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Abstract. – We study analytically the behavior of the largest Lyapunov exponent λ1 for a one-
dimensional chain of coupled nonlinear oscillators, by combining the transfer integral method
and a Riemannian geometry approach. We apply the results to a simple model, proposed for
the DNA denaturation, which emphasizes a first-order–like or second-order phase transition
depending on the ratio of two length scales: this is an excellent model to characterize λ1 as a
dynamical indicator close to a phase transition.

Introduction. – Phase transition plays a central role in equilibrium and nonequilibrium
statistical physics books and lectures in particular because it exemplifies the paradigmatic
concept of universality in physics. In the theory of dynamical systems, the concept of Lyapunov
exponent has also attracted a lot of attention [1,2] because it defines unambiguously a sufficient
condition for chaotic instability, but unfortunately except for very few systems it is already
an extremely difficult task to derive analytically the expression of the largest one, λ1, as a
function of the energy density. As some promising results have recently been obtained to
describe some properties of high-dimensional dynamical systems [3–6], by combining tools
developed in the framework of dynamical systems with concepts and methods of equilibrium
statistical mechanics, the idea that both concepts could be related was proposed recently [7].

During the last years, the process by which two strands of DNA unbind upon heating,
called DNA denaturation or melting, has motivated a lot of works [8–11] and in particular an
extremely simplified dynamical model [12] was proposed and studied. This one-dimensional
Hamiltonian has the following expression:

H =
∑

n

m

2
ẏ2

n +
K

2
(yn − yn+1)

2 +D
(
e−ayn − 1

)2
, (1)

where m corresponds to the effective mass of nucleotides, K is the coupling constant and D
(respectively, a) the depth (respectively, the inverse length scale) of the Morse potential which
mimics the interactions between groups of atoms of opposite strands.

This potential with only nearest-neighbor interactions is well suited for using the transfer
integral method in order to derive the canonical partition function. It has been shown [12]
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that this system can be mapped to the quantum-mechanical analogy of a particle in a Morse
potential and that all thermodynamical quantities could finally be expressed as functions of the
eigenvalues εq and eigenfunctions φq of this Schrödinger problem. In particular, we showed
the existence of a critical temperature Tc = 2

√
2KD/akB corresponding to a second-order

phase transition between the so-called native (or double strand) state with the particles in the
bottom of the Morse well, and the denaturated state, with the particles on the Morse plateau.

The dynamical properties of this one-dimensional model are also very interesting and have,
in particular, emphasized the role of localized oscillating excitations, called discrete breathers,
as precursors effects driving this phase transition. Spatiotemporal studies of the dynamics
reveal also intermittency-like features and have led us to consider the importance of its chaotic
properties as an important ingredient to characterize and to explain this dynamical instability.
This is the reason why it is important to study the Lyapunov behavior as a function of the
energy density, not only by computing it numerically but also (if possible!) by deriving its
expression using the Riemannian geometry approach proposed recently [7].

Riemannian geometry approach. – The main idea is that the chaotic hypothesis is at the
origin of the validity of equilibrium statistical physics, and this should be traced somehow
in the dynamics and therefore in the largest Lyapunov exponent. The method is based on
a reformulation of Hamiltonian dynamics in the language of Riemannian geometry [7]: the
trajectories are seen as geodesics of a suitable Riemannian manifold. The chaotic properties
of the dynamics are then directly related to the curvature of the manifold and its fluctuations.
Indeed, negative curvatures tend to separate initially close geodesics, and thus imply a positive
Lyapunov exponent; nevertheless chaos may also be induced by positive curvatures, provided
they are fluctuating, through a parametric-like instability. To approximate the curvature felt
along a geodesic, the method uses a Gaussian statistical process. The mean value of this
process is given by κ0 and its variance by σκ, where κ0 and σκ are the statistical average of
the curvature and its fluctuations, which can be computed by standard methods of statistical
mechanics. Using a result in stochastic differential equations, one finally ends up with the
expression of the largest Lyapunov exponent

λ1 =
1
2

(
Λ − 4κ0

3Λ

)
where Λ =


σ2

κτ +

√(
4κ0

3

)3

+ σ4
κτ

2




1/3

. (2)

In this definition, τ , the relevant time scale associated to the stochastic process, is a function
of the two following time scales: τ1 � π/2

√
κ0 + σκ is the time needed to cover the distance

between two successive conjugate points along the geodesics, whereas τ2 � √
κ0/σκ is related

to the local curvature fluctuations. The general rough physical estimate τ � (1/τ1 + 1/τ2)
−1

completes finally the analytical estimate of λ1 that we would like to continue now by the
calculation of the mean value of the curvature and its fluctuations as a function of the energy
density.

