 2D attractors [1,15]. However, as briefly
discussed, there exist lines at which (m, 2n) global resonances can
be found.

3.3.2. (1,3) attractor
Studying a (1,3) attractor allows to better understand how

trapping happens andwhen it cannot occurs. It is indeed known [1,
15] that (1, 2n + 1) attractors have n defocusing reflections and
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Fig. 11. Three examples for the evolution of the horizontal component vx with y0 = 0.1W (left panel) y0 = 0.5W (center) y0 = 0.85W (right). Geometrical parameters are
H = 350, L = 1000,W = 400, α = 6◦ , θ = 38.3◦ , z0 = 0.2H , x0 = 0 and φ0 = 90◦ .

Fig. 12. The left panel shows final steady paths for different launching positions in the x = 0plane. The initial launching point and the corresponding attractor are represented
with the same color. φ0 is always taken equal to π/2, The right panel presents results for the same initial launching point (black star) when spanning values of φ0 between
20◦ (gray) and 90◦ (red).

Fig. 13. Position x∞ of the trapping plane for different initial conditions y0 and z0 , while other parameters are kept constant, particularly x0 = 0 and φ0 = 47◦ . The left
(resp. right) panel corresponds to vz = 1 (resp. vz = −1). The blue triangle corresponds to the region below the slope.

n + 1 focusing ones. Indeed, in 2D, more defocusing than focusing
reflections would mean that rays will on average move away from
one another, which would lead to the absence of attractors.

A typical trajectory converging towards a (1,3) attractor is plot-
ted in Fig. 15. Reflections indexed by 1 and 3 are occurring along
the gradient of the slope that leads to focusing. On the contrary,
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Fig. 14. Panel (e) and (f): phase diagrams of the steady paths as a function of the angles α and θ (in degrees), for the typical case H = 360 and W = 410, and L = 1000.
Panel (e) and (f) give respectively the number of reflections off a vertical wall,m, and off the slope, n, using the central color table. The top-right triangles correspond to the
point attractor zone, that exists in the subcritical case. Three different attractors are shown in panel (a), (b) (c) and a global resonance in panel (d), with a link to their region
of existence indicated by the white segments.

Fig. 15. Side (a) and top (b) views of a three-dimensional ray tracing in a geometry leading to (1,3) attractor. The corresponding transverse geometry leads to the same (1,3)
attractor. Red crosses locate the reflections on the slope. Note that for the sake of clarity, the beginning of the ray tracing, initiated from x = 0 and bouncing back from x = L,
has not been plotted. Numbers written just below the slope in (a) indexed the different reflections along the attractor.

Fig. 16. Successive reflections on the slope for the trajectory of the (1,3) attractor presented in Fig. 15. Incident (resp. reflected) rays are plotted in green (resp. red).

reflection 2, being in the opposite direction of the gradient, is
defocusing.

In the following, we will consider that the ray still not trapped
has a path quasi identical to the one of a two-dimensional (1,3)
attractor. Such an approximation is fully justified by the top view
shown in the right panel of Fig. 15. After just a few rebounds, one
can identify three reflections (identified by the red crosses) on

the sloping bottom. Their positions slightly change, but not their
focusing or defocusing nature.

What can we say for the trapping in such a case? One cannot
refer to the discussion of Fig. 4, in which all reflections led to
trapping since, here, reflections on vertical and horizontal walls do
not always give φ′

i = φr .
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Fig. 17. Normalized velocity component vx as a function of N the number of
reflections for the trajectory depicted in Fig. 15. Two successive rebounds, 1 and
3, lead to a decrease of vx in absolute value while, on the contrary, rebound 2 leads
to an increase of vx in absolute value unlabeled reflections from horizontal surface
and vertical wall do not alter vx .

