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Abstract. We study the energy relaxation in a one-dimensional nonlinear lattice with dissipative couplings.

After thermalisation of this system, the extremities of the chain are put in contact with a zero-temperature

reservoir, showing the existence of surprising quasi-stationary states with non zero energy, tough the

dissipative coupling is high. This strange behavior, due to long-lived nonlinear localized modes, induces

stretched exponential relaxation laws. Furthermore, we observe a strong dependence on the waiting time

tw after the quench of the two-time intermediate correlation function C(tw + t, tw). This function can be

scaled onto a master curve, similar to the case of spin or Lennard-Jones glasses.

PACS. 05.20.-y Classical statistical mechanics – 05.45.-a Nonlinear dynamics and nonlinear dynamical

systems

1 Introduction

The existence of spatially localized nonlinear excitations
is old and well-known, and has been extensively studied
in partial differential equations and in many experimental
systems. However, this topic has been completely reacti-
vated in the beginning of the 90’s by the discovery of the
striking properties of “discrete breathers”. These local-
ized and oscillating modes, solutions of discrete lattices,
were discovered [1] in 1974 but the understanding of their
generality in nonlinear multi-dimensional lattices is due to
Takeno and Sievers [2] in 1986. Later, breathers have been
shown to be spontaneously generated [3] in thermalized
systems, and finally, Aubry and MacKay have proved [4]
rigorously the existence of discrete breathers, exact solu-
tions of some discrete lattices. This has initiated a period
of great activity about the conditions of existence, and of
stability of these modes but also about their possible ap-
plications in real systems. Experimental evidences of such
excitations have thus been reported in materials [5], mag-
netic chains [6] and series of Josephson junctions [7].

One of the important feature of these excitations is
that they modify strongly the energy relaxation [8,9] and
induces non-equilibrium dynamics. For instance in nonlin-
ear systems where breathers are mobiles, they could con-
tribute directly to the energy transfer and modify relax-
ation properties in a nonexponential dependence. This in-
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teresting phenomenon has been invoked in several physical
settings such as, DNA molecules [10], hydrocarbon struc-
tures [11], targeted energy transfer between donors and
acceptors in biomolecules [12]. When the coupling is much
smaller than the nonlinearity, the presence of essentially
pinned long-lived breathers in nonlinear systems blocks
the energy propagation [8]. The macroscopic manifesta-
tion of this phenomenon is a very slow relaxation of the
total energy, reminiscent of the long lifetime of metastable
states in glassy systems observed after a quench.

The case of relaxation phenomena in nonlinear lattices
with bulk dissipation has received much less attention,
though experimental systems belong to this class [13]. This
is the reason why, in this paper, we will examine the in-
fluence in energy relaxation of a dissipative coupling by
performing numerical studies of a nonlinear model. The
system, described in Section 2 and pictured in Figure 1,
corresponds to particles coupled via elastic and dissipa-
tive interactions; in addition, each particle is submitted to
an on-site nonlinear potential, taking into account inter-
actions between different subsystems. For a fixed viscous
parameter γ, we examine the relaxation of energy when,
after thermalization, the ends of the chain are placed in
contact with a zero-temperature reservoir. Results show
different kinds of energy relaxation regime which depend
strongly of the dissipative terms: in particular, we show
that the system can relax very slowly in spite of high dis-
sipative couplings!
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Fig. 1. Sketch of the non-linear dissipative model.

2 The dissipative nonlinear chain

We consider a one dimensional chain of N = 200 anhar-
monic oscillators, with a nonlinear on-site potential V (x),
with free ends and nearest-neighbor elastic coupling po-
tential (the coupling being k). The sketch of the chain is
reported in Figure 1. In order to represent the clamping
degree of freedom, we consider for one half of nearest-
neighbors a dissipative coupling (γ is the dissipative pa-
rameter) in parallel with elastic coupling. For the on-site
potential V (x), describing the interactions between two
sub-units, we have chosen the Morse potential

V (x) =
1
2
[1 − e−x]2 (1)

which has the appropriate shape to describe the strong
repulsion when the units are pushed toward each other
(x < 0) and the vanishing interaction when the units are
pulled very far apart (x � 1). Each end oscillators of
our chain can be also submitted to an additional damping
force. The equations of motion of this chain are given in
dimensionless form by:

ẍ2i = − ∂V
∂x2i

− k(2x2i − x2i+1 − x2i−1)

−γ(ẋ2i − ẋ2i−1) − γ′ẋ2i δ2i,200 (2)

and

ẍ2i+1 = − ∂V
∂x2i+1

− k(2x2i+1 − x2i − x2i+2)

−γ(ẋ2i+1 − ẋ2i+2) − γ′ẋ2i+1 δi,0 (3)

where xn is the dimensionless displacement of the nth os-
cillator from equilibrium, ẋn its velocity and δ the Kro-
necker delta function. The mass of the oscillators is set to
unity by appropriately renormalizing time units. γ’ corre-
sponds to the damping coefficient of a surrounding heat
bath, described below.

To study energy relaxation, we consider k = 0.01 and
we initially thermalize the system at temperature T = 1

by using Nosé-Hoover thermostats [14]. This temperature
is much higher than the critical temperature (Tc = 0.2)
of the “order-disorder” transition which characterizes the
non dissipative model γ = 0 (for more detail see references
[15,16]). Then, in average, the kinetic energy per site is
higher than the depth of the Morse potential (which is
equal to 0.5 in our arbitrary units): we can therefore con-
sider our system as in an initial “liquid” state: all the par-
ticles are in the plateau of the Morse potential. In other
words, there are no interaction between units. The ther-
malization procedure is performed with γ = γ′ = 0 by
using a chain of three thermostats to provide a good ex-
ploration of the phase space [14]. The equations of motion
have been integrated using a fourth order Runge-Kutta
method with timestep 0.01.

After thermalization, the connection with the heat
bath is turned off and the lattice is connected to a zero
temperature reservoir via the damping term with γ′ = 0.1.
Instead, the dissipative parameter γ varied in the interval
[0,100]. The moment of connection with the zero tempera-
ture reservoir is chosen as the origin of time. At each step
of the integration of equations (2) and (3), we evaluate
the total lattice energy:

E =
200∑

i=1

[
1
2
ẋ2

i + V (xi)
]

+
199∑

i=1

k

2
(xi+1 − xi)2 (4)

and consider the symmetrized local energy per site:

Ei =
1
2
ẋ2

i + V (xi) +
k

4
(xi−1 − xi)2 +

k

4
(xi − xi+1)2 .

(5)
Total energy is expected to decrease with time and con-
verge to a zero value of the “frozen” state at equilibrium.

3 Relaxation of the thermalized system

In Figure 2, we report the total lattice energy divided
by the initial energy versus time for various viscous pa-
rameter γ. For γ = 0, a clear non exponential decreasing
energy is observed, consistent with Tsironis and Aubry’s
results [8]. This long-tail relaxation behavior was shown
by these authors to be connected to the presence of long-
lived non linear localized modes that are relatively mobile.
If we consider a small dissipative coupling (γ = 10−3) in-
side the lattice, we see that total energy decreases faster
than previously. This small dissipative coupling induces a
strong modification of energy relaxation to the “frozen”
state (normalized energy closed to 0) for a time smaller
than 104 (in arbitrary units). This emphasizes that the
dissipative couplings change strongly the relaxation mech-
anisms and can induce a fast relaxation regime.

For γ higher than 0.1, a new surprising feature is ob-
served: normalized energy seems to be blocked with a very
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Fig. 2. Normalized total energy decay as function of time for

various viscous parameter γ. Initially each array is in thermal

equilibrium at the temperature T = 1.

slow decrease for long time whereas the dissipative pa-
rameter is higher! The system seems to evolve in a quasi-
stationary state that is neither a “frozen” state (the nor-
malized energy is clearly different from 0) nor a “liquid”
state” (energy is too low). We can also notice that, at
a given time, the energy of this quasi-stationary state
increases with γ. This situation is reminiscent of poly-
mer systems where very long-lived non-equilibrium aging
states are observed.