Curvature and fluctuations along geodesics. – Using the simplifying Eisenhart metric,
the Ricci curvature KR(y) corresponds to the Laplacian of the potential energy. Defining the
function g(y) = 2e−2ay − e−ay, we get the following expression:

κ0 =
〈KR〉µ
N − 1

� 2K + 2a2D〈g(y)〉µ = 2K + 2a2D

(
1 − T

Tc

)
, if T < Tc, (3)

= 2K , if T > Tc , (4)
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where we have used the equality of mean values in microcanonical 〈•〉µ and canonical 〈•〉can
ensembles [13]. The last expression is in particular derived using the expression of the ground-
state φ0(y) of the quantum-mechanical analogy since 〈g(y)〉can = 〈φ0|g(y)|φ0〉can. Figure 1
attests that the agreement is excellent between the above analytical expression, the canonical
transfer integral results and microcanonical molecular dynamics simulations, obtained using
the best 4th-order symplectic integrator due to MacLahan-Attela [14].

It is interesting to note that the mean curvature is always positive, whereas the local one
is negative close to the inflexion point of the Morse potential. In addition, expression (3)
emphasizes the role of discreteness since the curvature would be almost constant in the con-
tinuum limit a2D � K. This will have further consequences on the evolution of λ1 when the
discreteness is changed.

Fluctuations of curvature. – Since numerical computations are simpler in the micro-
canonical ensemble, while analytical calculations are simpler in the canonical one, to get the
fluctuations of the curvature in the microcanonical ensemble, one needs to add the following
corrective term [13]:

〈δ2KR〉µ = 〈δ2KR〉can −
(
∂U

∂β

)−1 (
∂〈KR〉can

∂β

)2

. (5)

The expression of the energy

U

N
=

1
2β

− 1
N

∂ lnZcan

∂β
= kBT +D

T 2

T 2
c

, if T < Tc, (6)

= kBT , if T > Tc, (7)

emphasizes the second order of the phase transition, and finally, using the expression of the
mean value of the curvature, we obtain the microcanonical/canonical correction

〈δ2KR〉µ − 〈δ2KR〉can = − 4a4D2N

1 +
√

a2D
2K

T
Tc

T 2

T 2
c

(8)

valid below Tc. This quadratic correction vanishes for very low temperatures and converges
towards a negative constant close to Tc.

The expression of the fluctuations of the curvature in the canonical ensemble is then

〈δ2KR〉can = 〈K2
R(y) − 〈KR(y)〉2〉can = 4a4D2

∑
i,j

(
〈g(yi)g(yj)〉can − 〈g(yi)〉can〈g(yj)〉can

)
.

The second part of the parenthesis could be easily computed and gives a term N2〈g〉2. The
first one can be evaluated with the transfer integral method since, thanks to the periodic
boundary condition, one needs to take into account only the difference in indices (i − j).
However, one cannot integrate directly the integral over the resulting (N − 1) variables, and
one needs to decompose twice on the orthonormal basis {φq} of the transfer operator. Defining
the matrix elements of g(y) in this base

Mk,q0 =
∫ +∞

−∞
φ∗q0

(y)g(y)φk(y)dy = 〈φq0 |g(y)|φk〉 , (9)

we finally obtain

〈g(yp)g(yN )〉can =
1
Zc

∑
k,q

e−(N−p)β(εq−εk) e−Nβεk |Mk,q|2 .
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Fig. 1 – Evolution of κ0 (circles) and σκ (squares) as a function of the temperature T . Circles and
squares correspond to microcanonical results, the solid lines to results obtained with the transfer
integral method (eq. (10)); the dashed line to the analytical expression (eq. (3)). Finally, the dotted
line corresponds to the low-temperature approximation (eq. (12)) of the fluctuations of the curvature.
Even if these quantities are microcanonical ones, for clarity purpose, we plot them vs. T which
appears more naturally in the calculations.

As only the lowest eigenvalue ε0 will contribute in the thermodynamic limit, we finally get

σ2
κ ≡ 〈δ2KR〉can

N
= 4a4D2

+∞∑
q=1

|M0,q|2
1 − e−β(εq−ε0)

, (10)

by recognizing a geometrical sum. Figure 1 emphasizes the excellent agreement between
microcanonical simulations (squares) and the above analytical expression (solid line), where
we have used the eigenfunctions of the transfer integral operator.