Fig. 16 presents the projection of the ray in the xy-plane in the
case with three reflections of the (1,3) attractor shown in Fig. 15.
Panels (a), (b) and (c) present respectively the reflection numbered
1, 2 and 3. Because of the path of the (1,3) attractor, the reflected
ray after reflection 1 on the slope will impinge onto the slope with
an incident horizontal angle φi 2 = −φr 1. The following bottom
reflection gives also φi 3 = −φr 2. One thus realizes that, with
respect to reflection 3, reflection 2 leads to an increase of the
angle φ, contributing to untrapping. Consequently, the normalized
velocity component vx does not converge anymore monotonically
towards 0, as shown in Fig. 17. As Fig. 16 shows, φi,4 = φ′

i,3 =

π + φr,3 < φi,1 testifying the net focusing after three reflections.
Apart from reflections on vertical or horizontal boundaries, that

do not affect vx, one detects two kinds of reflections. Reflections 1
and 3, that lead to a decrease of vx in absolute value and reflection
2 that, on the contrary, leads to an increase. Having twice more
focusing than defocusing reflections, the angle converges never-
theless towards the fixed point φ⋆ = 0.

The combination of reflections 1 and 2 compensate exactly and
leave the velocity component vx unchanged, contrary to reflec-
tion 3, the inverse of the convergence time γp is given by Eq. (3.5)
multiplied by a factor 1/3; only one third of the reflections lead to
a decrease of the velocity.

As in the two-dimensional case, attractors exist generically for
any parameter values. Although some singular values do not lead

to attractors, one cannot get them experimentally or numerically
anyway. As we shall see, one can however not claim that trapping
will always occur in 3D since, as already discovered for the (1,3) at-
tractor, trapping and ensuing focusing can be significantly slowed
down and even sometimes not occur at all. The example of (2,1)
global resonance discussed above is an example of such a case.

3.4. Non trapping cases

3.4.1. (m, 2) attractors
As shown by Fig. 15, a series of reflections 1-2-. . . -1-2 would

give rise to a (m, 2) attractor . . . that does not exist. Indeed, in two
dimensions, two reflections on the sloping bottom, one focusing
while the other one is symmetrically defocusing, cannot lead to-
wards a limit cycle. On average, rays do not move away from each
other: the Lyapunov exponent is zero. It is known [1,15] that such a
case appears only for singular parameter values. One can however
choose to be as close as possible to such a singular point.

Fig. 18 shows that one gets a (1,2) attractor-like structure.
This is actually not a real attractor: First, trapping does not occur,
which means that there is no limit cycle, and therefore no possible
convergence towards it. Second, this structure is not a steady
state. Indeed, after a sufficiently large number of reflections, the
ray converges towards a more complicated true attractor (with
more focusing than defocusing reflections). However, for these
values, the trapping is very slow since the numbers of focusing and
defocusing reflections are approximately identical. The limit cycle
corresponds indeed to n focusing reflections and n − 1 defocusing
ones, with n large. This is therefore a situation close to the (1,3)
attractor, with a much weaker convergence.

3.4.2. Whispering-gallery modes
Another structure of interest corresponds to geometries for

which, for some well chosen initial conditions rays may escape.
Similar structures have been identified in a trapezoid, paraboloid,
parabolic channel and spherical geometry for internal gravity or in-
ertial wave rays [1,6–8] and are called whispering gallery modes in
analogy with sound waves. In the system that we study here, such
modes exist for very specific parameters and initial conditions:
trapping reflections have to be compensated exactly by untrapping
ones

Fig. 19 shows the trajectory of one ray in a case that (under
normal incidence, φ0 = 0) should lead to a (1,1) attractor. One
can identify a trajectory that is not trapped. It does not visit the full

Fig. 18. Side (left panel) and top (right panel) views of a trajectory for a geometry close to a (1,2) attractor that would lead to a vanishing Lyapunov exponent. Reflections
on the slope are identified by red crosses.
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Fig. 19. Left panel: trajectory of a whispering-gallery mode with the initial condi-
tions φ0 = 122.476◦ , x0 = 0, y0 = 320, z0 = 324 and the geometrical parameters
H = 360, L = 500, W = 410, θ = 39◦ , α = 23.52◦ . In two-dimensions,
this geometry corresponds to the values, (d = 0.1, τ = 1.84) that leads to a
(1,1) attractor. The reflection on the sloping bottom changes φ into −φ. After the
reflection on the surface and side wall, y = W , the successive rays will again
impinge onto the slope with φ′

i = φi .

width of the tank, but stays concentrated on one side of the canal. A
careful look at the values of φ shows that it stays constant, φ = φw
say, if one forgets symmetries with respect to x and y. The value of
φw corresponds to the case forwhichφr = −φi that leads, as shown
in Fig. 19, toφ′

i = π+φr = π−φi, that explains the stationary state.
Using Eq. (2.15), the equality φr = −φi corresponds to

s2 − 1
1 + s2 + 2s cosφw

= −1, (3.6)

that one can simplify in φw = π − arccos s that precisely corre-
spond to the ray tracing value shown in Fig. 19.