In previous relaxation studies in non linear lattices
where blocking energy was observed, it has been shown
that such behavior may be induced by long-lived breathers
[8]. In order to examine more precisely the present situ-
ation, we report in Figure 3 the spatiotemporal energy
landscape of the lattice by plotting the local energy Ei in
each lattice site for γ = 10−3, 10−1 and 10. Time advances
along the y axis until t = 104 and a gray scale is used
to represent the local energy with darker shading corre-
sponding to more energetic regions. In the case γ = 10−3,
Figure 3c emphasizes two kinds of energy relaxation: on
the one hand, there is a dissipation of energy inside the
lattice, characterized by a “fibrous structure” of the local
energy landscape; on the other hand, we observe a dissi-

Fig. 3. Evolution of the local energy Ei along the chain for

various viscous parameter γ = 10 (panel a), 0.1 (panel b) and

0.001 (panel c). The grey scale goes from Ei = 0 (white) to

the maximum Ei-value (black).

pation of mobile breathers via surface damping character-
ized by “dark oblique lines”. For γ ≥ 0.1, we notice the
clear presence of pinned long-lived breathers, responsible
of the energy relaxation blocking. This localization of en-
ergy is observed after a short time where energy not only
decreases via the surface damping but also via a dissipa-
tion inside the lattice (see for example the landscape for
γ = 10−1 and t < 2500). Furthermore, these states have
a very long lived time and are still observed for t higher
than 105.

We have mentioned previously that, at early times,
phonon and mobile breather dissipation takes place be-
fore pinned breathers relaxation. Typically the hierarchy
of relaxations processes may be classify in a sequence of
characteristic times t∗1 < t∗2 <... [17], where the energy
relaxation corresponds approximately to exponential or
stretched exponential decay [18]. Let us introduce the
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phonon relaxation time t∗ defined by E(t∗)/E(0) = 0.5
which is characteristic of the phonon and mobile breather
dissipation inside the lattice. We have reported in Figure 4
the evolution of this relaxation time versus the viscous pa-
rameter γ. We clearly see, in this first step, that energy
decreases faster for γ between 0.1 and 1. In the case of a
linear lattice, the maximum of dissipation is predicted to
correspond to a value of γ which verifies γω ∼ K+k where
K corresponds to the coupling constant of the linearized
Morse potential (K = 1 in our case) and ω is the frequency
of the phonon band that starts at the frequency

√
K = 1

and extends to
√

K + 4k ∼ 1.02. Therefore, in the case
of linearized oscillator, we expect a maximum of dissipa-
tion for γ close to 1 in agreement with what is reported in
Figure 4. It is thus surprising to observe quasi-stationary
states in a second regime whereas dissipative effects are
important, even the presence of slow relaxation when the
friction is large is reminiscent of the behavior of damped
harmonic oscillators.

Fig. 4. Phonon relaxation time t∗, defined by E(t∗)/E(0) =

0.5, for various values of the viscous parameter γ.

In Figure 5, we report the local energy in the lattice
for various parameter γ and at a given time t = 2 × 104

much higher than the characteristic time of phonons and
mobile breathers dissipation. For γ < 0.1, the local energy
per site is close to 0 as seen previously in Figure 2: the sys-
tem with small dissipative coupling reached thus rapidly
an equilibrium frozen state. For γ ≥ 0.1, we clearly see
the localization of energy, as long-lived breathers, corre-
sponding to two nearest-neighbors oscillators, vibrating in
phase, but distributed evenly on the lattice. We have veri-
fied that the two considered nearest-neighbors are coupled
via piston: when γ is high enough this coupling is clamped.
In fact, the phase displacement of velocities of both par-
ticles is very small, inducing a very slow dissipation and

therefore a very long-lived out-equilibrium state. The en-
ergy of these long-lived breathers is close to 0.5 at time
t = 2 × 104, and the associated sites are not linked with
the on-site Morse potential. This quasi-stationary state is
clearly not a frozen state, since some parts of a molecular
chain are “hot” but do not interact with other ones.

Fig. 5. Instantaneous local energy Ei along the chain at time

t = 2×104 for various dissipative parameter γ. The dashed lines

show the limit of Morse potential for large displacement xi.