Low-temperature approximation. – The above expression (10) is, however, difficult to
handle in general but could be simplified in the low-temperature regime since the gap between
the eigenvalue of the ground state ε0 and the other ones justify neglecting the exponential
term in the denominator. This approximation breaks down, of course, close to the phase
transition since the critical temperature is defined by the disappearance of the ground state
ε0 in the continuum. We thus obtain

〈δ2KR〉can � 4a4D2N

+∞∑
q=1

|〈φ0|g|φq〉|2 = 4a4D2N
[〈g2〉 − 〈g〉2] . (11)

Using the procedure described for the calculation of 〈g〉, one obtains the formula 〈g2〉 =(
1 − T

Tc

) (
1 + 4T

Tc
+ 2T 2

T 2
c

)
, where the prefactors 2 and 4 have been renormalized to be in

agreement with numerical simulations; the discreteness of the chain, which drives the phase
transition, is the main reason for this renormalization. Adding, finally, the microcanonical
correction (8), we obtain

σ2
κ ≡ 〈δ2KR〉µ

N
= 4a4D2
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 . (12)
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The dotted line plotted in fig. 1 attests the quality of this low-temperature approximation
which leads to a linear dependence vs. temperature of the fluctuations σ2

κ ∼ 20a4D2T/Tc at
the lowest order.

Largest Lyapunov exponent. – Once the curvature (3) and its fluctuations (10) have
been calculated, it is straightforward to compute the two time scales τ1 and τ2. Having in
mind that the estimate of the decorrelation time scale τ is still somehow rudimentary [7] in
the Riemannian framework outlined above, fig. 2 shows that the alternative definition τ �
(1/τ1 + 5/τ2)−1 gives a particularly striking agreement between the microcanonical numerical
results obtained using the standard algorithm [15] and the analytical derivation proposed
here. Let us emphasize that the agreement is excellent on the whole interval contrary to
earlier results obtained for the φ4 chain [16]. The approach described here has a domain of
validity even larger than expected since the agreement is very good even in the region where
the fluctuations of curvature are of the order of or greater than the curvature itself.

It is also very interesting to remark that the simultaneous use of the Riemannian geometry
approach and of the transfer integral method that we propose here could be easily extended to
the treatment of any chain of oscillators with on-site potential and nearest-neighbor harmonic
coupling. Once the transfer integral operator is solved analytically, as it is possible here for
Hamiltonian (1) or numerically in general, the evolution of the largest maximal Lyapunov
exponent as a function of the energy density is directly derived from expressions of the curva-
ture (3) and fluctuations (10), by simply replacing 2a2Dg(y) by the second derivative of the
on-site potential.

A closer look at very low-energy density shows, however, a nonsurprising disagreement
since the inset plotted in fig. 2 clearly violates the low-energy density approximate law λ1 ∼
σ2

κ, which would give here a linearly increasing function of the temperature according to
the lowest-order estimate of σκ. The reason is presumably the breakdown of the stochastic
approximation for the average curvature in this very low-energy limit where the system is
almost quadratic and therefore the crucial ergodic hypothesis is not completely fulfilled any
more. More interestingly, the numerical model emphasizes an unusual 3/2 power law contrary
to the generally reported u2 dependence of λ1 in high-dimensional dynamical systems [6, 7].

Let us note that the expression of κ0 is strongly dependent on the discreteness parameter
a2D/K, but the fluctuations σκ are not. As fig. 2 shows that, away from the critical re-
gion, the smaller the curvature is, the greater the Lyapunov is, one can expect that the more
discrete the chain is, the more chaotic its dynamics would be. This result is clearly in qualita-
tive agreement with the discovery that spontaneously created discrete breathers are actually
chaotic excitations and that their domain of stability is far from the continuum limit [17].

Lyapunov and phase transition. – This model is also a very interesting case where one
can characterize λ1 as a dynamical indicator of a phase transition. In this case of a second-
order phase transition, one obtains a critical slowing-down reminiscent of the results obtained
for the Heisenberg mean-field model derived by Firpo [6]. We would like also to emphasize the
singular behavior of κ0, σκ and λ1 at the critical energy density, in complete agreement with
the exciting conjectures [7] linking them to a topology change in the underlying manifold,
being itself an indicator of a thermodynamic phase transition.