Studying the position x∞ of the trapping plane allows us to
identify the existence of whispering-gallery modes that corre-
spond to initial conditions that do not converge. Using the prop-
erty, shown in Fig. 19, for which the trajectory does not hit the
y = 0 vertical wall, we are able to make the difference with
trajectories that have not converged yet. Fig. 20 presents the result
for different initial conditions spanning values of y0 and φ0 (values
of x0 and z0 appear to be much less important). The two different
panels correspond to x∞ after two different numbers of reflections.
Trajectories that have not converged are identified by the white
domains, while colored domains correspond to different positions
of the trapping plane.

On the left panel of Fig. 20, one sees that the domain with
whispering-gallery modes (white) is very thin: φ0 ∈ [122.4◦,

122.5◦
]. The right panel shows that this zone has drastically shrunk

even more if one allows 100 times more reflections: most of
this domain is therefore not associated with whispering-gallery
modes but leads to convergence towards an attractor. It appears
finally, that true whispering-gallery modes exist only for singular
initial conditions. This is after all, consistent with the theoretical
prediction that only one singular value φw has been found.

The different results presented in this section have emphasized
the links between the trapping and the existence of attractors in
the two-dimensional transverse geometry. Indeed, as soon as fo-
cusing reflections win over defocusing ones in the transverse two-
dimensional plane, three-dimensional reflections lead eventually
to trapping. As in the geometry under scrutiny, if we omit singular
values, attractors exist for any angles (α, θ ) and any values H and
W : trapping will occur generically. Those singular values are how-
ever important. Indeed, as attractors are leading to the focusing of
energy, dissipationwill significantly reduce their energy. In a given
geometrical domain, if the energy is injected in a continuous band
of frequencies (i.e. different angles of propagation), the energy will

eventually remain in those that are least dissipated, and therefore
in those for which focusing does not occur.

Similarly, although whispering-gallery modes are also the ex-
ception rather than the rule, they may be visible in a long enough
canal in which the energy in the other frequencies (i.e. for different
angles) will be trapped and dissipated in attractors, again because
of the focusing mechanism. A far enough measurement in the
canal would finally exhibit energy only for frequencies that were
not trapped, and therefore not dissipated before. For this reason
they have also been termed ‘leaky edge waves’ [6]: despite their
low probability, if they have been excited upstream, whispering-
gallery modes will finally show up.

Moreover, experimental measurements will hardly make a dif-
ference between a not-yet-converged structure or a whispering-
gallery mode: in this sense, Fig. 20(a) is more appropriate than
Fig. 20(b). Finally, viscous dissipation was not taken into account
in the ray tracing. Although being weak for internal waves that
can travel thousands of kilometers [18], the distance that would
actually represent the convergence towards the limit cycle of the
case discussed in Fig. 18 is far too long to be observed. On the
contrary, the transitory quasi-attractor is therefore more likely to
be observed (see [19]). In conclusion, from the experimental point
of view, only fast trapping cases can be detected.

The key point shown in this section, is that once one knows
that there exists an attractor in a two-dimensional geometry, its
three-dimensional generalization, obtained by translation of the
2D geometry along an axis orthogonal to z, will inevitably trap rays
during their propagation.

In order to consider more realistic bathymetry, we will now
study a tridimensional geometry that cannot be obtained by the
translation of a 2D geometry.

4. A fully tridimensional geometry with super-attractors

4.1. Choice of the geometry

While all geometries that we studied so far were translation-
ally invariant along the length of the canal (or in other studies
rotationally invariant), let us now study a really tridimensional
geometry, in which the transverse geometry will vary along the
canal. Fig. 21 shows the slope, represented by the blue rectangle,
that has been obtained from the one shown in Fig. 8 after an
additional rotation with an angle β with respect to the y-axis. In
addition to its theoretical interest that we will discuss below, such
a study is of course closer to a realistic configuration than previous
ones.