For t � t∗ and γ ≥ 0.1, the energy relaxation of the
quasi-stationary state can be very well fitted by a Kohl-
rausch-Williams-Watts function or stretched exponential
function:

E(t) = Eb(0)e−(at)b

(6)

where the coefficients a, b and Eb(0) are γ dependent.
Eb(0) can be qualified as the total energy of pinned
breathers at time t = 0. The Kohlrausch [19] exponent
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b is a parameter measuring the deviation from a single ex-
ponential form (0 ≤ b ≤ 1). In Figure 6, we have reported
the evolution of − ln[E(t)/Eb(0)] versus t with logarithmic
scales for various parameter γ ≥ 0.1. We see a very clear
linear dependence for high t (after phonon and mobile
breather dissipation), which attests that this long-lived
breather energy relaxes as a stretched exponential.
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Fig. 6. Log[− ln(E(t)/Eb(t))] versus log t for various dissipa-

tive parameter γ. The dotted lines are the stretched exponen-

tial fits.

We see also in these figures that the slope of the
straight lines depends on the viscous parameter γ. In or-
der to examine more precisely this dependence, we report
in Figure 7 the Kohlrausch exponent b versus the viscous
parameter γ. The error bars are shown in the picture, but
are hidden by the symbols, suggesting that the fit is very
good. We clearly see a maximum of the exponent b for
values of γ close to 0.5. The b-value is equal to 0.82 and
then the energy relaxation differs from a pure exponen-
tial decay. Furthermore, this figure shows that the pinned
breathers relaxation is slower for higher parameter γ.

4 Out of equilibrium dynamic correlations

Studies of nonequilibrium systems like spin, structural
or Lennard-Jones glasses [20,21] have shown that the

Fig. 7. Kohlrausch exponent b for various viscous parameter γ.

nonequilibrium dynamics of the previously described
states could be much efficiently characterized by two-time
correlation functions of the form [26]:

C(tw + t, tw) = 〈A(tw + t)A(tw)〉
−〈A(tw + t)〉〈A(tw)〉 (7)

where A is a microscopic observable, and tw is the “wait-
ing time” i.e., the time elapsed after the quench. Brack-
ets denote an average over different initial configurations
at temperature T . At equilibrium, this two-time quantity
satisfies time translation invariance and then depends only
on the time t. On the other hand, in out of equilibrium
situations, such equilibrium property is not verified: this
function depends on the waiting time tw (“aging effect”).
The correlations functions for large times are expected to
scale in the form:

C(tw + t, tw) = CST (t) + CAG

(
ξ(tw + t)

ξ(tw)

)
. (8)

The first term describes short time dynamics that does
not depend on tw and has the equilibrium form. The
second term, or aging part, depends only on the ratio
ξ(tw + t)/ξ(tw) where ξ(t) is a monotonous increasing
function of t. In a lot of cases ξ(t) ∝ t or ∝ tν so
that the aging part is simply a function of t/tw and ex-
hibits a master curve (see for instance, experiments on
thermoremanent magnetization [22], gels [23] or particle
suspensions [24,25]).

In this study we have considered the microscopic ob-
servable A(t) = (

∑200
i=1 xi(t))/200 that is the mean defor-

mation per site of the chain at time t. Numerical calcula-
tions have been done in the case of a quench of the system
with a viscous parameter γ = 10 from temperature T = 1
to T = 0. Two-time correlation functions are obtained for
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various waiting time by considering 11 different initial con-
figurations. Furthermore, in order to make a quantitative
comparison, we prefer to calculate correlation normalized
by C(tw , tw).

In Figure 8, we have reported the evolution of normal-
ized two-time correlations function C(tw + t, tw) versus
time t for different waiting time (we consider tw � t∗ in
order to study only long lived non equilibrium states after
phonons and mobile breathers dissipation). The behavior
of C clearly emphasizes the lost of time-translation in-
variance and the dependence on the waiting time tw. This
figure also shows that the dynamics can be decomposed
into two time scales:

(i) at short time separation (t < 20) correlation func-
tion doesn’t depend on tw and is equal to the value ex-
pected at equilibrium (C = 1 at T = 0).