More interestingly, we also have studied the Hamiltonian (1) with an anharmonic coupling
potential K

2 [1 + e−α(yn+yn−1)] (yn − yn−1)2 which has the property to describe the varying
backbone stiffness of the DNA. This Hamiltonian was shown to have a first-order–like phase
transition [18] when the ratio of the two inverse length scales α/a is lower than 1/2. If
analytical estimates of the Lyapunov exponent are not possible, fig. 3 shows its evolution
obtained using microcanonical molecular dynamics simulations. In the low-energy limit, the
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Fig. 2 Fig. 3

Fig. 2 – Evolution of the maximal Lyapunov exponent as a function of the energy density u = U/N .
The symbols correspond to microcanonical numerical simulations for N = 500 (triangles), N = 103

(squares), N = 2 ·103 (crosses) and N = 104 (diamonds). The solid line corresponds to the analytical
estimation using the transfer integral method, whereas the dashed line corresponds to the analytical
expression valid at low energy. The vertical dotted line shows the position of the critical energy
density uc = kBTc + D. In the inset, we plot λ1 as a function of the energy density u in log-log scale.
The symbols correspond to microcanonical numerical simulations for N = 500, whereas the solid line
to a 3/2 power law.

Fig. 3 – Lyapunov exponent and order of the phase transition. The solid line shows the evolution
of the harmonic model with second-order phase transition, whereas the symbols are referring to the
model with anharmonic coupling with a first-order–like phase transition. The number of sites in the
chain is N = 500 (crosses), N = 103 (diamonds) and N = 104 (circles). The vertical dotted (re-
spectively, dash-dotted) line corresponds to the critical energy density of Hamiltonian with harmonic
(respectively, anharmonic) coupling.

additional parenthesis does not produce, of course, modifications, but it emphasizes an abrupt
change [19] of the Lyapunov exponent at the critical energy density as if λ1 were a dynamical
order parameter indicating the first-order phase transition.

Conclusion. – In this letter, we have presented one of the very few analytical calculation
of the largest Lyapunov exponent in a high-dimensional dynamical system [2]. As expected,
in addition to serve as a criterion for chaos, or as a characteristic time scale of chaoticity, λ1 is
an excellent dynamical indicator of the presence of the phase transition and could be used to
describe not only the dynamics but also the statistical properties of high-dimensional systems.

It is also interesting to consider the behavior of another important dynamical indicator, the
participation ratio of the normalized Lyapunov vector V1 associated to the maximal Lyapunov
λ1. Defined as ξ = 1/

(
N

∑N
i=1

[
V1(i)2 + V1(i+N)2

]2), where the first (respectively, last) N
components are associated to the evolution of linear perturbations of yn (respectively, ẏn) in
tangent space, ξ is an indicator of localization [20–22]: it is of order one if the vector is extended
and of order 1/N if localized. Here, we found that the phase transition corresponds to a
crossover from a localized state in tangent space at low-energy density to a more extended state
just after the phase transition, confirming that the tangent space through the largest Lyapunov
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exponent λ1, but also its associated eigenvector V1 through the participation ratio ξ, are
surprisingly good dynamical indicators for emphasizing thermodynamical phase transitions.
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[2] Lichtenberg A. J. and Lieberman M. A., Regular and Chaotic Dynamics (Springer, Berlin)

1992.
[3] Casetti L., Livi R. and Pettini M., Phys. Rev. Lett., 74 (1995) 375.
[4] Constantoudis V. and Theodorakopoulos N., Phys. Rev. E, 55 (1997) 7612.
[5] Latora V., Rapisarda A. and Ruffo S., Physica D, 131 (1999) 38.
[6] Firpo M. C., Phys. Rev. E, 57 (1998) 6599.
[7] Casetti L., Pettini M. and Cohen E. G. D., Phys. Rep., 337 (2000) 237.
[8] Cocco S. and Monasson R., Phys. Rev. Lett., 83 (1999) 5178.
[9] Causo M. S., Coluzzi B. and Grassberger P., Phys. Rev. E, 62 (2000) 3958.

[10] Kafri Y., Mukamel D. and Pelliti L., Phys. Rev. Lett., 85 (2000) 4988.
[11] Garel T., Monthus C. and Orland H., cond-mat/0101058.
[12] Theodorakopoulos N., Dauxois T. and Peyrard M., Phys. Rev. Lett., 85 (2000) 6.
[13] Lebowitz J. L., Percus J. K. and Verlet L., Phys. Rev., 153 (1967) 250.
[14] The parameters of the model are D = 0.03 eV, K = 0.06 eV/Å2, a = 4.5 Å−1, α = 0.35 Å−1
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