Even if one still uses the angle φ of a ray with respect to the
y-axis, one has to modify the expression of the map linking the
reflected angle φr as a function of the incident one φi. Indeed, if the
trapping effect has the tendency to align the angle of propagationφ
along the slope of the gradient, the latter is not along the y-
direction, but along a direction rotated by an angle ψ with respect
to the y-axis, defined as tanψ = − tanβ/tanα (see Fig. 21).

With thismodification taken into account, formula (2.15) has to
be rewritten as

sin(φr − ψ) =
(s2 − 1) sin(φi − ψ)

(1 + s2) + 2s cos(φi − ψ)
. (4.1)

The associated map, that we will call Rψ , always has a fixed point
corresponding to φ∗

= ψ .

4.2. Trapping conditions

Despite the new reflection law (4.1), trapping will still occur. A
wave in the transverse yz-plane will have the tendency to align
with the upslope-directed gradient. If, in previous geometries,



12 G. Pillet, L.R.M. Maas and T. Dauxois / European Journal of Mechanics / B Fluids 77 (2019) 0–15

Fig. 20. Position x∞ of the trapping plane for different initial conditions y0 and φ0 . Left (resp. right) panel presents the value after N = 104 (resp. N = 106) reflections.
White regions that correspond to domains in which the iteration has not converged correspond to the whispering-gallery modes.

Fig. 21. Geometry under investigation with the definition of the height H , length L and width W of the canal. The slope, represented by the blue rectangle, is now inclined
with an angle α with respect to the y-axis and with an angle β with respect to the y-axis. Right panel shows the rotated angle relative to y, which points in true downslope
direction.

vertical walls y = 0 and y = L were oriented perpendicularly
to the trapping direction, this is not the case any more with this
geometry. On the contrary, a wave corresponding to φi = ψ , will
lead (after three successive reflections on a vertical wall, the free
surface and a vertical wall like in Fig. 3a) to a bounce on the slope
with φ′

i = −ψ , that will untrap the wave.
From this simple remark, one can immediately deduce that

two-dimensional attractors are therefore not possible in this ge-
ometry. More generally, it is also straightforward to realize that, in
three dimensions, an internal wave can converge towards a two-
dimensional plane only if the upslope-directed gradient belongs
to this plane, while the vertical walls are perpendicular to it. In
the geometry under scrutiny, if the walls are perpendicular to the
upslope-directed gradient, one recovers the canal geometry stud-
ied in the previous section. One thus gets that two-dimensional
attractors can be found only when ψ = 0, i.e. for β = 0 as studied
in Section 3.

However, the above remark does not prohibit the existence
of attractors in domains having tri-dimensional geometries. Such
issue is far more complicated and we will now give some new
insight along this line.

4.3. Tri-dimensional super-attractors

Despite the impossibility to get two-dimensional attractors, one
can consider cases forwhich the transverse geometry is close to the

one with a (1,1) attractor in 2D. Intuitively, if three dimensional
structures do exist, they should have a few rebounds and be there-
fore easier to handle. Let us exhibit such a tridimensional structure
for a given set of parameters.

Fig. 22 presents the stationary structure that one gets with
different views. As shown by the left panel, the structure is con-
fined close to the end of the canal x = L, while the side view is
strongly reminiscent of a (1,1) attractor. On the contrary, the top
view emphasizes its three-dimensional nature, with two different
reflections on the inclined slope.