(ii) the decay from this value toward zero arises in
a second time scale that clearly depends on tw: the sys-
tem doesn’t reach equilibrium within the time window ex-
plored in the simulation. Furthermore we can notice that
the larger the waiting time, the longer it takes the system
to forget the configuration at time tw. This behavior is
typical of aging effect [20].
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Fig. 8. Normalized non-equilibrium correlation function

C(tw + t, tw) for fixed value tw versus time t. The viscous pa-
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are tw = 5844, 9300, 14700, 23137, 36321, 56920, 71225.

Guided by equation (8) we test the scaling assump-
tion for long times in Figure 9, where normalized cor-
relation functions are reported versus normalized time
t/tw. The different curves can be superimposed, indicat-
ing the validity of the scaling ansatz and the existence of
a master curve. This striking feature is observed in many
non-equilibrium systems [22–25] and is very similar with
comparable studies on spin glasses [20] or Lennard-Jones

glasses [21]. The physical origin of this universal t/tw scal-
ing is, at this day, an open question. Kob and Barrat sug-
gest in reference [21] that it could be induced by a simi-
larity of the geometry of phase space of these systems in
spite of differences in microscopic dynamics.
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Fig. 9. The data of Figure 8 versus t/tw: master curve.

Finally, we would like to point out that Figure 8 shows
also the violation of the dissipation-fluctuation theorem
(FDT). It seems to be a characteristic of non-equilibrium
system as observed numerically in domain growth process
[27], Lennard-Jones glasses [28] or slow granular rheol-
ogy [29] and experimentally for dielectric measurements
in colloidal glasses [30], supercooled fluid [31] and polymer
glasses [32,33]. Let us consider the response R(tw + t, tw)
to a field h conjugated to observable A. For systems out-
of-equilibrium, response to an external field is given by
the following equation:

R(tw + t, tw) ≡ δ〈A(tw + t)〉
δh(tw)

∣∣∣∣
h=0

= −χ(C)
T

∂C(tw + t, tw)
∂t

(9)

where χ(C) is a phenomelogical function. We thus obtain:

∂C(tw + t, tw)
∂t

= −T

χ
R(tw + t, tw) (10)

where T is the bath temperature. Obviously, for equili-
brated systems, χ(C) is equal to 1 and the FDT is recov-
ered.

If we consider a quench with a zero-temperature bath,
then for satisfying FDT, the derivative of the normalized
correlation function has to vanish. Just after the quench,
as usual, this requirement would not be fulfilled during the
time for equilibration which is clearly independent of the



F. Gobet et al.: Aging phenomena in nonlinear dissipative chains 199

waiting time. However, in the present nonlinear dissipa-
tive model, evolutions of correlation functions reported in
Figure 8 show clearly that convergence toward the regime
where the FDT is correct, depends on the waiting time tw.
Consequently FDT is violated in this non-equilibrium sys-
tem as seen in other glasses [27–33]. Moreover, the larger
the waiting time, the longer the FDT is violated by the
system.

5 Conclusion

We have studied a one dimensional nonlinear lattice char-
acterized by dissipative couplings. The energy relaxation
studies of this thermalized system show that for suffi-
ciently large viscous parameter γ, it is possible to observe
nonequilibrium quasi-stationary states in spite of the short
characteristic time of phonon dissipation! This surpris-
ing behavior is due to a chain auto-organization which
minimizes energy dissipation, inducing the clamping of
some degrees of freedom and forming long-lived pinned
breathers.

Moreover, this very slow energy relaxation can be fit-
ted by stretched exponential laws, ubiquitous in glassy
polymer aging properties. Another similarity with these
physical systems is that this aging phenomenon is slower
when the viscous parameter γ is higher. Furthermore, the
two-time correlation function C(tw + t, tw) shows a strong
dependence on the waiting time and can be scaled onto a
master curve by considering the evolution versus normal-
ized time t/tw.

By these aspects (clamping of degree of freedom, long-
lived nonequilibrium state, stretched exponential decays,
violation of time-translation invariance and master curve),
the aging nature of this simple dissipative non linear lat-
tice is very similar to those observed in glassy polymers.
Beside its interest for nonlinear physics, this model is
presumably an alternative to study complex systems like
glassy state polymers: we have now to push our inves-
tigations further by examining other properties like de-
pendences on cycling temperature, evolution with waiting
time of the elastic moduli.
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