The successive reflections and the different angles of propaga-
tion have been plotted on the right panel of Fig. 22. Calling φ1 the
initial angle, the incident beam hits the walls x = L and y = W ,
before impinging onto the inclined slope. The reflected angle is
therefore φ2 = Rψ (π + φ1). After three reflections on the vertical
walls the second reflection on the slope occurs, leading to an angle
of propagation φ3 = Rψ (−φ2) that has to be equal to −π − φ1 so
that the cycle will start again. One thus ends with an angle φ1 that
fulfills the following equation

φ1 = −π − Rψ (−φ2) (4.2)

= −π − Rψ (−Rψ (π + φ1)). (4.3)

Finding a fixed point of this equation is not easy to exhibit analyt-
ically since Rψ (−φ) cannot be simplified since ψ breaks the sym-
metry with respect to the y-axis. Using the ray tracing approach,
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Fig. 22. Stationary structure in the tri-dimensional case with H = 650, L = 1000, W = 400, θ = 43.2◦ , α = 20◦ and β = 12.5◦ . The left (resp. centered, right) panel
presents a perspective (resp. side, top) view. Red crosses refer to reflections from boundaries (left and middle panels), or sloping bottom (right panel).

one can find the fixed point φ∗
≃ −14◦. The next reflection on the

vertical wall leads to an untrapping that is exactly compensated
by the following reflection on the slope. These steps are detailed in
Fig. 22c.

Fig. 23 presents the different stationary structures that one
obtains by varying either φ0 (left panel) or y0 and z0 (right panel).
Although leading to different stationary structures, one always gets
a limit cycle with two reflections off the wall at x = L, similar to
the structure shown in Fig. 22. Such a behavior is different from
the attractors obtained in the simpler canal geometry discussed in
previous section.

Despite the small variations in the bouncing coordinates, the
limit cycle is almost unchanged for all initial conditions. One thus
gets a situation close to the two-dimensional one, with the dif-
ference that they occur only close to the end wall x = L. The
change of the geometry in the longitudinal direction of the canal
has important consequences: trapping regions that were possible
all along the translationally invariant canal, are now confined to
the region close to the end of a canal that is not translationally
invariant. This is therefore a ‘‘super-attractor’’ since the energy is
trapped in a significantly more restricted region.

In the example discussed above, only one reflection is sufficient
to make a significant change in the angle of propagation. However,
for lower values of s and larger values ofψ , thewave can be trapped
after several reflections. Using similar ideas, it is therefore possible
to exhibit even more complicated structures, with progressive
trapping with reflections on the slope and untrapping on the wall
x = L [15] .

5. Conclusion

In this paper, we have shown that although the dispersion
relation is unchanged, the propagation in three dimensions is sig-
nificantlymore complicated than its two-dimensional version. The
wave propagation on a cone that generalizes the Saint Andrew’s
cross justifies the introduction of an additional angle of propaga-
tion φ that allows to describe the position of a wave ray in the
horizontal plane.

We have studied the evolution of this reflection angle over
inclined slopes and shown the emergence of a newmechanism that
has the tendency to align this angle φ with the upslope gradient.
We have also carefully studied this trapping in the rather simple
geometry of a translationally invariant canal. This configuration
leads to a trapezium very similar to what has been extensively
studied in two-dimensions. It is however important to emphasize

that we also established a direct link between the trapping and
the existence of two-dimensional attractors. The important feature
is that, in such a case, there is not only one attractor that would
attract all rays, but an infinity of two-dimensional attractors dis-
tributed along the canal, that we refer to as a two-dimensional
attracting manifold.

We have also considered a geometry that is not translationally
invariant which is closer to realistic configurations. In this new ge-
ometry, we were able to prove that there are no two-dimensional
attractors. However, we have exhibited a three-dimensional struc-
ture with properties similar to internal wave attractors. Moreover,
as it is unique, it is likely that it should be easy to visualize it in labo-
ratory experiments since the energy injected in the domain would
be eventually confined to a very thin region in three-dimensional
space: a one-dimensional manifold, which is the reason for calling
it a super-attractor. The experimental verification of this prediction
is one of our priorities.

As a side remark, we note that translational invariance is of
course broken at the front and end walls of the canal where
frictional effects might modify the attracting structures [20]. For
internal gravity waves, having rectilinear particle motions, this is
not seen as leading to major changes. But for the analogous case of
inertial waves, that possess (inclined) circular particlemotions this
is an issue, and adjustment at an inviscid level is to be expected. A
preliminary experimental study of the attracting two-dimensional
manifold of inertial waves does indeed show adjustment of the
cross-sectional attractor shape on approach of the side walls [8].

The study of attractors in three dimensions is however still
in its infancy and we expect other very interesting features to
discover. Considering more complicated attractors in even more
realistic configurations is important. Moreover, the existence and
the likelihood of super-attractors in generic three dimensional
geometry is fully open and could lead to interesting predictions
when considering the real bathymetry of oceans: that should lead
the way for observations in the oceans.
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Fig. 23. Three-dimensional attractors obtained for different initial conditions, varying φ0 ∈ [−80◦, 80◦
] (left panel) or varying y0 ∈ [0,W ] and z0 ∈ [0,H] (right panel). All

other parameters are those given in the caption of Fig. 22.

Appendix

The incident and reflected velocity fields share a reciprocal
relationship as they should switch role upon time-reversal. This is
borne out when rewriting Eqs. (2.10) and (2.11) as(

−s 1
1 −s

)(
vy
vz

)
r
=

(
s −1
1 −s

)(
vy
vz

)
i

(A.1)

or, employing the projection of the velocity vector onto the plane
perpendicular to the sloping topography, v⃗⊥ = (vy, vz),

P v⃗⊥,r = Q v⃗⊥,i,

where we use unimodular matrices that have determinant ±1:

P ≡
1

√
1 − s2

(
−s 1
1 −s

)
, Q ≡

1
√
1 − s2

(
s −1
1 −s

)
.

Interestingly, these hyperbolic matrices reflect their reciprocal
nature by obeying the identity

P−1Q = Q−1P ≡ R,

which implies

v⃗⊥,r = Rv⃗⊥,i, and v⃗⊥,i = Rv⃗⊥,r .

The matrices acquire standard form when, for subcritical slope,
s < 1, we write s = tanh ν, so that

P ≡

(
− sinh ν cosh ν
cosh ν − sinh ν

)
and Q ≡

(
sinh ν − cosh ν
cosh ν − sinh ν

)
.

(A.2)

Notice that det(P) = −1 and det(Q ) = 1.
For supercritical topography, s > 1, we premultiply left and

right hand sides of (A.1) by −1/
√
s2 − 1, and, writing s = cothµ,

we find

P ≡

(
coshµ − sinhµ

− sinhµ coshµ

)
and Q ≡

(
− coshµ sinhµ
− sinhµ coshµ

)
.

Defining Qn = Q (nµ), such that the previously defined Q ≡ Q1, it
appears that

P−1Q = Q−1P = Q2.

These reciprocal relations are useful when computing the ve-
locity vector upon a ray’s reflection from a boundary, given the
incident velocity vector. It also helps determining the proper root
when solving the multivalued (2.15) for horizontal direction φr ,
and subsequent angle of incidence φ′

i = π +φr , given the incident
angle of incidence φi and slope s.

For subcritically sloping topography, s < 1, with

Φ(φ, s) ≡ sin−1
(

(1 − s2) sinφ
1 + s2 + 2s cosφ

)
,

and

ϕ(s) ≡ π − sin−1
(
1 − s2

1 + s2

)
= π −Φ

(π
2
, s
)
,

we obtain as subsequent angle of incidence

φ′
= R(φ, s) ≡

⎧⎨⎩
π −Φ(φ, s), if φ < −ϕ(s)
Φ(φ, s), if |φ| < ϕ(s)
π +Φ(φ, s), if φ > ϕ(s),

displayed in Fig. 4. The conditions apply to secure continuity when
φ′ passes ±π/2.

For supercritical topography, s > 1, we need to distinguish
between rays incident from above and below. Recalling from Sec-
tion 2.3.3 that φℓ(s) = tan−1

√
s2 − 1, for rays incident from above

(vz,i < 0), we find

φ′
= R(φ, s) ≡ −Φ(φ, s) if − π + φℓ(s) ≤ φ ≤ π − φℓ(s),

displayed in Fig. 6a, while for rays incident from below (vz,i > 0),
i.e. for −φℓ(s) ≤ φ ≤ φℓ(s), we have the reciprocal relation

φ′
= R(φ, s) ≡

⎧⎨⎩
−π +Φ(φ,−s), if φ < π − ϕ(s)
−Φ(φ,−s), if |φ| < ϕ(s) − π

π +Φ(φ,−s), if φ > ϕ(s) − π,

displayed in Fig. 6b.
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